
1

© MicroEJ 2025

Mastering UI
Development Tools

Design and Improve GUI
applications.

© MicroEJ 2025

2

DISCLAIMER

All rights reserved. Information, technical data and tutorials contained in this document are proprietary under copyright law
of MicroEJ S.A. Without written permission from MicroEJ S.A., copying or sending parts of the document or the entire document
by any means to third parties is not permitted. Granted authorizations for using parts of the document or the entire document

do not mean MicroEJ S.A. gives public full access rights.

The information contained herein is not warranted to be error-free.

MicroEJ® and all relative logos are trademarks or registered trademarks of MicroEJ S.A. in France and other Countries.

Other trademarks are proprietary of their respective owners.
Java is Sun Microsystems’ trademark for a technology for developing application software and deploying it in cross-platform, networked environments. When it is used in this site without adding the “ ” symbol, it includes

implementations of the technology by companies other than Sun. Java , all Java-based marks and all related logos are trademarks or registered trademarks of Sun Microsystems Inc, in the United States and other Countries.

V1.1 Sept. 2025© MICROEJ 2025

3

TABLE OF CONTENT

V1.1 Sept. 2025© MICROEJ 2025

Introduction and Prerequisites1

2 Identify & Debug Performance Bottlenecks

3 Debugging Rendering Issues

4

• Goal:

o Provide an overview of the development tools provided to developers to debug
specifically UI application.

o Illustrate the use of these development tools.

• Development tools categories:

o GUI Performances Improvements (bottlenecks identification)

o GUI Rendering Issues Debug

• The following icons are used in the next slides:

o : tool only working on Simulator

o : tool only working on the Device

o No icon means that the tool is working on the Device and on the Simulator.

o : This checkmark means the tool will be presented in this training.

V1.1 Sept. 2025© MICROEJ 2025

OVERVIEW

5

• It is mandatory to have done the following section of DEV-M0127-PRE-MicroEJ-
Development-Tools-SDK6-NXP-i.MXRT1170:

• Environment Setup

• Debug the BSP C Code

• Optionally it would be useful to also read and follow this other section:

• Runtime & Post Mortem Debugging Tools

V1.1 Sept. 2025© MICROEJ 2025

PREREQUISITES

https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html
https://docs.microej.com/en/latest/Trainings/trainingDevelopmentTools.html

6V1.1 Sept. 2025© MICROEJ 2025

DEVELOPMENT TOOLS OVERVIEW
TOOLS RUNTIME & POST-

MORTEM
MEMORY INSPECTION STATIC ANALYSIS TOOLS GUI DEBUGGING TOOLS

Core Engine VM Dump

Debug on Device

Debug on Simulator

Port Qualification Tool (PQT)

SystemView

Logging & Message Libraries

Code Coverage

Memory Map Analyzer

Heap Dumper / Analyzer

Heap Usage Monitoring

Core Engine MEMORY integrity check

SonarQube / Klocwork (Java/C)

Null Analysis

UI Flush Visualizer

UI MWT & Widget Debug Utilities

7

Identify & Debug
Performance

Bottlenecks

Study done on a
UI Application

V1.1 Sept. 2025© MICROEJ 2025

8

Tools:

• Flush Visualizer

• Refresh Strategy Highlighting

• SystemView

• MicroUI Event Buffer Dump

Example:

• Identify performance bottlenecks that
prevents smooth slide animation

The next slides are using IntelliJ IDEA as
IDE.

Note: For UI2 and former versions, please
refer to MicroUI and multithreading for a
description of the threading model.

V1.1 Sept. 2025© MICROEJ 2025

IDENTIFYING & DEBUGGING BOTTLENECKS

Slide animation between 2 pages

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Simulation/flush-visualizer.html
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Simulation/flush-visualizer.html
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Simulation/refresh-strategy-highlighting.html
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Simulation/refresh-strategy-highlighting.html
https://docs.microej.com/en/latest/VEEPortingGuide/systemView.html
https://docs.microej.com/en/latest/VEEPortingGuide/systemView.html
https://docs.microej.com/en/latest/VEEPortingGuide/uiInput.html#event-buffer
https://docs.microej.com/en/latest/VEEPortingGuide/uiInput.html#event-buffer
https://forum.microej.com/t/gui-microui-and-multithreading/652

9

Flush Visualizer

Identify & Debug Bottlenecks on the
Simulator using the Flush Visualizer
tool

V1.1 Sept. 2025© MICROEJ 2025

10

Building smooth and visually appealing UI applications requires a
keen focus on performance. To achieve efficient UI rendering,
minimizing unnecessary work that consumes valuable CPU time
is essential.

The Flush Visualizer is a tool designed to investigate potential
performance bottlenecks in UI applications running on the
Simulator. The Flush Visualizer provides the following
information:

• A timeline with a step for each flush.

• A screenshot of what is shown on the display at flush time.

• The list of what is done before this flush (and after the previous
one) organized as a tree.

• A node of the tree can be either a region (the display or a clip)
or a drawing operation.

For more information, refer to the
Flush Visualizer documentation.

V1.1 Sept. 2025© MICROEJ 2025

PRESENTATION

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Simulation/flush-visualizer.html

11

Requirement (already fulfilled by NXP i.MXRT1170 VEE Port):

• VEE Port using UI Pack 14.0.0 or later.

• Frontpanel using the Display widget module version 4.+.

Open the slide-container example provided in the training
package.

Add the dependency to the VEE Port in the
slide-container/build.gradle.kts file.

To enable the Flush Visualizer on Simulator:

• Set the ej.fp.display.flushVisualizer to true in the
application options (configuration/common.properties)

• Click on Run.

V1.1 Sept. 2025© MICROEJ 2025

ENABLE THE FLUSH VISUALIZER

Application options of the
slide-container sample

 Starting with UI packs 14.4.1, properties to enabled the Flush Visualizer changed:
• Set the property core.trace.enabled to true to enable the Flush Visualizer.
• Set the property core.trace.autostart to true to start the recording on startup.

12

Click on the Show next button, the Flush Visualizer displays a message in the Console:

A value of 100% indicates that the area drawn is equivalent to the surface of the region.
A value of 200% indicates that the area drawn is equivalent to twice the surface of the region.
A perfect application has 100% of its root region drawn but its very unlikely for an application that draws
anything else than a rectangle or an image.
A total area drawn between 100% to 200% is the norm in practice because widgets often overlap.

However, if the total area drawn is bigger than 200%, that means that the total surface of the region was
drawn more than twice. Probably meaning that a lot of drawings are done above others.

→ Next steps are about Identifying those drawings to reduce number of drawings done (or their surface).

V1.1 Sept. 2025© MICROEJ 2025

REPRODUCE THE ISSUE

13

The Flush Visualizer report is accessible in the project output
folder. It can be visualized in a web browser:

The report can also be opened clicking this button on the
Front Panel:

V1.1 Sept. 2025© MICROEJ 2025

FLUSH ANALYZER REPORT

14

Open the report and move the slider to the flush frame
corresponding to the 401% of drawings (e.g. frame 242):

The report is available at the bottom of the page.

You should observe the report displayed beside.

The following information are provided:

• The operations before a flush are structured as a tree,
where nodes represent either:
 a region (display or clip)
 a drawing operation.

• Each region has defined bounds, can contain other nodes,
and displays the percentage of its parent region it covers.

• Some drawings compute their coverage percentage

• Each region provides a summary of the total percentage
covered recursively.

V1.1 Sept. 2025© MICROEJ 2025

REPORT ANALYSIS (1/2)

1

3

1

4

2

5

2

5

3

4

15

SLIDE-CONTAINER PAGE BREAKDOWN

V1.1 Sept. 2025© MICROEJ 2025

REPORT ANALYSIS (2/2)

1

2

3

4

5

5

2

4

1

3

16

Taking a look at the report, we notice that the page is
actually rendered 2 times, exactly the same way:

V1.1 Sept. 2025© MICROEJ 2025

ROOT CAUSE ANALYSIS

public void tick(int value, boolean finished) {
 // Move the 2 pages
 updatePosition(value, leftChild, rightChild);
 if (finished) {
 // Refresh on the newly visible child.
 restore();
 }

}

1st

drawing
of the page

2nd

drawing

of the page

Taking a look at the code, we notice that the
page is fully redrawn when the transition
animation is over (SlideContainer class):

1st drawing of the page
updatePosition()

2nd drawing of the page
restore()

17

Run the updatePosition() code only when the animation is running:

V1.1 Sept. 2025© MICROEJ 2025

FIX PROPOSAL

public void tick(int value, boolean finished) {
 if (finished) {
 // Refresh on the newly visible child.
 restore();
 }else{
 // Move the 2 pages
 updatePosition(value, leftChild, rightChild);
 }
}

Next step: investigate why the area drawn is still above 200% (not part of this training)

18

Refresh Strategy
Highlighting

Identify & Debug Bottlenecks on
the Simulator using the Refresh
Strategy Highlighting

V1.1 Sept. 2025© MICROEJ 2025

19

This tool is complementary to the Flush Visualizer tool.

A buffer refresh strategy is responsible for making sure that what is shown on the display
contains all the drawings—the ones done since the last flush and the past.

To achieve that, it detects the drawn regions and refreshes the necessary data in the back
buffer.

This information can also be used to understand what happens for each frame in terms of
drawings and refreshes. It may be beneficial to identify performance issues.

The drawn and restored regions can be very different depending on the selected strategy and
the associated options. See Buffer Refresh Strategy for more information about the different
strategies and their behavior.

See Refresh Strategy Highlighting documentation for more information about this tool.

V1.1 Sept. 2025© MICROEJ 2025

REFRESH STRATEGY HIGHLIGHTING

https://docs.microej.com/en/latest/VEEPortingGuide/uiBRS.html#section-brs
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Simulation/refresh-strategy-highlighting.html

20

The following highlights can be enabled:

• Drawn Region(s)

• Restored Region(s)

• Dirty Region(s)

Enable the highlights in the slide-container example:

• Open the configuration/common.properties file

• Add the following properties, one per highlight type:

• Save common.properties

• Run the application on Simulator

• Highlights are displayed in the Simulator. They can also be
visualized in the Flush Visualizer report.

V1.1 Sept. 2025© MICROEJ 2025

ENABLE THE REFRESH STRATEGY HIGHLIGHTING

ej.fp.brs.drawnColor=0xff00ff00 # GREEN color
ej.fp.brs.restoredColor=0xffff00ff # PURPLE color
ej.fp.brs.dirtyColor=0x200000ff # BLUE color

21

The render area of the CircularIndeterminateProgress widget (green
area in DOCK LEFT) is taking all the height of the screen.

Analysis:

• The CircularIndeterminateProgress widget is included in a Dock
Container (see SlideContainerDemo class):

• The style configuration of the widget is not defining any size
constraint (see SlideContainerDemo class):

→ The widget fills all the space available in the left part of the Dock
container.

V1.1 Sept. 2025
© MICROEJ 2025

ANALYSIS

D
O

C
K

 L
E

FT

DOCK TOP

DOCK CENTER

CircularIndeterminateProgress progress = new CircularIndeterminateProgress();
dock.addChildOnLeft(progress);

private static Stylesheet createStylesheet() {
 CascadingStylesheet stylesheet = new CascadingStylesheet();
 …
 style = stylesheet.getSelectorStyle(new TypeSelector(CircularIndeterminateProgress.class));
 style.setColor(POMEGRANATE);
 style.setVerticalAlignment(Alignment.VCENTER);

 style.setPadding(new UniformOutline(PADDING_MARGIN));

22

The refresh area could be reduced to fit the size of the
CircularIndeterminateProgress widget.

This would allow to save some CPU time, avoiding useless drawing and
potentially improving the fluidity of the animation.

Update the style configuration of the example (createStylesheet method in the
SlideContainerDemo class) to set an optimal dimension to the
CircularIndeterminateProgress widget:

Run the updated code on Simulator to check that the refresh area has been
reduced.

© MICROEJ 2025

REDUCE THE REFRESH AREA OF THE WIDGET

private static Stylesheet createStylesheet() {
 CascadingStylesheet stylesheet = new CascadingStylesheet();
 …
 style = stylesheet.getSelectorStyle(new TypeSelector(CircularIndeterminateProgress.class));
 style.setColor(POMEGRANATE);
 style.setDimension(OptimalDimension.OPTIMAL_DIMENSION_XY);
 style.setVerticalAlignment(Alignment.VCENTER);
 style.setPadding(new UniformOutline(PADDING_MARGIN));

Before widget
style update

After widget
style update

V1.1 Sept. 2025

23

Run the sample on the device.

The transition is laggy when clicking on the Show Next button (see slide-
container/videos/slide_containrer_nxp_rt1170_non-optimized.m4v).

An estimated FPS count is provided in the logs:

→ This board is theoretically able to run GUI applications near 60FPS. The next steps are about
investigating the bottlenecks in the application and in the VEE Port that prevent having a smooth
animation.

V1.1 Sept. 2025© MICROEJ 2025

RUN THE APPLICATION ON THE DEVICE

24

SystemView

Identify & Debug Bottlenecks on
the Device using
SEGGER SystemView

V1.1 Sept. 2025© MICROEJ 2025

25

• SystemView is a real-time recording and visualization tool for embedded systems that reveals the actual
runtime behavior of an application, going far deeper than the system insights provided by debuggers.

• SystemView can ensure a system performs as designed, can track down inefficiencies, and show unintended
interactions and resource conflicts, with a focus on the details of every single system tick.

• A specific SystemView extension made by MicroEJ allows to trace the OS tasks and the MicroEJ Java threads
at the same time.

• For example, it can be used to measure the rendering time of images in a GUI application:

V1.1 Sept. 2025© MICROEJ 2025

SYSTEMVIEW

Background:
4.5ms

Logo:
1.7ms

Mascot: 7.7ms

Custom trace event to track the
execution of the render() method

render()
starts

render()
stops

26

The following software are required:

• Install SEGGER J-Link:

• Create the JLINK_INSTALLATION_DIR environment variable that points to the SEGGER J-Link installation
directory (e.g. C:\Program Files\SEGGER\Jlink):

• Install SEGGER SystemView

The runtime traces of the application needs to be enabled to see MicroEJ VEE tasks activity in SystemView:

• Open the configuration file of the application project (e.g. common.properties):

• Set core.trace.enabled and core.trace.autostart to true

V1.1 Sept. 2025© MICROEJ 2025

SETUP THE ENVIRONMENT FOR SYSTEMVIEW (1/2)

https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/systemview/
https://www.segger.com/downloads/systemview/

27

Enable SystemView in the VEE Port:

• Open CMakePresets.json file located in nxp-vee-mimxrt1170-
evk/bsp/vee/scripts/armgcc/CMakePresets.json

• Set ENABLE_SYSTEM_VIEW to 1:

Remove the build folders of the BSP to ensure the ENABLE_SYSTEM_VIEW property to be taken into account
during next build (nxp-vee-mimxrt1170-evk/bsp/vee/scripts/armgcc/):

V1.1 Sept. 2025© MICROEJ 2025

SETUP THE ENVIRONMENT FOR SYSTEMVIEW (2/2)

28

SystemView is a SEGGER tool, consequently it requires a J-Link probe to be used.

There are 2 ways to use a J-Link probe with the NXP i.MX RT1170 EVK:

1. Option 1: Connect an external J-Link probe:
o Connect jumper JP5

o Connect the probe to the J1 Connector

2. Option 2: Reprogram the embedded probe of the EVK (MCU-Link):
o Unplug J86 and J43 connectors. Plug the J43 connector, then the J86.

o Make sure jumper JP5 is removed and the USB cable is connected to J86

o Run the following script: C:\nxp\MCU-LINK_installer_{version}\scripts\program_JLINK.cmd

o Turn OFF the EVK + unplug the J86 USB cable, then Connect jumper JP3 and turn the board
back ON + plug J86

o Press SPACE

o Remove the JP3 jumper

o Turn OFF and ON the EVK + unplug / plug the J86 USB cable.

o The probe can be seen in the device manager:

V1.1 Sept. 2025© MICROEJ 2025

USE A J-LINK PROBE

29

1. If not already done, enable the DEBUG mode by setting RELEASE=0 in nxpvee-mimxrt1170-
evk\bsp\vee\scripts\set_project_env.bat:

2. Update the FLASH_CMD variable to use a J-Link probe:

Once done, build and flash the application on the device using the runOnDevice task.
Once done, the following trace should appear in the console:

V1.1 Sept. 2025© MICROEJ 2025

UPDATE THE BUILD SCRIPT CONFIGURATION

30

• Start SystemView (tested with version 3.32)

• Set the following recorder configuration:

• Once done, click on the Play button.
The acquisition starts,
events can be see in
SystemView:

V1.1 Sept. 2025© MICROEJ 2025

START THE ACQUISITION ON SYSTEMVIEW

31

MicroUI logs several actions when traces are enabled (see Event Tracing).

Those traces can be added in SystemView to ease the analysis:

• Copy the traces provided in the following section:
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MicroUI/traces.html#systemview-
integration

• Warning: jump a line at the end of the line for it to be taken into account

• Save them in a SYSVIEW_MicroUI.txt file (the syntax of the file matters) in
C:\Program Files\SEGGER\SystemView\Description

• Restart SystemView and start a new acquisition

• The UI events are now detailed:

V1.1 Sept. 2025© MICROEJ 2025

GET MICROUI DEBUG TRACES

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/trace.html#event-tracing
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MicroUI/traces.html#systemview-integration
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MicroUI/traces.html#systemview-integration
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MicroUI/traces.html#systemview-integration

32V1.1 Sept. 2025© MICROEJ 2025

TRACE ANALYSIS
• Start a new acquisition in SystemView.

• Press the Show next button.

• Stop the acquisition.

• The following diagram can be seen:

• At a first glimpse, we can see that the CPU is fully loaded during the slide
transition. There are no “Idle” events, all the time is spent in the UIPump
thread.

Slide transition

33

• Custom traces can be added in SystemView to figure out which events are occurring during the slide transition.

• Follow the steps below to add a custom trace:

o Add Trace library in the build.gradle.kts:

o Reload the Gradle project to get the dependency. Otherwise, the wrong TRACE library might be imported
(sun.java2d.windows.GDIRenderer)

o Create a new Tracer in the SlideContainer class:

o Update the doAnimation method to track the start and the end of the transition:

V1.1 Sept. 2025

© MICROEJ 2025

ADD A CUSTOM TRACE (1/2)

implementation("ej.api:trace:1.1.1")

private static final Tracer slideTracer = new Tracer("MyTracer", 1); // The Tracer object

private static final int MY_EVT_ID = 0; // The ID that will be used to track the slide transition event

private void doAnimation(final Widget leftChild, final Widget rightChild, int startX, final int endX) {

 . . .
 this.releasedAnimation = new MotionAnimation(getAnimator(), motion, new MotionAnimationListener() {
 @Override
 public void tick(int value, boolean finished) {

 . . .
 restore();
 slideTracer.recordEventEnd(MY_EVT_ID); // Finish the slide transition tracing when the animation ends
 }
 }
 });
 slideTracer.recordEvent(MY_EVT_ID); // Start the slide transition tracing when the animation starts
 this.releasedAnimation.start();
}

34

• The custom MyTracer event needs to be added to SystemView description files in order to be taken
into account during the analysis.

• Create a SYSVIEW_MyTracer.txt file in C:\Program Files\SEGGER\SystemView\Description

• Add the following content in it:

o Warning: jump a line at the end of the line for it to be taken into account:

• Restart SystemView and start a new acquisition + press the Show next button in the application.

• The MyTracer events can be seen in the events view:

V1.1 Sept. 2025© MICROEJ 2025

ADD A CUSTOM TRACE (2/2)

0 MyTracer (MyTracer) Transition start | (MyTracer) Transition end

35

TIMELINE OVERVIEW

The following events are occurring between MyTracer start and end:

V1.1 Sept. 2025© MICROEJ 2025

ANALYSIS (1/6)

What we can observe:

• The transition is during
approximately 550ms → ideally it
should last 400ms see
(TRANSITION_DURATION in
SlideContainer class)

• There are big “blocks” in the timeline
(138.7ms, 144.4ms)

→ The next slide will provide a way to
interpret the results

36

LOOK FOR TIME CONSUMING OPERATIONS

• Go down in the events list, between MyTracer start and MyTracer end

• Look for the big operations, for example this drawing operation that took 175.9ms:

• Once identified, scroll up 175.9ms earlier to see what was the nature of the drawing operation:

V1.1 Sept. 2025© MICROEJ 2025

ANALYSIS (2/6)

This is a drawImage operation

→ Locate all the other “time consuming”
operations until MyTracer end

37

DRAWIMAGE OPERATIONS ARE THE MAIN BOTTLENECK

Most of the time-consuming operations are related to drawImage operations:

V1.1 Sept. 2025© MICROEJ 2025

ANALYSIS (3/6)

175.9 ms 54.6 ms 147.3 ms 146.5 ms

drawImage operations are taking 95% of the slide
transition time.

We can see that there are 4 drawImage operations
performed. It is related to the 4 FPS observed in the
console logs.

The next steps are:

1. Check the application implementation to
understand why / how drawImage operations are
done.

2. Check that the drawImage LLAPI is properly
implemented in the BSP (use hardware accelerator,
front buffer located in a high speed memory,
memory cache enabled, …)

38

ABOUT THE SLIDE CONTAINER IMPLEMENTATION

The slide container sample is optimized for low
CPU usage:

• Drawings are done as less as possible during
the transition (from right to left).

• For each frame:

• The content previously drawn on the
screen is reused in the next frame on the
left part of the screen (like a screenshot).

• Only the right part of the screen is drawn
(Green area).

• The screen content can be reused using the
drawDisplayRegion API.
It allows to copy a part of the screen on
itself.

• The drawDisplayRegion implementation
is calling the drawImage API. This
confirms the drawImage events seen in
SystemView.

V1.1 Sept. 2025

ANALYSIS (4/6)

N
EW

 A
R

E
A

 D
R

A
W

N

N
EW

 A
R

E
A

 D
R

A
W

N

N
EW

 A
R

E
A

 D
R

A
W

N

© MICROEJ 2025

39

ABOUT THE DRAWIMAGE IMPLEMENTATION

The drawImage method is implemented in
the LLUI_PAINTER_impl.c source file.

The implementation chosen on the NXP
i.MXRT1170 is performing a memcpy when it
comes to copying the screen content on
itself.

Check the Image Renderer documentation to
learn more about the drawImage
implementations.

Next step: perform benchmarks on the NXP
i.MXRT1170

V1.1 Sept. 2025© MICROEJ 2025

ANALYSIS (5/6)

Ja
va

(M
ic

ro
U

I l
ib

ra
ry

)
B

S
P

 (C
 c

o
d

e)
(M

ic
ro

U
I C

 M
o

d
ul

e)
Performs a
memcpy

https://docs.microej.com/en/latest/VEEPortingGuide/uiImageCore.html#standard-formats-only-default

40

PERFORM BENCHMARKS ON THE TARGET

• Knowing that drawImage operations are “taking too much time” to execute, benchmarks should be performed on
the target to figure out which hardware element is the bottleneck.

• Several kinds of benchmarks can be executed:
o At the BSP level (see Core Testsuite Engine):

• EEMBC Coremark (see

• RAM speed tests

o At MICROEJ VEE level:

• Run GUI benchmarks in Java (see java-testsuite-runner-ui3)

Conclusions on NXP i.MXRT1170:

• The screen has a high resolution (1280x720), thus a high number of pixels to drive:
 1280x720x16BPP/8 ~ 1.8Mb to transfer each time the screen is fully refreshed

• Front buffers are located in External RAM due to memory requirements.

• The benchmarks are showing that External RAM to External RAM copy is the bottleneck when it comes to copy a
such amount of data. Hardware accelerators such as DMA or PXP are not improving results in that case.

→ On NXP i.MXRT1170 it is more interesting to limit RAM to RAM copy and perform drawings using the CPU to get a
better framerate.

V1.1 Sept. 2025© MICROEJ 2025

ANALYSIS (6/6)

The procedure on how to run
benchmarks is not described in this
training.

https://github.com/MicroEJ/VEEPortQualificationTools/tree/2.12.0/tests/core
https://github.com/MicroEJ/VEEPortQualificationTools/tree/2.12.0/tests/ui/ui3/java-testsuite-runner-ui3
https://github.com/MicroEJ/VEEPortQualificationTools/tree/2.12.0/tests/ui/ui3/java-testsuite-runner-ui3
https://github.com/MicroEJ/VEEPortQualificationTools/tree/2.12.0/tests/ui/ui3/java-testsuite-runner-ui3
https://github.com/MicroEJ/VEEPortQualificationTools/tree/2.12.0/tests/ui/ui3/java-testsuite-runner-ui3
https://github.com/MicroEJ/VEEPortQualificationTools/tree/2.12.0/tests/ui/ui3/java-testsuite-runner-ui3
https://github.com/MicroEJ/VEEPortQualificationTools/tree/2.12.0/tests/ui/ui3/java-testsuite-runner-ui3
https://github.com/MicroEJ/VEEPortQualificationTools/tree/2.12.0/tests/ui/ui3/java-testsuite-runner-ui3

41

• Open the SlideContainer class of the slide-container example.

• Comment the Render implementation 1 (render() and renderContent() methods).

• Look for the Render implementation 2, uncomment the render() content method:

• Run the application on the device.

V1.1 Sept. 2025© MICROEJ 2025

UPDATE THE APPLICATION CODE

42

• Click on the Show next button on the screen.

• The implementation looks way smoother, see video in
slide-container/videos/slide_containrer_nxp_rt1170_optimized.m4v

• The FPS have increased to 60 FPS:

• Next step (not part of this training): to go further in the optimizations, override the renderContent
method to only draw the 2 last children (the visible ones).

V1.1 Sept. 2025© MICROEJ 2025

RUN THE APPLICATION ON THE DEVICE

43

The SystemView Analysis shows that all drawImage operations are gone.
They have been replaced by many DRAW_STRING and FILL_RECTANGLE operations (corresponding to
what is drawn on the screen).

V1.1 Sept. 2025© MICROEJ 2025

SYSTEMVIEW ANALYSIS OF IMPLEMENTATION 2 (1/2)

The transition duration is now close to the
expected 400ms transition time (412 ms).

Note that the CPU load is still near 100% (almost
no idle time in the timeline)

• This is due to the implementation of the slide
animation. An Animator is used, it executes
animations as fast as possible to get the best
framerate.

• Check the Animations implementation
documentation to learn more about the
various implementations available.

https://repository.microej.com/javadoc/microej_5.x/apis/index.html?ej/mwt/animation/Animator.html
https://docs.microej.com/en/latest/Tutorials/tutorialValidateGUIs.html#animations-implementation

44

• The SystemView analysis results are available
slide-container/systemView.
They have been exported to CSV format to perform
a deeper analysis.

• Number of drawing operations:

• Implementation 1 (~10FPS): 54

• Implementation 2 (~60FPS): 925

V1.1 Sept. 2025© MICROEJ 2025

SYSTEMVIEW ANALYSIS OF IMPLEMENTATION 2 (2/2)

708

118

97

2

0 100 200 300 400 500 600 700 800

FILL_RECTANGLE

STRING_WIDTH

DRAW_STRING

DRAW_THICKFADEDCIRCLEARC

Occurrence of Drawing Operations in Render
Implementation 2 (~60FPS)

40

6

5

3

0 5 10 15 20 25 30 35 40 45

FILL_RECTANGLE

STRING_WIDTH

DRAW_STRING

DRAW_IMAGE

Occurrence of Drawing Operations in Render
Implementation 1 (~10FPS)

45

MicroUI Event Buffer Dump

V1.1 Sept. 2025© MICROEJ 2025

46

MicroUI is using a circular buffer to manage the input
events.

As soon as an event is added, removed, or replaced in
the queue, the event engine calls the associated
Abstraction Layer API (LLAPI)
LLUI_INPUT_IMPL_log_queue_xxx().
This LLAPI allows the BSP to log this event and to dump
it later thanks to a call to LLUI_INPUT_dump() (see
dump beside).

For more information, read MicroUI Event Buffer
documentation.

V1.1 Sept. 2025© MICROEJ 2025

MICROUI EVENT BUFFER DUMP
============================== MicroUI FIFO Dump ===============================
---------------------------------- Old Events ----------------------------------
[27: 0x00000000] garbage
[28: 0x00000000] garbage
[...]
[99: 0x00000000] garbage
[00: 0x08000000] Display SHOW Displayable (Displayable index = 0)
[01: 0x00000008] Command HELP (event generator 0)
[02: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[03: 0x07030000] Input event: Pointer pressed (event generator 3)
[04: 0x009f0063] at 159,99 (absolute)
[05: 0x07030600] Input event: Pointer moved (event generator 3)
[06: 0x00aa0064] at 170,100 (absolute)
[07: 0x02030700] Pointer dragged (event generator 3)
[08: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[09: 0x07030600] Input event: Pointer moved (event generator 3)
[10: 0x00b30066] at 179,102 (absolute)
[11: 0x02030700] Pointer dragged (event generator 3)
[12: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[13: 0x07030600] Input event: Pointer moved (event generator 3)
[14: 0x00c50067] at 197,103 (absolute)
[15: 0x02030700] Pointer dragged (event generator 3)
[16: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)

[17: 0x07030600] Input event: Pointer moved (event generator 3)
[18: 0x00d00066] at 208,102 (absolute)
[19: 0x02030700] Pointer dragged (event generator 3)
[20: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[21: 0x07030100] Input event: Pointer released (event generator 3)

[22: 0x00000000] at 0,0 (absolute)
[23: 0x00000008] Command HELP (event generator 0)
---------------------------------- New Events ----------------------------------
[24: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[25: 0x07030000] Input event: Pointer pressed (event generator 3)

[26: 0x002a0029] at 42,41 (absolute)
--------------------------- New Events' Java objects ---------------------------
[java/lang/Object[2]@0xC000FD1C
 [0] com/microej/examples/microui/mvc/MVCDisplayable@0xC000BAC0
 [1] null

==

https://docs.microej.com/en/latest/VEEPortingGuide/uiInput.html#event-buffer

47

Debugging
Rendering Issues

V1.1 Sept. 2025© MICROEJ 2025

48

• Tools:

• Widget Debug Utilities

• MWT Debug Utilities

• Example:

• Debug the rendering issue of a page

V1.1 Sept. 2025© MICROEJ 2025

IDENTIFY GUI RENDERING ISSUES

Rendering issue when entering an application page

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Widgets/debug-utilities.html
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Widgets/debug-utilities.html
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MWT/how-to-debug.html
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MWT/how-to-debug.html

49

Widget Debug Utilities

Debug tools provided in the
Widget library

V1.1 Sept. 2025© MICROEJ 2025

50

The Widget Library provides several Debug Utilities to investigate and troubleshoot GUI
applications:

• Print the hierarchy of widgets and styles

• Print the path to a widget

• Count the number of widgets or containers

• Count the maximum depth of a hierarchy

• Print the bounds of a widget

• Print the bounds of all the widgets in a hierarchy

Check the Debug Utilities page for more information.

V1.1 Sept. 2025© MICROEJ 2025

WIDGET DEBUG UTILITIES (1/3)

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Widgets/debug-utilities.html

51

REPRODUCE THE ISSUE

• Run the example-java-widget project the on Simulator.

• Enter the Circular Slider Page to see the rendering issue:

V1.1 Sept. 2025© MICROEJ 2025

WIDGET DEBUG UTILITIES (2/3)

52

ROOT CAUSE ANALYSIS

• The background is not redrawn when the page
shows up

• Add the following code in the CircularSlider
page to print the style hierarchy of the Desktop:

• The following output can be seen in the console:

→ There are only transparent backgrounds used in
the widget hierarchy

FIX

• Check the default style configuration:

→ The default style is providing a transparent background.

• The CircularSlider page is not setting the background neither:

• Fix proposals:

• Set an opaque background in the default StyleSheet (if
possible)

• Set the background in the StyleSheet of the CircularSlider page
(at least on the top level widget of the CircularSlider page
→ SimpleDock) V1.1 Sept. 2025© MICROEJ 2025

WIDGET DEBUG UTILITIES (3/3)

@Override
protected void onShown(){
 HierarchyInspector.printHierarchyStyle(getDesktop().getWidget());
 super.onShown();
}

53

MWT Debug Utilities

Debug tools provided in the
MWT library

V1.1 Sept. 2025© MICROEJ 2025

54

HIGHLIGHTING THE BOUNDS OF THE WIDGETS

• When designing a UI, it can be pretty convenient to highlight the bounds of each widget. Here are some
cases where it helps:

• Verify if the layout fits the expected design

• Set the outlines (margin, padding, border)

• Check the alignment of the widget content inside its bounds

• Example with the Home page and the Wheel page:

V1.1 Sept. 2025© MICROEJ 2025

MWT DEBUG UTILITIES (1/3)

Check the Debug Utilities page for more information.

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MWT/how-to-debug.html

55

MONITORING THE RENDER OPERATIONS

• It may not be obvious what/how exactly the UI is rendered, especially if:

• A widget is re-rendered from a distant part of the application code

• A specific RenderPolicy is used (e.g. OverlapRenderPolicy)

• The Widget library provides a default monitor implementation that prints the operations on the
standard output.

• The logs produced also contain information about what is rendered (widget and area) and what code
requested the rendering.

• Example with the RadioButton page (application logs after click):

V1.1 Sept. 2025© MICROEJ 2025

MWT DEBUG UTILITIES (2/3)

rendermonitor@ INFO: Render requested on com.common.PageHelper$2 > SimpleDock > OverlapContainer > SimpleDock > List > RadioButton at {0,0 87x25} of {221,116 87x25} by
com.microej.demo.widget.radiobutton.widget.RadioButtonGroup.setChecked(RadioButtonGroup.java:47)
rendermonitor@ INFO: Render requested on com.common.PageHelper$2 > SimpleDock > OverlapContainer > SimpleDock > List > RadioButton at {0,0 87x25} of {221,166 87x25} by
com.microej.demo.widget.radiobutton.widget.RadioButtonGroup.setChecked(RadioButtonGroup.java:50)
rendermonitor@ INFO: Render executed on com.common.PageHelper$2 > SimpleDock > OverlapContainer > SimpleDock > List > RadioButton at {-221,-116 87x25} of {221,116 87x25}
rendermonitor@ INFO: Render executed on com.common.PageHelper$2 > SimpleDock > OverlapContainer > SimpleDock > List > RadioButton at {-221,-141 87x25} of {221,141 87x25}

Click

Check the Debug
Utilities page for more
information.

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MWT/how-to-debug.html
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MWT/how-to-debug.html

56

• Since an animator ticks its animations as often as possible, the animator may take 100% CPU usage if
none of its animations requests a render.

• MWT notifies when none of the animations has requested a render during an animator tick:

• requestRender() is only executed when the widget is moving, or if the user is manipulating it.
The tick() method loops indefinitely if there is no animation to do.

 → Stop the animation when not required to save CPU time

MONITORING THE ANIMATORS

V1.1 Sept. 2025© MICROEJ 2025

MWT DEBUG UTILITIES (3/3)

animatormonitor WARNING: None of the animations has requested a render during the

animator tick. Animations list:

[com.microej.demo.widget.carousel.widget.Carousel$1@2d6d4]

Check the Debug Utilities page for more information.

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MWT/how-to-debug.html

57

• SystemView: live analysis of an application with a cross view between RTOS & VEE threads
→ bottlenecks analysis & profiling

• Flush Visualizer: show the pixel surface drawn between two MicroUI front buffer flushes
→ avoid useless redraws, improve performances

• MWT & Widget Debug utilities: detect issues with the widget hierarchy
→ debug rendering issues

V1.1 Sept. 2025© MICROEJ 2025

KEY TAKEWAYS

58

developer.microej.comdeveloper.microej.com
d e v e l o p e r . m i c r o e j . c o m

www.microej.comwww.microej.com
w w w . m i c r o e j . c o m

GET IN TOUCH WITH US

MICROEJ USA

Boston

MICROEJ FRANCE

Nantes

MICROEJ JAPAN

Tokyo

MICROEJ GERMANY

Munich

MICROEJ KOREA

Yongin-si

MICROEJ ROMANIA

Sibiu

https://developer.microej.com/
https://www.microej.com/
https://www.microej.com/
https://www.microej.com/
https://www.microej.com/
https://developer.microej.com/

	Intro
	Slide 1: Mastering UI Development Tools
	Slide 2
	Slide 3
	Slide 4: Overview
	Slide 5: Prerequisites
	Slide 6: Development Tools overview

	Identify & Debug Performance Bottlenecks
	Slide 7: Identify & Debug Performance Bottlenecks
	Slide 8: Identifying & Debugging Bottlenecks
	Slide 9: Flush Visualizer
	Slide 10: Presentation
	Slide 11: Enable the Flush Visualizer
	Slide 12: Reproduce the issue
	Slide 13: Flush analyzer Report
	Slide 14: Report Analysis (1/2)
	Slide 15: Report Analysis (2/2)
	Slide 16: ROOT CAUSE ANALYSIS
	Slide 17: Fix proposal
	Slide 18: Refresh Strategy Highlighting
	Slide 19: Refresh Strategy Highlighting
	Slide 20: Enable the Refresh Strategy Highlighting
	Slide 21: Analysis
	Slide 22: Reduce the Refresh area of the widget
	Slide 23: Run the application on the device
	Slide 24: SystemView
	Slide 25: SYSTEMVIEW
	Slide 26: SETUP the ENVIRONMENT FOR SYSTEMVIEW (1/2)
	Slide 27: SETUP the ENVIRONMENT FOR SYSTEMVIEW (2/2)
	Slide 28: use A J-LINK probe
	Slide 29: Update the build script configuration
	Slide 30: Start the acquisition on Systemview
	Slide 31: Get microui debug traces
	Slide 32: Trace analysis
	Slide 33: Add a custom trace (1/2)
	Slide 34: Add a custom trace (2/2)
	Slide 35: Analysis (1/6)
	Slide 36: Analysis (2/6)
	Slide 37: Analysis (3/6)
	Slide 38: Analysis (4/6)
	Slide 39: Analysis (5/6)
	Slide 40: Analysis (6/6)
	Slide 41: Update the application code
	Slide 42: Run the application on the device
	Slide 43: Systemview Analysis of implementation 2 (1/2)
	Slide 44: Systemview Analysis of implementation 2 (2/2)
	Slide 45: MicroUI Event Buffer Dump
	Slide 46: MicroUI Event Buffer Dump

	Debugging Rendering Issues
	Slide 47: Debugging Rendering Issues
	Slide 48: Identify GUI Rendering Issues
	Slide 49: Widget Debug Utilities
	Slide 50: Widget Debug Utilities (1/3)
	Slide 51: Widget Debug Utilities (2/3)
	Slide 52: Widget Debug Utilities (3/3)
	Slide 53: MWT Debug Utilities
	Slide 54: MWT Debug Utilities (1/3)
	Slide 55: MWT Debug Utilities (2/3)
	Slide 56: MWT Debug Utilities (3/3)
	Slide 57: Key takeways
	Slide 58

