
1

MICROEJ SDK 6
Basics

For NXP i.MX RT1170
Evaluation Kit

© MicroEJ 2025

2

DISCLAIMER

All rights reserved. Information, technical data and tutorials contained in this document are proprietary under copyright law
of MicroEJ S.A. Without written permission from MicroEJ S.A., copying or sending parts of the document or the entire document
by any means to third parties is not permitted. Granted authorizations for using parts of the document or the entire document

do not mean MicroEJ S.A. gives public full access rights.

The information contained herein is not warranted to be error-free.

MicroEJ® and all relative logos are trademarks or registered trademarks of MicroEJ S.A. in France and other Countries.

Other trademarks are proprietary of their respective owners.
Java is Sun Microsystems’ trademark for a technology for developing application software and deploying it in cross-platform, networked environments. When it is used in this site without adding the “ ” symbol, it includes

implementations of the technology by companies other than Sun. Java , all Java-based marks and all related logos are trademarks or registered trademarks of Sun Microsystems Inc, in the United States and other Countries.

V2.1 Mar. 2025© MicroEJ 2025

3

WHAT YOU WILL LEARN

• Understand the VEE Port concepts

• Create and run your first application project with MICROEJ SDK

• Learn how to configure your Application Project

• Use a Front Panel project

• Get an overview of MICROEJ SDK Development Tools

• Call a C function from Managed Code (Java)

• Blink an LED from Managed Code (Java)

V2.1 Mar. 2025© MicroEJ 2025

4

PREREQUISITES

V2.1 Mar. 2025© MicroEJ 2025

5

Hardware required:

• NXP i.MX RT1170 Evaluation Kit (EVKB) + micro-USB cable + RK055HDMIPI4MA0 display panel

• More information about the Evaluation Kit: NXP i.MX RT1170 User Manual

Environment Setup:

• Follow the NXP i.MX RT1170 Evaluation Kit Getting Started to setup your environment and
run a demo application on the Virtual Device and on the i.MX RT1170 Evaluation Kit.

• Note: the next slides are using IntelliJ IDEA with MicroEJ plugin for IntelliJ IDEA 1.1.0. This training
supports all other available IDEs (Android Studio, VS Code, …)

This training requires the Getting Started to be completed until the
Run an Application on the i.MX RT1170 Evaluation Kit section (included).

V2.1 Mar. 2025© MicroEJ 2025

PREREQUISITES

The path to the NXP i.MX RT1170 VEE Port sources
should be as short as possible and contain no
whitespace or non-ASCII character.

https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVKB
https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVKB
https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVKB
https://www.nxp.com/design/design-center/development-boards-and-designs/i-mx-evaluation-and-development-boards/i-mx-rt1170-evaluation-kit:MIMXRT1170-EVKB
https://www.nxp.com/part/RK055HDMIPI4MA0
https://www.nxp.com/part/RK055HDMIPI4MA0
https://www.nxp.com/part/RK055HDMIPI4MA0
https://www.nxp.com/part/RK055HDMIPI4MA0
https://www.nxp.com/part/RK055HDMIPI4MA0
https://www.nxp.com/part/RK055HDMIPI4MA0
file:///C:/Users/acolleux/Downloads/MIMXRT1170EVKBHUG-1.pdf
file:///C:/Users/acolleux/Downloads/MIMXRT1170EVKBHUG-1.pdf
file:///C:/Users/acolleux/Downloads/MIMXRT1170EVKBHUG-1.pdf
https://docs.microej.com/en/latest/SDK6UserGuide/gettingStartedIMXRT1170.html#sdk-6-getting-started-imxrt1170
https://docs.microej.com/en/latest/SDK6UserGuide/gettingStartedIMXRT1170.html#sdk-6-getting-started-imxrt1170
https://docs.microej.com/en/latest/SDK6UserGuide/gettingStartedIMXRT1170.html#sdk-6-getting-started-imxrt1170

6

VIRTUAL EXECUTION
ENVIRONMENT

MICROEJ VEE Overview

V2.1 Mar. 2025© MicroEJ 2025

7

MICROEJ VEE is a scalable Virtual Execution Environment for resource-constrained embedded
and IoT devices running on 32-bit microcontrollers or microprocessors.

MICROEJ VEE allows devices to run multiple and mixed Managed Code and C software
applications.

Key Figures:

• Boots in 2 ms on a Cortex-M4 @180MHz.

• Optimized for low-power.

• Compact (< 30 KB footprint).

• Runs from Cortex-M0 with 128 KB flash and 32 KB RAM, to Cortex-A7.

V2.1 Mar. 2025© MicroEJ 2025

MICROEJ VEE

8

SERVICES

MICROEJ VEE provides a fully configurable set of services that can be expanded, including:

• A secure multi-application framework.

• A network connection with security (SSL/TLS, HTTPS, REST, MQTT, CoAP,…).

• A GUI framework (includes widgets).

• A storage framework (file system).

• VEE Wear: software solution dedicated to the development of wearable software.

• VEE Energy: software solution dedicated to the development of energy devices, including smart
meters, gateways, and connected grid infrastructure.

As it runs standard languages such as Java code, MICROEJ supports all security, networking
and IoT communication protocols and frameworks such as MQTT, CoAP, etc.

Refer to the Application Developer Guide to learn more about MICROEJ VEE Services.

V2.1 Mar. 2025© MicroEJ 2025

MICROEJ VEE

https://docs.microej.com/en/latest/VEEWearUserGuide/index.html
https://docs.microej.com/en/latest/VEEWearUserGuide/index.html
https://docs.microej.com/en/latest/VEEEnergyUserGuide/index.html
https://docs.microej.com/en/latest/VEEEnergyUserGuide/index.html
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/index.html

9V2.1 Mar. 2025© MicroEJ 2025

MICROEJ VEE – DETAILED VIEW

Mass
Storage UARTEthernet

Wi-Fi / LTE …Display
PROCESSOR

CORE

ABSTRACTION LAYERS

BSP (RTOS/OS, Drivers, Third party stacks)

SANDBOXED APPLICATIONS

FOUNDATION LIBRARIES

ADD-ON LIBRARIES

Web / REST servers | MQTT / LWM2M clients | JSON | CBOR | Crypto | Widgets | Components | Eclasspath | …

APPLICATIONS for MICROEJ VEE

Internet
Protocol

File
System I/O …Bluetooth

…ECOM BLEEDC/BON (java.lang)NET/SSLFS

Graphical
Engine

MicroUI

ABSTRACTION LAYERS

HARDWARE

VEE Port

VIRTUALIZATION

Libs

Libs

APP

HARDWARE

VEE Port

VIRTUALIZATION

APPLICATION

Bluetooth

M
an

ag
ed

 C
o

d
e

 (J
av

a,
 J

av
aS

cr
ip

t,
 …

)

N
at

iv
e

C
o

d
e

(C
/A

S
M

, …
)

10

MANAGED CODE ON HARDWARE & VIRTUAL DEVICE

V2.2 Jul. 2024© MicroEJ 2025

R E A L D E V I C E V I RT UA L D E V I C E

11

CORE ENGINE BLOCK DIAGRAM

V2.1 Mar. 2025© MicroEJ 2025

RUNTIME DATA (RAM)

Thread Stacks
• Flexible Stack Blocks Allocation
• Check Stack Overflow

Immortal
Objects

Heap

Internal
Structures

Scheduler
• Green Threads Policy
• Synchronization Monitors

Multi-Sandbox Mode(*)
• App Execution Control
• CPU Control
• RAM Control

Exceptions Manager
• Zero Division & Null Pointer
• Array Index Out of Bounds
• Invalid Reference Cast
• Stack & Memory Overflow
• Catch & Finally Semantic

Dynamic Loader(*)
• Streaming Linker
• with/without symbols

Native Interface
• Procedure Call Standard ABI
• Native Resources Manager

Processing Unit

• High Density Instructions (ISA)
• FPU 32-bit & 64-bit
• 16-bit Pointers(*)
• Software MPU

APPLICATION DATA (ROM)

Code

Execution In Place (XIP)

DEBUG INTERFACE

Debugger Proxy

Integrity Check

Core Dump

Heap Dump

Task/Threads
Execution Tracing

Advanced Profiling
• Method calls (Flame Graph)
• Object Allocations
• Exceptions

(*) = optional

BINARY INTERFACE

ELF Linker

Few Lib Dependencies

• Software or Interrupt Timer
• Application Time

I/O & Character Print

Smart Memory Manager
• Memory Allocator
• Garbage Collector
• Check Heap Overflow

Managed
Objects

Heap

Resources
• Streaming and Seeking access modes
• Internal Resources Linker (memory mapped)
• External Resources Loader (non byte-addressable memories)

12

• MEJ32

• The Core Engine, also named MEJ32, is a scalable 32-bit core for resource-constrained embedded devices. It is
delivered in various flavors, mostly as a binary software package. The Core Engine allows applications written in
various languages to run in a safe container called MICROEJ VEE.

V2.1 Mar. 2025© MicroEJ 2025

CORE ENGINE KEY POINTS (1/3)

https://developer.microej.com/mej32-virtual-machine-for-embedded-systems/
https://developer.microej.com/mej32-virtual-machine-for-embedded-systems/
https://developer.microej.com/mej32-virtual-machine-for-embedded-systems/
https://developer.microej.com/mej32-virtual-machine-for-embedded-systems/

13

• Application Data

• The Application Data consists in the code itself as well as the resources (fonts, images, translations, etc.) stored in
persistent and read-only memory (most of the time a device’s flash memory).

• Runtime Data

• The Runtime Data is mainly allocated in volatile memory spaces for the Core Engine to execute the Application
properly (stacks, heaps, and internal structures in RAM).

V2.1 Mar. 2025© MicroEJ 2025

CORE ENGINE KEY POINTS (2/3)

14

• Binary Interface

• An Interface to different IOs, system, and external libraries calls. Most notably it includes, if necessary, an
embedded ELF Linker that allows dynamic code linking at runtime. It is also at this level that calls to the OS and
hardware are reified.

• Debug Interface

• An Interface for profiling, tracing, and debugging the execution behavior.

V2.1 Mar. 2025© MicroEJ 2025

CORE ENGINE KEY POINTS (3/3)

15

VEE Port
Concept

Computing platform for
embedded system
development

V2.1 Mar. 2025© MicroEJ 2025

16

• Programs made for workstations and servers are portable to Linux / OS X / Windows.

• iOS or Android let you run the same application on several hardware targets.

• Developers use high-level languages and tools.

• Low-level actions are delegated to the operating system (OS).

o Why shouldn’t we do the same for embedded devices?

V2.1 Mar. 2025© MicroEJ 2025

STATE OF PLAY

17

• A VEE Port is an implementation of MICROEJ VEE tailored to run on a particular device
(hardware board including both the processor and the peripherals). It integrates an
Architecture, one or more Foundation Libraries with their respective Abstraction Layers, and
the board support package (BSP). It also includes associated Mocks for the Simulator.

V2.1 Mar. 2025© MicroEJ 2025

VEE PORT

18

APPLICATION FEATURES ARE SPLIT IN 2 CATEGORIES

1. Hardware dependent features (ex: screen): into the VEE Port, hiding details of what might
change

2. Hardware-independent features:

▪ Mathematical algorithms

▪ Software using the VEE Port functionalities

▪ UI

▪ Connectivity protocols

▪ Business logic

V2.1 Mar. 2025© MicroEJ 2025

VEE PORT AND ABSTRACTION

19

• Hardware abstracted software is the key point for portability

• Portability is needed when

▪ You want to reuse the same code for several projects

▪ Your hardware platform becomes obsolete

▪ You target several hardware platforms with the same application

• When switching to a new hardware platform

▪ You only change the hardware specific parts

▪ You re-create an iso-functional computing VEE Port

▪ Your software runs identically on this new VEE Port

V2.1 Mar. 2025© MicroEJ 2025

PURPOSE OF ABSTRACTION

20

Firmware
Build Flow

Build flow explained

V2.1 Mar. 2025© MicroEJ 2025

21

MICROEJ SDK6 includes:

• MICROEJ IDE plugin, available for IntelliJ IDEA/Android Studio and Eclipse.

• Gradle plugins and tools to build applications.

• Add-on libraries to code with Managed Code languages such as Java.

• Tools to build VEE Ports, Foundation Libraries and Mocks.

• Native libraries and mechanism to allow developers to use C and to create interactions between
C and Java features.

V2.1 Mar. 2025© MicroEJ 2025

OVERVIEW

22

• A MICROEJ Architecture is a software package that includes the MEJ32 port to a target instruction set
and a C compiler, MICROEJ Foundation Libraries and the MEJ32 Simulator.

• MICROEJ Architectures are provided by MICROEJ.

• Example of MICROEJ Architectures:
• ARM Cortex-M4 – IAR 9.0

• ARM Cortex-M7 – GCC 8.4

• Renesas RXv2 - IAR 8.0.

• ARM Cortex-A7 - GCC 5.3 Linaro Linux HardFP.

• List of the Architectures:
• https://developer.microej.com/mej32-embedded-runtime-architectures/

• Available evaluation Architectures can be found here:

• https://repository.microej.com/modules/com/microej/architecture/

V2.1 Mar. 2025© MicroEJ 2025

MICROEJ ARCHITECTURE

https://developer.microej.com/mej32-embedded-runtime-architectures/
https://developer.microej.com/mej32-embedded-runtime-architectures/
https://developer.microej.com/mej32-embedded-runtime-architectures/
https://developer.microej.com/mej32-embedded-runtime-architectures/
https://developer.microej.com/mej32-embedded-runtime-architectures/
https://developer.microej.com/mej32-embedded-runtime-architectures/
https://developer.microej.com/mej32-embedded-runtime-architectures/
https://developer.microej.com/mej32-embedded-runtime-architectures/
https://developer.microej.com/mej32-embedded-runtime-architectures/
https://repository.microej.com/modules/com/microej/architecture/
https://repository.microej.com/modules/com/microej/architecture/

23

• A MICROEJ VEE Port is a port of a MICROEJ Architecture for a specific hardware, RTOS and BSP.

• They are distributed as source (including C sources) or binary (pre-built C BSP).

• Example of MICROEJ VEE Port:
• NXP i.MX RT1170 – FreeRTOS – MCUXPresso SDK.

• STM32F746-DK – Zephyr – STM32CubeIDE.

• NXP i.MXRT1170 – Linux.

• List of VEE Port examples:
• https://developer.microej.com/supported-hardware/

V2.1 Mar. 2025© MicroEJ 2025

MICROEJ VEE PORT

https://developer.microej.com/supported-hardware/
https://developer.microej.com/supported-hardware/
https://developer.microej.com/supported-hardware/
https://developer.microej.com/supported-hardware/

24

Legend

BUILD FLOW / VEE PORT

V2.1 Mar. 2025© MicroEJ 2025

(e.g., .jar)

(e.g., .java, .list,
resources)

(runtime.a, .jar, .h)
(.xml, .launch)

(e.g., .c, .h)

(e.g., .o, .jar)

VEE Port Configuration

Managed Code Native Code

Managed Code Compiler
(e.g., JDT)

Managed/Native Code
Compilers

MICROEJ SDK
(Gradle Plugin)

(built VEE Port)

MICROEJ VEE Port

Simulator +
Mocks

Foundation
Libraries

MEJ32 Core

Scripts +
Tooling +

Documentation

Major Input or Output

Managed Code

Native Code

Configuration

Build Tool

Sim Tool

MICROEJ VEE Architecture
(MEJ32 Core + Built-in Foundation
Libraries + Simulator + Mockups)

M N

Simulator Mocks

Test Suite Configuration

(e.g., mock*.jar)

25

Legend

BUILD FLOW / EXECUTABLE

V2.1 Mar. 2025© MicroEJ 2025

(.a, .jar) (e.g., .jar)

(e.g., .java, .list,
resources)

(e.g., .jar)

(runtime.a, microejapp.o, .s) (.o)

(.c, .h)

(.a)

(application.out, application.hex, …)

MICROEJ VEE Port LibrariesApplication C Libraries
Legacy C Libraries

C Code
Abstraction Layer

+ VEE Startup

Third Party ELF Linker

C CompilerMICROEJ SDK
(SOAR + Gradle Plugin)

Managed Code
Compiler
(e.g., JDT)

Executable

Application

MEJ32 Core

Abstraction
Layer

+
C Libraries

Major Input or Output

Managed Code

Native Code

Build Tool

26

VEE Port Project
Overview

For NXP i.MX RT1170
Evaluation Kit

V2.1 Mar. 2025© MicroEJ 2025

27

VEE PORT SOURCE PROJECT STRUCTURE

V2.1 Mar. 2025

© MicroEJ 2025

.
├── apps
│
├── bsp
| ...
│ ├── mcux-sdk
│ └── vee
│
├── vee-port
| ├── build.gradle.kts
| ├── configuration.properties
│ │
| ├── extensions
| │ ├── front-panel
| │ ├── image-generator
| │ └── microui
│ │
| ├── mock
│ │
| └── validation
| ├── core
| ├── ...

Board Support Package (BSP) source code:
- mcux-sdk: NXP I.MXRT1170 SDK
- vee: implementation of MicroEJ VEE abstraction

layers for NXP I.MXRT1170

Ready to use demo applications

Project used to configure and build the VEE Port:
- build.gradle.kts: declares VEE Port components (Networking, GUI, FS, …)
- configuration.properties: configures VEE Port components.

Mock project specific to NXP i.MX RT1170 (allows to mock native code)

Validation project used to validate the integration
of MICROEJ VEE on NXP i.MX RT1170

Extensions: related to VEE Port components used
- front-panel: describes the UI of the Simulator
- image-generator: off-board tool generating images compatible with NXP i.MX RT1170 GPU
- microui: MicroUI configuration files

28

Application

Build & Run a Hello World
Application

V2.1 Mar. 2025© MicroEJ 2025

29

Project Creation

Create a Hello World
Application

V2.1 Mar. 2025© MicroEJ 2025

30

• Go to File -> New -> Project…

• Go to MicroEJ category,

• Change the Name and the Project
Location if needed,
then click on Create.

• The project opens in a new IntelliJ
IDEA window.

V2.1 Mar. 2025© MicroEJ 2025

APPLICATION PROJECT CREATION

31

PROJECT STRUCTURE

V2.1 Mar. 2025© MicroEJ 2025

Gradle build script file

Application Main class

Source directory

Gradle settings script file

Gradle Wrapper launcher scripts

Build outputs directory

Gradle configuration directory
Application options

32

Building or running an Application / Library or Test Suite requires a VEE Port.

When the Application or the Library which needs the VEE Port is not in the same multi-project than the
VEE Port, the VEE Port project can be imported thanks to the Gradle Composite Build feature.

This allows to consider the VEE Port project as part of the Application project, so all changes done to the
VEE Port are automatically considered when building or running the Application.

• Get the path to the NXP i.MX RT1170 VEE Port (e.g. C:\workspaces\training\nxpvee-mimxrt1170-
evk\nxpvee-mimxrt1170-evk)

• Add the path to the VEE Port in the settings.gradle.kts file of the HelloWorld project:

• In the build.gradle.kts file of the HelloWorld project, add the dependency to the VEE Port:

V2.1 Mar. 2025© MicroEJ 2025

VEE PORT SELECTION (1/3)

rootProject.name = "HelloWorld"

includeBuild("C:\\workspaces\\training\\nxpvee-mimxrt1170-evk\\nxpvee-mimxrt1170-evk")

dependencies {
 implementation("ej.api:edc:1.3.5")

 //Uncomment the microejVee dependency to set the VEE Port or Kernel to use
 microejVee("com.nxp.vee.mimxrt1170:vee-port:3.0.0")
}

https://docs.gradle.org/current/userguide/composite_builds.html

33

A Gradle module notation is composed of:

• A Group name (e.g. com.microej.example)

• A Module name (e.g. HelloWorld)

• A Version (e.g. 3.0.0)

The VEE Port Group and Version properties
are defined in the nxpvee-mimxrt1170-
evk/build.gradle.kts file.

By default, the Module name is the subproject
folder name (here vee-port).
It can also be overridden in the
settings.gradle.kts file of the VEE Port.

V2.1 Mar. 2025© MicroEJ 2025

VEE PORT SELECTION (2/3)

microejVee("com.nxp.vee.mimxrt1170:vee-port:3.0.0")

HOW TO KNOW THE MICROEJVEE MODULE NAME?

 Note here that we display the VEE Port in an IDE window, the VEE port is not available yet in your IDE
window (the next slide will take care of that). You could find the same information by browsing the file
system.

34

• Right-click on the Hello World project in the Gradle task view

• Click on Reload Gradle Project:

• The NXP i.MXRT1170 VEE Port project sources are now available in the Hello World project window:

V2.1 Mar. 2025© MicroEJ 2025

VEE PORT SELECTION (3/3)

35

The Select a VEE Port documentation describes the different ways of including a VEE Port.

This training demonstrates 2 ways of including a VEE Port:

V2.1 Mar. 2025© MicroEJ 2025

VEE PORT SELECTION WAYS

 A Gradle multi-project is a project that contains several projects within a single Gradle build.
A root project contains and configures subprojects.
A VEE Port project is multi-project as it contains multiple projects (see the root settings.gradle.kts).

rootProject.name = "nxpvee-mimxrt1170-evk"
include("vee-port“
 , "vee-port:front-panel",
 "vee-port:mock", "vee-port:image-generator")
include("apps:aiSample",
 "apps:animatedMascot",
 "apps:simpleGFX", "apps:HelloWorld")
…

dependencies {
 …
 microejVee(project(":vee-port"))

rootProject.name = "Hello"
includeBuild("C:\\Users\\acolleux\\Desktop\\
NXP_RT1170_training_package_20250130\\nxpvee-mimxrt1170-evk")

dependencies {
 …
 microejVee("com.nxp.vee.mimxrt1170:vee-port:3.0.0")

VEE Port project inside a multi-project VEE Port project outside a multi-project

Proceed as follows when the Application and the VEE Port are in separate
projects / folders.
Example with the HelloWorld application located outside of the VEE Port
project:

Proceed as follows when the Application and the VEE Port are in the
same project / folder.
Example with the animatedMascot application provided inside the VEE
Port project:

https://docs.microej.com/en/latest/SDK6UserGuide/selectVeePort.html

36

By default, regardless of the IDE that you are using (IntelliJ IDEA, Android Studio or Eclipse), the reload of a
Gradle project must be explicitly triggered by the user when the configuration of the project has changed.

This allows to avoid reloading the project too frequently, but the user must not forget to manually reload
the project to apply changes.

The auto-reload of a Gradle project with IntelliJ IDEA / Android Studio can be enabled as follows:

• Click on File > Settings….

• Go to Build, Execution, Deployment > Build Tools.

• Check the Reload changes in the build scripts
option and check the Any changes option.

• Go to Languages & Frameworks > Kotlin > Kotlin Scripting.

• Check all the Auto Reload options.

V2.1 Mar. 2025© MicroEJ 2025

AUTOMATICALLY RELOAD A GRADLE PROJECT

37

Run on the Simulator

Run the Hello World
Application on the Simulator

V2.1 Mar. 2025© MicroEJ 2025

38

In the IntelliJ IDEA Hello World project window:

• Open the Gradle view.

• Open Tasks > microej and double-click on
runOnSimulator.

• Or use the following command line:
./gradlew runOnSimulator

The application will be run in the simulator. The following
traces will be printed in the console:

Note: the VEE Port is automatically built when building or
running the application.

V2.1 Mar. 2025© MicroEJ 2025

RUN THE APPLICATION ON THE SIMULATOR

39

Run on the Device

Run the Hello World
Application on the Device

V2.1 Mar. 2025© MicroEJ 2025

40

• Open the Gradle view.

• Open Tasks > microej and
double-click on buildExecutable:

• Or use the following command line:
./gradlew buildExecutable

• The following output can be seen in the
console:

V2.1 Mar. 2025© MicroEJ 2025

BUILD THE APPLICATION EXECUTABLE
• The Application Executable is available in the

build/application/executable folder of the
Application project:

41

• The Application must be linked with the BSP:

• BSP = drivers + (optional: operating system) + abstraction layer.

• Done by a 3rd party toolchain (Arm GNU, IAR, …).

• MicroEJ provides:

• Application as an object file (microejapp.o).

• MICROEJ VEE runtime environment as a library file (microejruntime.a).

• Header files with types and functions provided by this library (.h).

• Abstraction layer interface (.h).

• Abstraction layer implementation (.c, .cpp).

• 3rd party toolchain is responsible for compiling the BSP, linking, and generating the
Executable file.

V2.1 Mar. 2025© MicroEJ 2025

BUILD FLOW EXPLAINED (1/2)

42

• The following steps are performed
when running the buildExecutable
task:

1. The Application is built as an
object file (microejapp.o).

2. MICROEJ VEE runtime
environment (microejruntime.a)
and header files (*.h) are
deployed in the BSP project.

3. A build script compiles the BSP
using the BSP 3rd party toolchain
(Arm GNU, IAR, …)

4. The 3rd party toolchain is used to
link the BSP sources with
microejapp.o and
microejruntime.a.

V2.1 Mar. 2025© MicroEJ 2025

BUILD FLOW EXPLAINED (2/2)
1 2

4

3+

43

• Open the Gradle view.

• Open Tasks > microej and double-click on
runOnDevice:

• Or use the following command line:
./gradlew runOnDevice

FLASH THE FIRMWARE

• The following output can be seen in the console:

V2.1 Mar. 2025© MicroEJ 2025

RUN THE APPLICATION ON THE DEVICE (1/2)

 The runOnDevice task automatically
triggers the buildExecutable task.

44

GET THE APPLICATION TRACES

o Open the Termite serial terminal.

o Click the Settings button:

o Select the NXP i.MX RT1170 EVK board COM
port.

o Set the following
port parameters:

o Reset the NXP i.MX RT1170 EVK board using
Reset button:

V2.1 Mar. 2025© MicroEJ 2025

RUN THE APPLICATION ON THE DEVICE (2/2)

The application starts and the Hello World
message is printed in the console!

45

MicroEJ Core Engine is invoked in: bsp/vee/port/core/src/microej_main.c with SNI_createVM():

MicroEJ header
files are located
in:
bsp/vee/inc

V2.1 Mar. 2025© MicroEJ 2025

MICROEJ CORE ENGINE STARTUP

Note: in the NXP i.MX RT1170 VEE Port, microej_main() is
called from a FreeRTOS task in main.c.
It is also possible to run MicroEJ Core Engine on a bare
metal device (no RTOS).

MicroEJ libraries and
Managed Code
application object file are
used during link edition.

Those files are located in:
bsp/vee/lib

46

Application Project
Configuration

V2.1 Mar. 2025© MicroEJ 2025

47

PROJECT BUILD FILE

V2.1 Mar. 2025© MicroEJ 2025

plugins {

 id("com.microej.gradle.application") version “1.0.0"

}

group = “com.example"

version = "0.1.0-RC"

microej {

 applicationEntryPoint = "com.example.helloworld.Main"

}

dependencies {

 implementation("ej.api:edc:1.3.5")

 microejVee("com.nxp.vee.mimxrt1170:vee-port:3.0.0")

}

build.gradle.kts

MicroEJ Gradle plugin for an Application

Application main class

MicroEJ Configuration block

Application dependencies:

• “ej.api:edc”: provides a subset of java.lang APIs

• VEE Port to use (e.g. NXP i.MXRT1170 VEE Port)

Project group and version

48

The build.gradle.kts file of the project contains a description of all the libraries required by the
application:

These dependencies are automatically fetched by Gradle during the build process.

Available MICROEJ libraries can be found here:

• Central Repository (https://repository.microej.com/): the Central Repository is the module repository
distributed and maintained by MicroEJ Corp. It contains a selection of production-grade modules such
as Libraries and Packs.

• Developer Repository (https://forge.microej.com/artifactory/microej-developer-repository-release/):
the developer repository is an online repository hosted by MicroEJ Corp., contains community
modules provided “as-is”. It is similar to what Maven Central Repository are for hosting Java standard
modules.

From the MICROEJ Javadoc you can search for a Class and get the Gradle dependency that provides it by
visiting https://repository.microej.com/javadoc/microej_5.x/apis/index.html

V2.1 Mar. 2025© MicroEJ 2025

LIBRARY DEPENDENCIES

dependencies {
 implementation("ej.api:edc:1.3.5")
 implementation("ej.api:microui:3.4.0")
}

https://repository.microej.com/
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/libraries.html#libraries
https://docs.microej.com/en/latest/VEEPortingGuide/pack.html#pack-overview
https://forge.microej.com/artifactory/microej-developer-repository-release/
https://forge.microej.com/artifactory/microej-developer-repository-release/
https://forge.microej.com/artifactory/microej-developer-repository-release/
https://forge.microej.com/artifactory/microej-developer-repository-release/
https://forge.microej.com/artifactory/microej-developer-repository-release/
https://forge.microej.com/artifactory/microej-developer-repository-release/
https://forge.microej.com/artifactory/microej-developer-repository-release/
https://repo1.maven.org/maven2/
https://repository.microej.com/javadoc/microej_5.x/apis/index.html

49

Example :

https://repository.microej.com/javadoc/microej_5.x/apis/index.html?ej/restserver/RestServer.html This
button let you copy the MMM dependency directly into the clipboard.

V2.1 Mar. 2025© MicroEJ 2025

GET LIBRARY DEPENDENCY

https://repository.microej.com/javadoc/microej_5.x/apis/index.html?ej/restserver/RestServer.html

50

To check if Gradle dependencies are up-to-date, you can use the Gradle Versions Plugin.

This Gradle plugin lists all the dependencies declared in the build.gradle.kts file, and tells whether they
are up-to-date or if a new version is available.

Here is an example of report:

V2.1 Mar. 2025© MicroEJ 2025

CHECK DEPENDENCIES UPDATE

Follow the How To Check Dependencies Updates
documentation to setup the plugin in your
project.

https://github.com/ben-manes/gradle-versions-plugin
https://docs.microej.com/en/latest/SDK6UserGuide/howtos/checkDependenciesVersions.html

51

When a Gradle has been executed once, a Run Configuration is created. It can be used for
subsequent calls to the same task by clicking on the green arrow next to it:

It can also be customized, for example to change the log level (--info) when executing the
runonSimulator task:

V2.1 Mar. 2025© MicroEJ 2025

RUN CONFIGURATIONS

Or use the following command line:
./gradlew runOnSimulator --info

52

A MICROEJ Application can be configured by settings option properties in a properties file in a
configuration folder in the project.

V2.1 Mar. 2025© MicroEJ 2025

APPLICATION CONFIGURATION

All the .properties files of this folder are considered, whatever their
names are.

As an example, the Managed Code Heap size and the maximum
number of threads can be defined with these properties:

All the available options are described in the documentation.

core.memory.javaheap.size=8192

core.memory.threads.size=3

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/standaloneApplication.html#category-runtime

53

FRONT PANEL

Customization

V2.1 Mar. 2025© MicroEJ 2025

54

• A major strength of the MicroEJ environment is that it allows
applications to be developed and tested in a Simulator rather than
on the target device

• To make this possible for devices operated by the user, the Simulator
must connect to a "mock" of the device's control panel (the "Front
Panel”)

• The Front Panel generates a graphical representation of the device
and is displayed in a window on the user's development machine
when the application is executed in the Simulator.

• The Front Panel is not necessarily showing a display.
It can also be used to show a hardware device and simulate its
peripherals (LEDs, buttons, …).

For more information, see Front Panel Overview.

V2.1 Mar. 2025© MicroEJ 2025

FRONT PANEL PRINCIPLE

Front Panel with a
display

Front Panel with LEDs
and Buttons, no display

https://docs.microej.com/en/feature-m0092mejaui-3291_frontpanel/ApplicationDeveloperGuide/UI/Simulation/front-panel-overview.html

55

ZOOM

The Front Panel is able to zoom in or out the represented device.

The current value of the zoom is printed in the status bar.

There are three buttons in the toolbar to change the zoom:

• Zoom out by increment of 10%.

• Reset the zoom to 100%.

• Zoom in by increment of 10%.

V2.1 Mar. 2025© MicroEJ 2025

KEY FUNCTIONALITIES (1/4)

56

INTERPOLATION

By default, the zoom is done without
interpolation to ease the reading of the
pixels drawn on the screen.

But it could be convenient to enable the
interpolation when a great or small zoom
is applied, to better read the strings for
instance.

V2.1 Mar. 2025© MicroEJ 2025

KEY FUNCTIONALITIES (2/4)

 The interpolation is enabled by
default on the NXP i.MX RT1170 Front
Panel.

Interpolation
disabled

Interpolation
enabled

57

FIT

By default, the zoom and the
window size are not related ()

1. When the zoom is changed the window size does
not change and scrollbars may appear to navigate
in the device.

2. When the window size is changed, the zoom does
not change.

In contrast, the zoom and the window can be linked
together ()

In this case, a modification of the zoom or the window size
have an impact on the other.

V2.1 Mar. 2025© MicroEJ 2025

KEY FUNCTIONALITIES (3/4)

1 2

58

DISPLAY COORDINATES

When the Front Panel contains a display, the display
coordinates under the cursor are printed in the
status bar:

DISPLAY SCREENSHOT

When the Front Panel contains a display, a screenshot
button allows to make a screenshot of the current content
of the display ().

The screenshots are saved in the subfolder screenshots of
the application output folder:

V2.1 Mar. 2025© MicroEJ 2025

KEY FUNCTIONALITIES (4/4)

59

A Front Panel project has the following structure and contents:

• src/main/java (optional): contains custom widgets and button
event listeners.

• src/main/resources: holds files that define the contents and layout
of the Front Panel (.fp file and images).

To use a Front Panel project in a VEE Port, include it in the VEE Port
project dependencies:

V2.1 Mar. 2025© MicroEJ 2025

PROJECT STRUCTURE

dependencies {
 microejArchitecture(libs.architecture)

 . . .
 microejFrontPanel(project(":vee-port:front-panel"))

 . . .
}

60

• Description written in XML (.fp file): <device ...> element contains the elements that define the widgets
that make up the Front Panel.

• Loaded by the Front Panel Engine to build the graphical representation of the real device.

• Declare the widgets that simulate the drivers, sensors, and actuators of the real device.

• Widgets:
• The name of the widget element references the Java class of the widget (see widget-x.y.z.jar in Module

Dependencies).

• A widget can be identified by a label, which must be unique for the widgets of the same type.

• Position specified with x and y attributes.

V2.1 Mar. 2025© MicroEJ 2025

FRONT PANEL DESCRIPTION FILE

61

MICROEJ SDK
DEVELOPMENT

TOOLS

V2.1 Mar. 2025© MicroEJ 2025

62

MICROEJ SDK provides a large panel of development tools to accelerate product development.

Development tools are split in categories:

o Runtime & Post-Mortem Debugging Tools

o Memory Inspection Tools (debug memory corruption, leaks)

o Static Analysis Tools

o GUI Application Debugging Tools (bottlenecks identification, rendering issues)

In this training, only the Stack Trace Reader tool will be introduced.

Refer to the Development Tools training to learn more about them.

V3.0 Jan. 2025© MICROEJ 2025

MICROEJ SDK DEVELOPMENT TOOLS

https://docs.microej.com/en/latest/Trainings/trainingDebugTools.html

63V3.0 Jan. 2025© MICROEJ 2025

DEVELOPMENT TOOLS OVERVIEW
TOOLS RUNTIME & POST-

MORTEM
MEMORY INSPECTION STATIC ANALYSIS TOOLS GUI DEBUGGING TOOLS

Core Engine VM Dump

Debug on Device

Debug on Simulator

Port Qualification Tool (PQT)

SystemView

Logging & Message Libraries

Code Coverage

Memory Map Analyzer

Heap Dumper / Analyzer

Heap Usage Monitoring

Core Engine MEMORY integrity check

SonarQube / Klocwork (Java/C)

Null Analysis

UI Flush Visualizer

UI MWT & Widget Debug Utilities

Simulator only

On device only

64

EXCEPTION GENERATION

• By default, on error, the stack trace of the exception thrown is printed on the serial console.

• Let’s generate an error. Add the following code in your HelloWorld main method:

Build and Run the Application on the device:

• Open the Gradle view.

• Open Tasks > microej and double-click on runOnDevice.

• Or use the following command line:
./gradlew runOnDevice

V2.1 Mar. 2025© MicroEJ 2025

STACK TRACE READER (1/4)

byte[] array = new byte[5];
array[5] = 42; // Invalid access to the array

65

EXCEPTION OUTPUT

• In the console, we can see the stack trace:

• Name of the faulty method is not printed
directly:

• Only the address of the method is
printed

• MICROEJ does not embed the names of
the methods to limit the footprint

• To help reading the stack trace, a tool is
available: the stack trace reader

• Tips: the soar.generate.classnames can be set to get the name
of the faulty class and a more detailed exception:

To set the option:

• Add the property soar.generate.classnames=true in the
configuration/common.properties file.

Note: This option requires additional ROM space. It is
recommended to disable it when going to production.© MicroEJ 2025

STACK TRACE READER (2/4)

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/standaloneApplication.html#option-checkbox-embed-all-type-names

66

RUN THE STACK TRACE READER TOOL

• Open Tasks > microej and double-click on stackTraceReader

• Or use the following command line: ./gradlew stackTraceReader

The Stack Trace Reader console opens:

V2.1 Mar. 2025© MicroEJ 2025

STACK TRACE READER (3/4)

67

USAGE

1. Copy/Paste the trace in your console.

2. The decoded trace appears.

The Stack Trace Reader can also be configured to
read the data directly from the COM port of the
device.

Note: restart the Stack Trace Reader tool each
time the application is rebuilt / flashed on the
device in order to properly decode the stack trace.

Online documentation:
https://docs.microej.com/en/latest/
SDK6UserGuide/stackTraceReader.html

V2.1 Mar. 2025© MicroEJ 2025

STACK TRACE READER (4/4)

https://docs.microej.com/en/latest/SDK6UserGuide/stackTraceReader.html
https://docs.microej.com/en/latest/SDK6UserGuide/stackTraceReader.html

68

Call C code from
Managed Code (Java)

Introduction to SNI
mechanism
(Simple Native Interface)

V2.1 Mar. 2025© MicroEJ 2025

69

SNI Resolves native calls by executing them in another language (most of the time in C language).

Online documentation: https://docs.microej.com/en/latest/PlatformDeveloperGuide/sni.html

V2.1 Mar. 2025© MicroEJ 2025

PRINCIPLE (1/2)

https://docs.microej.com/en/latest/PlatformDeveloperGuide/sni.html

70

SNI provides a simple mechanism for implementing native Java methods in the C language.

SNI allows you to:

• Call a C function from a Java method.

• Access a Java array from a native method written in C.

• Access a Java Immortal array from another RTOS task, an interrupt handler, or a DMA (see the BON
specification to learn about immortal objects).

SNI does not allow you to:

• Access or create a Java object in a C function.

• Access Java static variables in a C function.

• Call Java methods from a C function.

SNI provides some Java APIs to manipulate some data arrays between Java and the native (C) world.

V2.1 Mar. 2025© MicroEJ 2025

PRINCIPLE (2/2)

71V2.1 Mar. 2025© MicroEJ 2025

NAMING CONVENTION

72

• Primitive data type can be manipulated through SNI (return value and parameter):

• byte, short, int, long, float, double, boolean, char.

• Arrays of primitive data type are managed by SNI with some limitations:

• C globals, C Heap, DMA, RTOS tasks can reference only Immortal arrays.

• Non-immortal arrays can be referenced only in the native method they are passed to.

• Non-immortal arrays are passed to the native method as a reference.

V2.1 Mar. 2025© MicroEJ 2025

DATA TYPES

73

Implement a Java Native
Method with SNI

V2.1 Mar. 2025© MicroEJ 2025

74

• Modify the code of the HelloWorld main method:

Build the Application executable:

• Open the Gradle view.

• Open Tasks > microej and double-click on buildExecutable.

• Or use the following command line:
./gradlew buildExecutable

V2.1 Mar. 2025© MicroEJ 2025

ADD THE JAVA NATIVE METHOD

public class Main {

 public static void main(String[] args) {
 System.out.println("Hello World!");
 System.out.println("Multiply By Two (2): " + multiplyByTwo(2));
 }
 public static native int multiplyByTwo(int value);

}

75

The build fails with the following error message:

The detailed error can be found by scrolling up in the logs. It comes from a link issue:

The multiplyByTwo(int value) method is a native method. It must be implemented in the BSP.

V2.1 Mar. 2025© MicroEJ 2025

GET THE LINKER ERRORS

76

• Go back to the IDE window where the VEE Port is opened.

• Open a .c source file from the BSP (e.g.
bsp/vee/port/core/src/microej_main.c).

• Implement the multiplyByTwo(int value) method, use the
method signature provided by the linker error:

• Build the project again.

• The build is successful.

• Flash the firmware (see previous slides).

Note: sni.h provides java data types mapped on C base types (jint,
jshort, jchar, jboolean, …).

V2.1 Mar. 2025© MicroEJ 2025

IMPLEMENT THE NATIVE METHOD IN THE BSP

#include "sni.h"

#ifdef __cplusplus
 extern "C" {
#endif

jint Java_com_microej_example_helloworld_Main_multiplyByTwo(jint value){
 return value*2;
}

PROCESSOR
CORE

BSP

HARDWARE

CPU FPU Memory Peripherals

ABSTRACTION LAYERS

FOUNDATION
LIBRARIES EDC (java.lang)

APPLICATION

jint Java_com_microej_example_
helloworld_Main_
multiplyByTwo(…)

VIRTUALIZATION

VEE PORT

native int multiplyByTwo(…)

77

o Open the Termite serial terminal.

o Click the Settings button.

o Select the NXP i.MX RT1170 EVK board COM
port.

o Reset the NXP i.MX RT1170 EVK board using
Reset button

o The application starts: the Hello World
message and the Multiplied by Two value is
printed!

V2.1 Mar. 2025© MicroEJ 2025

RUN THE EXAMPLE ON THE DEVICE

78

Blink an LED from
Managed Code (Java)

Basic interaction with a GPIO
using SNI

V2.1 Mar. 2025© MicroEJ 2025

79

• Get the gpio-basic sample from the training package.

• In IntelliJ IDEA, open the gpio-basic example:

• Open the project using the menu File > Open…

• Click on OK.

• Select to open in a new Window.

• The project appears in the IDE:

V2.1 Mar. 2025© MicroEJ 2025

OPEN THE PROJECT

 You can now close the IDE
window corresponding to the
HelloWorld project.

80V2.1 Mar. 2025© MicroEJ 2025

PROJECT STRUCTURE
public class Gpio {
 native public static void set(int pin, boolean value);
 native public static boolean get(int pin);
}

public class Gpio {

 private static final Map<Integer, Boolean> GPIO = new HashMap<Integer,
Boolean>();

 public static void set(int pin, boolean state) {
 System.out.println("Set GPIO "+pin+" to "+(state?"on":"off"));
 GPIO.put(Integer.valueOf(pin), Boolean.valueOf(state));
 }

 public static boolean get(int pin) {
 return GPIO.getOrDefault(Integer.valueOf(pin), Boolean.FALSE).booleanValue();
 }
}

public static void main(String[] args) throws InterruptedException {
 while (true) {
 Gpio.set(PIN, !Gpio.get(PIN));
 Thread.sleep(DELAY);
 }
}

A Gpio class defines 2 native
methods that should be
implemented in the BSP to toggle
the device GPIO.

The Main class toggles the
GPIO every 500 ms.

The Gpio class is
implemented in
a mock project
to run the code
in simulation

A
p

p
li

ca
ti

o
n

P
ro

je
ct

M
o

ck
P

ro
je

ct

81

Run on the Simulator

V2.1 Mar. 2025© MicroEJ 2025

82

• Get the path to the NXP i.MX RT1170 VEE Port (e.g. C:\workspaces\training\nxpvee-mimxrt1170-
evk\nxpvee-mimxrt1170-evk)

• Add the path to the VEE Port in the settings.gradle.kts file of the application project:

• In the build.gradle.kts file of the application project, add the dependency to the VEE Port:

V2.1 Mar. 2025© MicroEJ 2025

VEE PORT SELECTION

dependencies {
 ...

 //Uncomment the microejVee dependency to set the VEE Port or Kernel to use
 microejVee("com.nxp.vee.mimxrt1170:vee-port:3.0.0")
}

rootProject.name = "gpio-basic"
include(":app")
include(":app-sni-blocking")
include(":mock")
includeBuild("C:\\workspaces\\training\\nxpvee-mimxrt1170-evk\\nxpvee-mimxrt1170-evk")

83

• Open the Gradle tasks view.

• Open gpio-basic > Tasks > app > microej and double-click on runOnSimulator.

• Or use the following command line:
./gradlew :app:runOnSimulator

• The following traces can be seen in the console:

V2.1 Mar. 2025© MicroEJ 2025

RUN ON THE SIMULATOR

=============== [Initialization Stage] ===============
=============== [Launching on Simulator] ===============
Set GPIO 0 to on
Set GPIO 0 to off
Set GPIO 0 to on
…

84

Run on the Device

V2.1 Mar. 2025© MicroEJ 2025

85

• Open the Gradle view.

• Open gpio-basic > Tasks > app > microej and double-click on
runOnDevice.

• Or use the following command line:
./gradlew :app:runOnDevice

V2.1 Mar. 2025© MicroEJ 2025

RUN THE EXAMPLE ON THE DEVICE

86

• The following errors show up during the link step of the BSP:

• The GPIO set() and get() methods are native methods. They must be implemented in the BSP.

• The GPIO natives implementation is available in the gpio-basic folder:
gpio-basic-{version}/app/src/main/c/LLGPIO_NXP-i.MX_RT1170.c

• Copy / Paste the LLGPIO_NXP-i.MX_RT1170.c source file in a source folder of the BSP project (e.g.
bsp\vee\src\main)

• Add LLGPIO_NXP-i.MX_RT1170.c to CMakeLists.txt (bsp/vee/scripts/armgcc/CMakeLists.txt):

V2.1 Mar. 2025© MicroEJ 2025

GET THE LINKER ERRORS

C:\XXX\application\object\SOAR.o:(.text.soar+0x24dc): undefined reference to
`Java_com_microej_training_gpio_Gpio_get’

C:\XXX\application\object\SOAR.o:(.text.soar+0x24f0): undefined reference to
`Java_com_microej_training_gpio_Gpio_set'

87

• The LLGPIO_get(int32_t pin) and LLGPIO_set(int32_t pin, uint8_t state) functions are implemented
as follows:

• Note: this is a simple implementation that does not take care of GPIO pin number.

V2.1 Mar. 2025© MicroEJ 2025

GPIO NATIVES IMPLEMENTATION

88

• Open the Gradle view.

• Open gpio-basic > Tasks > app > microej and
double-click on runOnDevice.

• Or use the following command line:
./gradlew :app:runOnDevice

• The application is built and the device is flashed.

• The GREEN LED D6 is now blinking every
500ms.

V2.1 Mar. 2025© MicroEJ 2025

RUN THE EXAMPLE ON THE DEVICE

89

Resources

90

• https://developer.microej.com/

• Examples, platforms, libraries, user guides, application notes…

• Javadocs (Java API)

• Addon tools

• https://docs.microej.com

• https://github.com/MICROEJ/

• Source code repository

• https://forum.microej.com/

• https://repository.microej.com/

• MICROEJ Central Repository (modules repository)

V2.1 Mar. 2025© MicroEJ 2025

USEFUL LINKS

https://forum.microej.com/
https://forum.microej.com/

104

THANK YOU
f o r y o u r a t t e n t i o n !

	Default Section
	Slide 1
	Slide 2
	Slide 3: What you will learn

	Prerequisites
	Slide 4: PREREQUISITES
	Slide 5: PREREQUISITES

	MICROEJ VEE
	Slide 6: Virtual Execution Environment
	Slide 7: MICROEJ VEE
	Slide 8: MICROEJ VEE
	Slide 9: MICROEJ VEE – detailed view
	Slide 10: Managed code on hardware & virtual device
	Slide 11: Core Engine Block Diagram
	Slide 12: Core engine Key Points (1/3)
	Slide 13: Core engine Key Points (2/3)
	Slide 14: Core engine Key Points (3/3)

	VEE Port Concept
	Slide 15: VEE Port Concept
	Slide 16: State of play
	Slide 17: VEE Port
	Slide 18: VEE Port and Abstraction
	Slide 19: Purpose of abstraction

	Executable Build Flow
	Slide 20: Firmware Build Flow
	Slide 21: Overview
	Slide 22: MICROEJ Architecture
	Slide 23: MICROEJ VEE Port
	Slide 24: Build flow / VEE Port
	Slide 25: build flow / Executable

	Build VEE Port
	Slide 26: VEE Port Project Overview
	Slide 27: VEE Port Source project structure

	Application Creation
	Slide 28: Application
	Slide 29: Project Creation
	Slide 30: Application Project creation
	Slide 31: Project structure
	Slide 32: VEE Port selection (1/3)
	Slide 33: VEE Port selection (2/3)
	Slide 34: VEE Port selection (3/3)
	Slide 35: VEE Port Selection ways
	Slide 36: Automatically reload a Gradle project
	Slide 37: Run on the Simulator
	Slide 38: Run the Application on the simulator
	Slide 39: Run on the Device
	Slide 40: Build the application Executable
	Slide 41: Build flow explained (1/2)
	Slide 42: Build flow explained (2/2)
	Slide 43: Run the application on the device (1/2)
	Slide 44: Run the application on the device (2/2)
	Slide 45: MicroEJ Core Engine Startup
	Slide 46: Application Project Configuration
	Slide 47: Project build file
	Slide 48: LIBRARY DEPENDENCIES
	Slide 49: Get library dependency
	Slide 50: Check Dependencies Update
	Slide 51: Run Configurations
	Slide 52: Application configuration

	Front Panel
	Slide 53: Front Panel
	Slide 54: Front Panel PRINCIPLE
	Slide 55: Key functionalities (1/4)
	Slide 56: Key functionalities (2/4)
	Slide 57: Key functionalities (3/4)
	Slide 58: Key functionalities (4/4)
	Slide 59: Project Structure
	Slide 60: Front panel Description file
	Slide 61: MICROEJ SDK DEVELOPMENT TOOLS
	Slide 62: MICROEJ SDK DEVELOPMENT TOOLS
	Slide 63: Development Tools overview
	Slide 64: Stack trace Reader (1/4)
	Slide 65: Stack trace Reader (2/4)
	Slide 66: Stack trace Reader (3/4)
	Slide 67: Stack trace Reader (4/4)
	Slide 68: Call C code from Managed Code (Java)
	Slide 69: Principle (1/2)
	Slide 70: principle (2/2)
	Slide 71: naming convention
	Slide 72: data types
	Slide 73: Implement a Java Native Method with SNI
	Slide 74: ADD the JAVA NATIVE METhOD
	Slide 75: Get the linker errors
	Slide 76: Implement the native method in the BSP
	Slide 77: Run the example on the Device

	GPIO Toggle with SNI
	Slide 78: Blink an LED from Managed Code (Java)
	Slide 79: Open the Project
	Slide 80: Project structure
	Slide 81: Run on the Simulator
	Slide 82: VEE Port selection
	Slide 83: run on the simulator
	Slide 84: Run on the Device
	Slide 85: RUN THE EXAMPLE ON the DEVICE
	Slide 86: GET THE LINKER ERRORS
	Slide 87: GPIO Natives implementation
	Slide 88: RUN THE EXAMPLE ON the DEVICE

	Resources
	Slide 89: Resources
	Slide 90: Useful links

	Shortcuts
	Slide 104

