public class ArrayList<E> extends AbstractList<E> implements List<E>, RandomAccess, Cloneable, Serializable
The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. The add operation runs in amortized constant time, that is, adding n elements requires O(n) time. All of the other operations run in linear time (roughly speaking). The constant factor is low compared to that for the LinkedList implementation.
Each ArrayList instance has a capacity. The capacity is the size of the array used to store the elements in the list. It is always at least as large as the list size. As elements are added to an ArrayList, its capacity grows automatically. The details of the growth policy are not specified beyond the fact that adding an element has constant amortized time cost.
An application can increase the capacity of an ArrayList instance before adding a large number of elements using the ensureCapacity operation. This may reduce the amount of incremental reallocation.
Note that this implementation is not synchronized. If multiple threads access an ArrayList instance concurrently, and at least one of the threads modifies the list structurally, it must be synchronized externally. (A structural modification is any operation that adds or deletes one or more elements, or explicitly resizes the backing array; merely setting the value of an element is not a structural modification.) This is typically accomplished by synchronizing on some object that naturally encapsulates the list.
The iterators returned by this class's iterator()
and
listIterator(int)
methods are fail-fast: if the list is
structurally modified at any time after the iterator is created, in any way except through the
iterator's own remove
or add
methods, the iterator will throw a ConcurrentModificationException
. Thus, in the face of
concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary,
non-deterministic behavior at an undetermined time in the future.
Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally
speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent
modification. Fail-fast iterators throw ConcurrentModificationException
on a best-effort
basis. Therefore, it would be wrong to write a program that depended on this exception for its
correctness: the fail-fast behavior of iterators should be used only to detect bugs.
This class is a member of the Java Collections Framework
Collection
,
List
,
Vector
,
Serialized FormmodCount
Constructor and Description |
---|
ArrayList()
Constructs an empty list with an initial capacity of ten.
|
ArrayList(Collection<? extends E> c)
Constructs a list containing the elements of the specified collection, in the order they are
returned by the collection's iterator.
|
ArrayList(int initialCapacity)
Constructs an empty list with the specified initial capacity.
|
Modifier and Type | Method and Description |
---|---|
boolean |
add(E e)
Appends the specified element to the end of this list.
|
void |
add(int index,
E element)
Inserts the specified element at the specified position in this list.
|
boolean |
addAll(Collection<? extends E> c)
Appends all of the elements in the specified collection to the end of this list, in the order
that they are returned by the specified collection's Iterator.
|
boolean |
addAll(int index,
Collection<? extends E> c)
Inserts all of the elements in the specified collection into this list, starting at the specified
position.
|
void |
clear()
Removes all of the elements from this list.
|
Object |
clone()
Returns a shallow copy of this ArrayList instance.
|
boolean |
contains(Object o)
Returns true if this list contains the specified element.
|
void |
ensureCapacity(int minCapacity)
Increases the capacity of this ArrayList instance, if necessary, to ensure that it can
hold at least the number of elements specified by the minimum capacity argument.
|
E |
get(int index)
Returns the element at the specified position in this list.
|
int |
indexOf(Object o)
Returns the index of the first occurrence of the specified element in this list, or -1 if this
list does not contain the element.
|
boolean |
isEmpty()
Returns true if this list contains no elements.
|
Iterator<E> |
iterator()
Returns an iterator over the elements in this list in proper sequence.
|
int |
lastIndexOf(Object o)
Returns the index of the last occurrence of the specified element in this list, or -1 if this
list does not contain the element.
|
ListIterator<E> |
listIterator()
Returns a list iterator over the elements in this list (in proper sequence).
|
ListIterator<E> |
listIterator(int index)
Returns a list iterator over the elements in this list (in proper sequence), starting at the
specified position in the list.
|
E |
remove(int index)
Removes the element at the specified position in this list.
|
boolean |
remove(Object o)
Removes the first occurrence of the specified element from this list, if it is present.
|
boolean |
removeAll(Collection<?> c)
Removes from this list all of its elements that are contained in the specified collection.
|
protected void |
removeRange(int fromIndex,
int toIndex)
Removes from this list all of the elements whose index is between
fromIndex , inclusive,
and toIndex , exclusive. |
boolean |
retainAll(Collection<?> c)
Retains only the elements in this list that are contained in the specified collection.
|
E |
set(int index,
E element)
Replaces the element at the specified position in this list with the specified element.
|
int |
size()
Returns the number of elements in this list.
|
List<E> |
subList(int fromIndex,
int toIndex)
Returns a view of the portion of this list between the specified
fromIndex , inclusive,
and toIndex , exclusive. |
Object[] |
toArray()
Returns an array containing all of the elements in this list in proper sequence (from first to
last element).
|
<T> T[] |
toArray(T[] a)
Returns an array containing all of the elements in this list in proper sequence (from first to
last element); the runtime type of the returned array is that of the specified array.
|
void |
trimToSize()
Trims the capacity of this ArrayList instance to be the list's current size.
|
equals, hashCode
containsAll, toString
containsAll, equals, hashCode
public ArrayList()
public ArrayList(Collection<? extends E> c)
c
- the collection whose elements are to be placed into this listNullPointerException
- if the specified collection is nullpublic ArrayList(int initialCapacity)
initialCapacity
- the initial capacity of the listIllegalArgumentException
- if the specified initial capacity is negativepublic boolean add(E e)
add
in interface Collection<E>
add
in interface List<E>
add
in class AbstractList<E>
e
- element to be appended to this listCollection.add(E)
)public void add(int index, E element)
add
in interface List<E>
add
in class AbstractList<E>
index
- index at which the specified element is to be insertedelement
- element to be insertedIndexOutOfBoundsException
- if the index is out of range (index < 0 || index > size())public boolean addAll(Collection<? extends E> c)
addAll
in interface Collection<E>
addAll
in interface List<E>
addAll
in class AbstractCollection<E>
c
- collection containing elements to be added to this listNullPointerException
- if the specified collection is nullAbstractCollection.add(Object)
public boolean addAll(int index, Collection<? extends E> c)
addAll
in interface List<E>
addAll
in class AbstractList<E>
index
- index at which to insert the first element from the specified collectionc
- collection containing elements to be added to this listIndexOutOfBoundsException
- if the index is out of range (index < 0 || index > size())NullPointerException
- if the specified collection is nullpublic void clear()
clear
in interface Collection<E>
clear
in interface List<E>
clear
in class AbstractList<E>
public Object clone()
public boolean contains(Object o)
contains
in interface Collection<E>
contains
in interface List<E>
contains
in class AbstractCollection<E>
o
- element whose presence in this list is to be testedpublic void ensureCapacity(int minCapacity)
minCapacity
- the desired minimum capacitypublic E get(int index)
get
in interface List<E>
get
in class AbstractList<E>
index
- index of the element to returnIndexOutOfBoundsException
- if the index is out of range (index < 0 || index >= size())public int indexOf(Object o)
public boolean isEmpty()
isEmpty
in interface Collection<E>
isEmpty
in interface List<E>
isEmpty
in class AbstractCollection<E>
public Iterator<E> iterator()
The returned iterator is fail-fast.
public int lastIndexOf(Object o)
lastIndexOf
in interface List<E>
lastIndexOf
in class AbstractList<E>
o
- element to search forpublic ListIterator<E> listIterator()
The returned list iterator is fail-fast.
listIterator
in interface List<E>
listIterator
in class AbstractList<E>
listIterator(int)
public ListIterator<E> listIterator(int index)
next
. An initial call to
previous
would return the element with the specified index minus
one.
The returned list iterator is fail-fast.
listIterator
in interface List<E>
listIterator
in class AbstractList<E>
index
- index of the first element to be returned from the list iterator (by a call to
next
)IndexOutOfBoundsException
- if the index is out of range (index < 0 || index > size()
)public E remove(int index)
remove
in interface List<E>
remove
in class AbstractList<E>
index
- the index of the element to be removedIndexOutOfBoundsException
- if the index is out of range (index < 0 || index >= size())public boolean remove(Object o)
remove
in interface Collection<E>
remove
in interface List<E>
remove
in class AbstractCollection<E>
o
- element to be removed from this list, if presentpublic boolean removeAll(Collection<?> c)
removeAll
in interface Collection<E>
removeAll
in interface List<E>
removeAll
in class AbstractCollection<E>
c
- collection containing elements to be removed from this listtrue
if this list changed as a result of the callClassCastException
- if the class of an element of this list is incompatible with the specified collection
(optional)NullPointerException
- if this list contains a null element and the specified collection does not permit null
elements (optional), or if the
specified collection is nullCollection.contains(Object)
protected void removeRange(int fromIndex, int toIndex)
fromIndex
, inclusive,
and toIndex
, exclusive. Shifts any succeeding elements to the left (reduces their index).
This call shortens the list by (toIndex - fromIndex)
elements. (If
toIndex==fromIndex
, this operation has no effect.)removeRange
in class AbstractList<E>
fromIndex
- index of first element to be removedtoIndex
- index after last element to be removedIndexOutOfBoundsException
- if fromIndex
or toIndex
is out of range (fromIndex < 0 ||
fromIndex >= size() ||
toIndex > size() ||
toIndex < fromIndex
)public boolean retainAll(Collection<?> c)
retainAll
in interface Collection<E>
retainAll
in interface List<E>
retainAll
in class AbstractCollection<E>
c
- collection containing elements to be retained in this listtrue
if this list changed as a result of the callClassCastException
- if the class of an element of this list is incompatible with the specified collection
(optional)NullPointerException
- if this list contains a null element and the specified collection does not permit null
elements (optional), or if the
specified collection is nullCollection.contains(Object)
public E set(int index, E element)
set
in interface List<E>
set
in class AbstractList<E>
index
- index of the element to replaceelement
- element to be stored at the specified positionIndexOutOfBoundsException
- if the index is out of range (index < 0 || index >= size())public int size()
size
in interface Collection<E>
size
in interface List<E>
size
in class AbstractCollection<E>
public List<E> subList(int fromIndex, int toIndex)
fromIndex
, inclusive,
and toIndex
, exclusive. (If fromIndex
and toIndex
are equal, the returned
list is empty.) The returned list is backed by this list, so non-structural changes in the
returned list are reflected in this list, and vice-versa. The returned list supports all of the
optional list operations.
This method eliminates the need for explicit range operations (of the sort that commonly exist for arrays). Any operation that expects a list can be used as a range operation by passing a subList view instead of a whole list. For example, the following idiom removes a range of elements from a list:
list.subList(from, to).clear();Similar idioms may be constructed for
indexOf(Object)
and lastIndexOf(Object)
.
The semantics of the list returned by this method become undefined if the backing list (i.e., this list) is structurally modified in any way other than via the returned list. (Structural modifications are those that change the size of this list, or otherwise perturb it in such a fashion that iterations in progress may yield incorrect results.)
subList
in interface List<E>
subList
in class AbstractList<E>
fromIndex
- low endpoint (inclusive) of the subListtoIndex
- high endpoint (exclusive) of the subListIndexOutOfBoundsException
- {for an illegal endpoint index value (fromIndex < 0 || toIndex > size ||
fromIndex > toIndex)public Object[] toArray()
The returned array will be "safe" in that no references to it are maintained by this list. (In other words, this method must allocate a new array). The caller is thus free to modify the returned array.
This method acts as bridge between array-based and collection-based APIs.
toArray
in interface Collection<E>
toArray
in interface List<E>
toArray
in class AbstractCollection<E>
public <T> T[] toArray(T[] a)
If the list fits in the specified array with room to spare (i.e., the array has more elements than the list), the element in the array immediately following the end of the collection is set to null. (This is useful in determining the length of the list only if the caller knows that the list does not contain any null elements.)
toArray
in interface Collection<E>
toArray
in interface List<E>
toArray
in class AbstractCollection<E>
T
- the runtime type of the array to contain the collectiona
- the array into which the elements of the list are to be stored, if it is big enough;
otherwise, a new array of the same runtime type is allocated for this purpose.ArrayStoreException
- if the runtime type of the specified array is not a supertype of the runtime type of
every element in this listNullPointerException
- if the specified array is nullpublic void trimToSize()