
1

MICROEJ SDK 5
Basics

© MICROEJ 2024

For STM32F7508-DK

22

DISCLAIMER

All rights reserved. Information, technical data and tutorials contained in this document are proprietary under copyright law
of MicroEJ S.A. Without written permission from MicroEJ S.A., copying or sending parts of the document or the entire document
by any means to third parties is not permitted. Granted authorizations for using parts of the document or the entire document

do not mean MicroEJ S.A. gives public full access rights.

The information contained herein is not warranted to be error-free.

MicroEJ® and all relative logos are trademarks or registered trademarks of MicroEJ S.A. in France and other Countries.

Other trademarks are proprietary of their respective owners.
Java is Sun Microsystems’ trademark for a technology for developing application software and deploying it in cross-platform, networked environments. When it is used in this site without adding the “ ” symbol, it includes implementations of the

technology by companies other than Sun. Java , all Java-based marks and all related logos are trademarks or registered trademarks of Sun Microsystems Inc, in the United States and other Countries.

33

AGENDA

44

By the end of this training, you will be able to use MICROEJ SDK to:

• Build a MICROEJ VEE Port.

• Build and Run a Java Application.

• Edit a Front Panel File.

• Create your own Foundation Libraries.

• Call a C function from Java.

WHAT YOU WILL LEARN

55

• STM32F7508-DK Board and a mini-USB cable.

• Clone the STM32F7508 2.1.2 VEE Port repository using the Git --recursive option to get the submodules.

• Download the flopi7G26-8.0.0-eval.xpf MICROEJ Architecture for Cortex M7 GCC
(https://repository.microej.com/modules/com/microej/architecture/CM7/CM7hardfp_GCC48/flopi7
G26/8.0.0/).

• Windows 10 or 11 64-bit:

• Install JDK 11 64-bit (https://adoptopenjdk.net/?variant=openjdk8&jvmVariant=hotspot).

• Note: select the “JavaSoft (Oracle) registry keys” feature in the installer

• Install MICROEJ 23.07 SDK (https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-
Win64-23.07.exe).

• Install a serial terminal (https://www.compuphase.com/software_termite.htm).

• Install STM32CubeIDE 1.9.0 (https://www.st.com/en/development-tools/stm32cubeide.html).

• Access to internet and the MICROEJ Central Repository (https://repository.microej.com/).

REQUIREMENTS

https://github.com/MicroEJ/VEEPort-STMicroelectronics-STM32F7508-DK/tree/2.1.2
https://repository.microej.com/modules/com/microej/architecture/CM7/CM7hardfp_GCC48/flopi7G26/8.0.0/
https://repository.microej.com/modules/com/microej/architecture/CM7/CM7hardfp_GCC48/flopi7G26/8.0.0/
https://adoptopenjdk.net/?variant=openjdk8&jvmVariant=hotspot
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-Win64-23.07.exe
https://repository.microej.com/packages/SDK/23.07/MicroEJ-SDK-Installer-Win64-23.07.exe
https://www.compuphase.com/software_termite.htm
https://www.st.com/en/development-tools/stm32cubeide.html
https://repository.microej.com/

66

IMPORTING ARM CORTEX-M7 GCC ARCHITECTURE

• Download & Install MICROEJ SDK (see download link in

slide 5).

• Once installed, launch the MICROEJ SDK and select the

default workspace.

• In MICROEJ SDK, click on Window > Preferences >

MICROEJ > Architectures > Import.

• Select the MICROEJ Architecture previously

downloaded flopi7G26-{version}-eval.xpf (see

download link slide 5).

• Accept the license terms and click on Finish.

• The architecture is now imported.

• Click on Apply and Close button.

INSTALLING MICROEJ ARCHITECTURE

77

GETTING THE UID

• In MICROEJ SDK, go to Window > Preferences > MICROEJ >
Architectures.

• Select the ARM Cortex-M7 GCC EVAL Architecture.

• Click on Get UID.

• Copy the UID. It will be needed when requesting a license.

ACTIVATING MICROEJ ARCHITECTURE LICENSE

88

GENERATING THE ACTIVATION KEY

• Go to license.microej.com.

• Click on Create a new account link.

• Create your account with a valid email address. You will receive a
confirmation email a few minutes after. Click on the confirmation
link in the email and login with your new account.

• Click on Activate a License.

• Set Product P/N: to 9PEVNLDBU6IJ.

• Set UID: to the UID you generated before.

• Click on Activate.

• The license is being activated. It can be downloaded from the home
page of license.microej.com.

• Once generated, download the attached zip file that contains your
activation key.

ACTIVATING MICROEJ ARCHITECTURE LICENSE

https://license.microej.com/
https://license.microej.com/

99

ACTIVATING MICROEJ SDK

• In MICROEJ SDK, go to Window > Preferences >
MICROEJ.

• Press Add..

• Browse the previously downloaded activation key
archive file.

• Press OK. A new license is successfully installed.

ACTIVATING MICROEJ ARCHITECTURE LICENSE

1010

VEE Port
Concept

Computing platform for
embedded system
development

1111

• MICROEJ SDK brings the concept of computing platform to embedded system
development

• Goals of this presentation:

▪ Why computing platforms help to develop applications

▪ How to make a platform with MicroEJ SDK?

• Computing platform = software platform = platform = VEE Port

VEE PORT

1212

• Programs made for workstations and servers are portable to Linux / OS X / Windows

• iOS or Android let you run the same application on several hardware targets

• Developers use high level languages and tools

• Low level actions are delegated to the operating system (OS)

o Why should not we do the same for embedded devices?

STATE OF PLAY

1313

APPLICATION FEATURES ARE SPLIT IN 2 CATEGORIES

1. Hardware dependent features (ex: screen): into the VEE Port, hiding details of what might
change

2. Hardware-independent features:

▪ Mathematical algorithms

▪ Software using the VEE Port functionalities

▪ UI

▪ Connectivity protocols

▪ Business logic

VEE PORT AND ABSTRACTION

1414

• Hardware abstracted software is the key point for portability

• Portability is needed when

▪ You want to reuse the same code for several projects

▪ Your hardware platform becomes obsolete

▪ You target several hardware platforms with the same application

• When switching to a new hardware platform

▪ You only change the hardware specific parts

▪ You re-create an iso-functional computing VEE Port

▪ Your software runs identically on this new VEE Port

PURPOSE OF ABSTRACTION

15

VIRTUAL EXECUTION
ENVIRONMENT

OVERVIEW

16

MICROEJ VEE is a scalable Virtual Execution Environment for resource-constrained
embedded and IoT devices running on 32-bit microcontrollers or microprocessors.

MICROEJ VEE allows devices to run multiple and mixed Java and C software applications.

Key Figures:

• Boots in 2 ms on a Cortex-M4 @180MHz.

• Optimized for low-power.

• Compact (< 30 KB footprint).

• Runs from Cortex-M0 with 128 KB flash and 32 KB RAM, to Cortex-A7.

MICROEJ VEE

17

SERVICES

MICROEJ VEE provides a fully configurable set of services that can be expanded, including:

• A secure multi-application framework.

• A network connection with security (SSL/TLS, HTTPS, REST, MQTT, CoAP,…).

• A GUI framework (includes widgets).

• A basic analog and digital IO framework.

• A sensor framework.

• A storage framework (file system).

As it runs Java, MICROEJ supports all security, networking and IoT communication protocols
and frameworks such as MQTT, CoAP, etc.

MICROEJ VEE

18

MICROEJ VEE – DETAILED VIEW

Mass
Storage UARTEthernet

Wi-Fi / LTE …Display
PROCESSOR

CORE

N
at

iv
e

C
o

d
e

(C
/A

S
M

, …
)

RTOS/OS

ABSTRACTION LAYERS

BSP

SANDBOXED APPLICATIONS

M
an

ag
ed

 C
o

d
e

 (J
av

a,
 J

av
aS

cr
ip

t,
 …

)

FOUNDATION LIBRARIES

ADD-ON LIBRARIES

Web / REST servers | MQTT / LWM2M clients | JSON | CBOR | Crypto | Widgets | Components | Eclasspath | …

APPLICATIONS for MICROEJ VEE

Internet
Protocol

File
System I/O …Bluetooth

Drivers …

…ECOM BLEEDCNET/SSLFS

Graphical
Engine

MicroUI BON

Drivers

ABSTRACTION LAYERS

HARDWARE

PLATFORM

VIRTUALIZATION

Libs

Libs

APP

HARDWARE

VEE Port

VIRTUALIZATIO
N

APPLICATION

Bluetooth

19

GUI EXAMPLES FOR $1 TO $5 MCU

20

BUILD FLOW

Build flow explained

21

WORKBENCH

MICROEJ SDK includes:

• MICROEJ IDE, based on Eclipse.

• Tools to build VEE Ports.

• Tools to build applications.

• Add-on libraries to code with Java as high-level language.

• Native libraries and mechanism to allow developers to use C and to
create interactions between C and Java features.

• Support for Eclipse plugins.

OVERVIEW

22

• A MICROEJ Architecture is a software package that includes the MEJ32 port to a target instruction
set and a C compiler, MICROEJ Foundation Libraries and the MEJ32 Simulator.

• MICROEJ Architectures are provided by MICROEJ and distributed within MICROEJ SDK.

• Menu Window > Preferences > MicroEJ > Architectures.

• Example of MICROEJ Architectures:

• ARM Cortex-M4 - Keil ARM Compiler 5.

• Renesas RXv2 - IAR 8.0.

• ARM Cortex-A7 - GCC 5.3 Linaro Linux HardFP.

• List of the architectures:

• https://developer.microej.com/mej32-embedded-runtime-architectures/

MICROEJ ARCHITECTURE

https://developer.microej.com/mej32-embedded-runtime-architectures/

23

• A MICROEJ VEE Port is a port of a MICROEJ Architecture for a specific hardware, RTOS and BSP.

• MICROEJ VEE Ports are built using MICROEJ SDK.

• They are distributed as source (including C sources) or binary (pre-built C BSP).

• Menu Window > Preferences > MicroEJ > Platforms.

• Example of MICROEJ VEE Port:

• Renesas S7G2-DK - ThreadX - SSP 1.3.

• NXP OM13092 - FreeRTOS – KSDK.

• Atmel SAMA5-Xplained – Linux.

• List of the platforms:

• https://developer.microej.com/supported-hardware/

MICROEJ VEE PORT

https://developer.microej.com/supported-hardware/

24

BUILD FLOW / VEE PORT

MICROEJ VEE Architecture
(MEJ32 Core + Built-in Foundation
Libraries + Simulator + Mockups)

VEE Port Configuration

Java Code
Foundation

Libraries

MICROEJ SDK (VEE Port Builder)

(.jar)

Java Compiler

(.java, .list,
resources)

(.a, .jar, .h)(.xml, .launch)

Java/C Code
Foundation Libraries
Simulator Mockups

Java/C Compiler

(.c, .java)

(.exe, .jar)

MICROEJ VEE Port

MEJ32 Core

Java Foundation
Libraries

Simulator +
Mockups

Scripts + Tooling
+ Documentation

25

BUILD FLOW / FIRMWARE

MICROEJ SDK (App Builder)

MICROEJ VEE Port

(.a, .jar) (.jar)

Java Compiler

(.java, .list,
resources)

Java App

(.jar)

Java Libraries
Add-on Libraries

ELF Linker

(.a, .o, .s)

Firmware

MEJ32 Abstraction
Layer + C
Libraries

Java Application

C Code
Abstraction Layer

+ VEE Startup

(.o)

C Compiler

(.c, .h)

C Libraries
Legacy C
Libraries

(.a)

(.out, .hex, …)

26

Build VEE Port

For STM32F7508-DK

27

• File > Import… > General > Existing Projects into Workspace.

• Click the directory where
VEEPort-STMicroelectronics-STM32F7508-DK has been cloned.

• The projects appears in the Projects list. Select the following ones:

• stm32f7508_freertos-configuration: the configuration
project used to configure the VEE Port

• stm32f7508_freertos-fp: the front panel project. It
describes the UI of the simulator

• stm32f7508_freertos-bsp: contains the Board Support
Package (BSP) source code

• STM32F7508-Platform-CM7hardfp_GCC48-{version}: the
VEE Port project (empty)

• Click on Finish.

IMPORT VEE PORT SOURCES

28

• Right click on stm32f7508_freertos-configuration
project

• Click on Build Module to build the VEE Port.

• The VEE Port project STM32F7508-Platform-
CM7hardfp_GCC48 is now filled.

• You can see the VEE Port in Platforms in workspace
menu:

• Window > Preferences > MicroEJ > Platforms in
workspace

BUILD STM32F7508 VEE PORT

29

Application

Build & Run

30

JAVA PROJECT CREATION

• Go to File -> New -> MicroEJ Standalone
Application Project.

• Fill the input fields.

APPLICATION CREATION

31

BUILD FLOW

MICROEJ SDK (App Builder)

MICROEJ VEE Port

(.a, .jar) (.jar)

Java Compiler

(.java, .list,
resources)

Java App

(.jar)

Java Libraries
Add-on Libraries

ELF Linker

(.a, .o, .s)

Firmware

MEJ32 Abstraction
Layer + C
Libraries

Java Application

C Code
Abstraction Layer

+ VEE Startup

(.o)

C Compiler

(.c, .h)

C Libraries
Legacy C
Libraries

(.a)

(.out, .hex, …)

32

JAVA PROJECT LAUNCHER

• Right-Click on the Project.

• Run As -> Run Configuration.

• Double click on MICROEJ
Application.

• Go to Execution tab.

• Select Execute on Device.

APPLICATION CREATION

33

BUILD FLOW

MICROEJ SDK (App Builder)

MICROEJ VEE Port

(.a, .jar) (.jar)

Java Compiler

(.java, .list,
resources)

Java App

(.jar)

Java Libraries
Add-on Libraries

ELF Linker

(.a, .o, .s)

Firmware

MEJ32 Abstraction
Layer + C
Libraries

Java Application

C Code
Abstraction Layer

+ VEE Startup

(.o)

C Compiler

(.c, .h)

C Libraries
Legacy C
Libraries

(.a)

(.out, .hex, …)

34

• Java application must be linked with BSP:

• BSP = drivers + (optional: operating system) + abstraction layer.

• Done by a 3rd party IDE.

• MicroEJ provides:

• Java application as an object file (microejapp.o).

• Java runtime environment as a library file (microejruntime.a).

• Header files with types and functions provided by this library (.h).

• Abstraction layer interface (.h).

• Abstraction layer implementation (.c, .cpp).

• 3rd party IDE is responsible for compiling BSP, linking, and generating an executable file.

MICROEJ AND 3RD PARTY IDE

35

IMPORT THE BSP PROJECT

• Open STM32CubeIDE in an empty workspace.

• Select File > Import...

• Select General > Existing Projects into Workspace.

• Press Next.

• Next to the Select root directory field, press Browse...

• Navigate to the stm32f7508_freertos-bsp/projects/microej/SW4STM32 folder.

• Select the application project.

• Press Finish.

RUN THE JAVA APPLICATION ON DEVICE

36

BUILD AND FLASH THE BSP

• In STM32CubeIDE, right-Click on the application project.

• Press Build Project.

• Wait for the end of the build.

• Plug the STM32F7508-DK board to the PC thanks to a mini-USB cable (CN14 - USB ST-Link
connector).

• In STM32CubeIDE, select Run > Run Configurations...

• Under STM32 Cortex-M C/C++ Application, select the application_debug run
configuration.

• Press Run.

• The firmware will be downloaded on the STM32F7508-DK.

RUN THE JAVA APPLICATION ON DEVICE

37

GET THE APPLICATION TRACES

o Open the Termite serial terminal.

o Click the Settings button.

o Select the STM32F7508-DK board COM port.

o Reset the STM32F7508-DK board pressing the black
button.

o The application starts and the Hello World message is
printed in the console!

RUN THE JAVA APPLICATION ON DEVICE

38

• MicroEJ header files are in: projects/microej/SW4STM32/platform/inc

• MicroEJ libraries and Java application object file are used during link edition:

• MicroEJ Core Engine is invoked in: projects/microej/core/src/microej_main.c with SNI_createVM():

MICROEJ CORE ENGINE STARTUP

Note: in the STM32F7508 VEE Port, microej_main() is called
from a FreeRTOS task in main.c.
It is also possible to run MicroEJ Core Engine on a baremetal
device (no RTOS).

39

APPLICATION

Configuration

40

Contains a description of all the libraries required by the application.

Loaded by the MicroEJ Module Manager (MMM) to fetch automatically the dependencies
using Ivy.

Available MICROEJ libraries can be found here:

• https://repository.microej.com/

• https://forge.microej.com/artifactory/microej-developer-repository-release/

From the MICROEJ Javadoc you can search for a Class and get the MMM dependency that
provides it by visiting https://repository.microej.com/javadoc/microej_5.x/apis/index.html

LIBRARY DEPENDENCY FILE

<dependencies>
 <dependency org="ej.api" name="edc" rev="1.3.3“ />

</dependencies>

https://repository.microej.com/
https://forge.microej.com/artifactory/microej-developer-repository-release/
https://repository.microej.com/javadoc/microej_5.x/apis/index.html

41

Example :

https://repository.microej.com/javadoc/microej_5.x/apis/index.html?ej/restserver/RestServer.html

This button let you copy the MMM dependency directly into the clipboard.

LIBRARY DEPENDENCY FILE

https://repository.microej.com/javadoc/microej_5.x/apis/index.html?ej/restserver/RestServer.html

42

• Run Configurations:

• Eclipse provides the concept of “run configurations”

• A run configuration tells what is executed, what is the runtime environment, what are
the execution options

• Available through the Run menu

• A Run Configuration can be executed as:

• A Run Configuration to simply run an application

• A Debug Configuration to debug this application

• External Tool Configuration to run an external program

RUN CONFIGURATIONS

43

MICROEJ provides two specific run configuration types:

• MICROEJ Application

• MICROEJ Tool

RUN CONFIGURATIONS

44

KIND OF EXECUTION (SIMULATOR OR DEVICE)

MICROEJ APPLICATION

45

CONFIGURE LIBRARIES AND MEMORY USAGE

MICROEJ APPLICATION

46

SHARE RUN CONFIGURATIONS

1. Go to Run -> Run Configurations

2. Select a run configuration

3. In Common tab, select Save as Shared file and choose the directory where it is saved

4. You can now commit the .launch file in your Version Control System

RUN CONFIGURATION

47

FRONT PANEL

Customization

48

PRINCIPLE

• MICROEJ environment allows applications to be developed and tested
in a Simulator rather than on the target device, which might not yet be
built.

• To make this possible for devices operated by the user, the Simulator
must connect to a “mock” of the control panel (the “Front Panel”) of
the device.

• The Front Panel generates a graphical representation of the device,
and is displayed in a window on the user’s development machine
when the application is executed in the Simulator.

• The Front Panel implements MicroUI. However it can be use to show a
hardware device, blink an LED, interact with user without using
MicroUI library.

FRONT PANEL

See https://docs.microej.com/en/latest/PlatformDeveloperGuide/frontpanel.html

https://docs.microej.com/en/latest/PlatformDeveloperGuide/frontpanel.html

49

PROJECT CONTENT

A Front Panel project has the following structure and contents:

• src/main/java (optional): contains custom widgets and button event listeners.

• src/main/resources: holds files that define the contents and layout of the Front
Panel (.fp file and images).

• JRE System Library: required to compile the custom widgets and listeners.

• Modules Dependencies: contains front panel framework and default widgets.

• lib/: contains a local copy of Modules Dependencies.

FRONT PANEL

50

FRONT PANEL FILE

• Description written in XML (.fp file): <device ...> element contains the elements that define the widgets that make up the Front
Panel.

• Loaded by the Front Panel Engine to build the graphical representation of the real device.

• Declare the widgets that simulate the drivers, sensors, and actuators of the real device.

• Widgets:

• The name of the widget element references the Java class of the widget (see widget-x.y.z.jar in Module Dependencies).

• A widget can be identified by a label, which must be unique for the widgets of the same type.

• Position specified with x and y attributes.

FRONT PANEL

51

EDITING THE FRONT PANEL

• To edit a .fp file, open it using the Eclipse XML editor:

• Right-Click on the .fp file, select Open With > XML
Editor and select the Source tab.

• Within the XML editor, content-assist is obtained by
pressing CTRL + SPACE keys.

• To obtain a preview of the Front Panel, go to Window >
Show View > Other… > MICROEJ > Front Panel
Preview.

• The preview is updated each time the .fp file is saved.

• The VEE Port needs to be rebuilt to get the Front Panel
updates.

FRONT PANEL

52

MICROEJ SDK

Tools

53

EXCEPTION GENERATION

• By default, on error, the stack trace of the exception thrown is printed on the serial console.

• Let’s generate an error. Add the following code in your HelloWorld main method:

• Compile the application in MICROEJ SDK:

1. Right click on the HelloWorld MICROEJ project.

2. Run as -> MicroEJ Application.

• Build the BSP Project.

• Flash the board.

STACK TRACE READER

byte[] array = new byte[5];
array[5] = 42; // Invalid access to the array

54

EXCEPTION OUTPUT

• In the console, we can see the stack trace:

• Name of the faulty method is not printed directly:

• Only the address of the method is printed

• MICROEJ does not embed the names of the methods to limit the footprint

• To help reading the stack trace, a tool is available: the stack trace reader

STACK TRACE READER

55

CONFIGURATION

In MICROEJ SDK, create the Run configuration

1. Go to Run -> Run Configurations…

2. Double-click on MicroEJ Tool.

3. Enter a name for the launcher.

4. Select your VEE Port.

5. Use settings: Stack Trace Reader.

6. Go to Configuration tab.

7. Use the ELF file generated by the 3rd party linker:

STACK TRACE READER

56

USAGE

1. Click Run

2. Copy/Paste the trace in your console

You can also configure it to read data directly
from the com port of your device.

STACK TRACE READER

Online documentation: https://docs.microej.com/en/latest/ApplicationDeveloperGuide/stackTraceReader.html

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/stackTraceReader.html

57

• JDWP (Java Debug Wire Protocol) to use Eclipse debugger.

• Classical debugger features:

• Breakpoints.

• Step-by-step execution.

• Variables and fields value monitoring.

• Thread execution stacks list.

• Run your Launch Configuration as a Debug Configuration:

• Debug perspective.

DEBUGGER

58

A heap file, describing the heap content, is created each time garbage collector is executed:

• System.gc() to force heap dumping:

HEAP DUMPER

59

• Open .heap files with the Heap Analyzer plugin.

• Inspect objects graph.

• Detect memory leaks.

• This is an advanced feature: a good knowledge of Java and the program is required.

HEAP DUMPER

60

HEAP DUMPER

61

A SOAR.map file is generated when a build for device is done.
The map file maps Java and MICROEJ memory usage (no BSP).

MEMORY MAP INSPECTOR

62

Code coverage reports:

• List used and unused source code.

• Find untested or dead code.

• HTML report generation.

CODE COVERAGE

63

CODE COVERAGE

64

Dump the States of
the Core Engine

65

• What?

• Prints the state of the MicroEJ Core Engine to the standard output stream.

• For each Java thread, the Java stack trace, the name, the state and the priority are printed.

• How-To?

• Call the C function LLMJVM_dump().

• It is provided by LLMJVM.h.

• When?

• Call the LLMJVM_dump as a last resort in a fault handler to get a snapshot of the Core Engine, to check if
the issue comes from a LLAPI or the underlying C code.

• Call the LLMJVM_dump in the Core Engine task at runtime to diagnose unexpected behavior (ex: UI freeze).

• Requirements:

• A way to read stdout (usually UART).

LLMJVM DUMP

https://docs.microej.com/en/latest/PlatformDeveloperGuide/platformConcepts.html#principle

66

• Note: the Stack Trace Reader can be used to
decode the trace of the LLMJVM_dump().

LLMJVM DUMP EXAMPLE =================================== VM Dump ====================================
Java threads count: 3
Peak java threads count: 3
Total created java threads: 3
Last executed native function: 0x90035E3D
Last executed external hook function: 0x00000000
State: running
--
Java Thread[1026]
name="main" prio=5 state=RUNNING max_java_stack=456 current_java_stack=184

java.lang.MainThread@0xC0083C7C:
 at (native) [0x90003F65]
 at com.microej.demo.widget.main.MainPage.getContentWidget(MainPage.java:95)
 Object References:
 ...
--
Java Thread[1536]
name="Thread1" prio=5 state=READY max_java_stack=60 current_java_stack=57

java.lang.Thread@0xC0082194:
 at java.lang.Thread.runWrapper(Unknown Source)
 Object References:
 - java.lang.Thread@0xC0082194
 at java.lang.Thread.callWrapper(Thread.java:449)

...
==

============================== Garbage Collector ===============================
State: Stopped
Last analyzed object: null
Total memory: 15500
Current allocated memory: 7068
Current free memory: 8432
Allocated memory after last GC: 0
Free memory after last GC: 15500
==

=============================== Native Resources ===============================
Id CloseFunc Owner Description
--

67

SNI

SNI (Simple Native Interface)

Call C code from Java

© MICROEJ 2024

68

SNI Resolves native calls by executing them in another language (most of the time in C language).

Online documentation: https://docs.microej.com/en/latest/PlatformDeveloperGuide/sni.html

PRINCIPLE (1/2)

https://docs.microej.com/en/latest/PlatformDeveloperGuide/sni.html

69

SNI provides a simple mechanism for implementing native Java methods in the C language.

SNI allows you to:

• Call a C function from a Java method.

• Access a Java array from a native method written in C.

• Access a Java Immortal array from another RTOS task, an interrupt handler, or a DMA (see
the BON specification to learn about immortal objects).

SNI does not allow you to:

• Access or create a Java object in a C function.

• Access Java static variables in a C function.

• Call Java methods from a C function.

SNI provides some Java APIs to manipulate some data arrays between Java and the native (C)
world.

PRINCIPLE (2/2)

70

NAMING CONVENTION

71

• Primitive data type can be manipulated through SNI (return value and parameter):

• byte, short, int, long, float, double, boolean, char.

• Arrays of primitive data type are managed by SNI with some limitations:

• C globals, C Heap, DMA, RTOS tasks can reference only Immortal arrays.

• Non-immortal arrays can be referenced only from a native function local.

DATA TYPES

72

Implement a Java Native
Method with SNI

73

• Modify the code of the HelloWorld main method:

public static void main(String[] args) {

 System.out.println("Hello World!");

 printHelloNative();

}

public static native void printHelloNative();

• Compile the application in MICROEJ SDK:

• Right click on the HelloWorld MICROEJ project.

• Run as -> MicroEJ Application.

• Run the launcher configured to Execute on Device.

ADD THE JAVA NATIVE METHOD

74

• In STM32CubeIDE, click on your project once to select it.

• Go to Project > Build Project.

• Wait for the end of the build. The following error appears:

• The printHelloNative() method is a native method. It must be implemented in the BSP.

GET THE LINKER ERRORS

C:\workspaces\HelloWorld\com.microej.training.Main\SOAR.o:(.text.soar+0x1f78):

undefined reference to `Java_com_microej_training_Main_printHelloNative'

75

• In STM32CubeIDE, open microjvm_main.c

• Implement the printHelloNative() method, use the method signature
provided by the linker error:

• Go to Project > Build Project.

• The build is successful.

• Flash the firmware:

• Run > Run Configurations > STM32 C/C++ Application >
application_debug > Run.

IMPLEMENT THE NATIVE METHOD IN THE BSP

76

• Open the Termite serial terminal.

• Click the Settings button.

• Select the STM32F7508-DISCO board COM port.

• Reset the STM32F7508-DISCO board by pressing the
black button near to the screen.

• The application starts and the Hello World and Hello
from BSP messages are printed in the console!

RUN THE EXAMPLE ON DEVICE

77

Foundation Library

78

• A Foundation library is a Java library that depends on C code.

• Composed of:

• A main project with the Java library source.

• Abstraction Layer Interface or Low Level API (LLAPI) specified in C header files.

• A mockup of the Java library for the simulator.

DEFINITION

Foundation libraries
Java

Foundation libraries Mockups
Java/C

MicroEJ SDK (VEE Port Builder)

Java Compiler Java/C Compiler

(.jar) (.exe, .jar)

(.java, .list, resources) (.java, .c)

Foundation Libraries Abstraction
Layer

C

(.h, .c)

79

• Import the GPIO Foundation Library Example:

• Open menu File > Import... > General > Existing Projects into Workspace.

• Select the archive file [training-package]/gpio_foundation_library_example-
{version}.zip.

• Select all the projects.

• Click on Finish.

• If some projects don't compile click on Project > Clean... menu, select Clean all projects
and click on Clean.

FOUNDATION LIBRARY EXAMPLE

80

The GPIO class in the gpio project defines 2 native methods:

GPIO FOUNDATION LIBRARY

/**
 * GPIO management class.
 */
public class Gpio {
/**
 * Sets a value on the digital pin.
 *
 * @param pin
 * the pin identifier
 * @param value
 * digital pin value: true for high, false for low.
 */
native public static void set(int pin, boolean value);

/**
 * Gets the value of the digital pin.
 *
 * @param pin
 * the pin identifier
 * @return true when the GPIO digital value is currently high, false otherwise.
 */
native public static boolean get(int pin);
}

81

Run the Foundation Library
Example on Simulator

82

• The gpio-mockup project is a JavaSE Project.

• The implementation of the gpio native methods is done in a class having the same package and
same name:

• Each native method is implemented, without the native and with the public modifiers:

MOCKUP IMPLEMENTATION

public class Gpio {
 private static final Map<Integer, Boolean> GPIO = new HashMap<Integer, Boolean>();

public static void set(int pin, boolean state) {
System.out.println("Set GPIO "+pin+" to "+(state?"on":"off"));
GPIO.put(Integer.valueOf(pin), Boolean.valueOf(state));

}
public static boolean get(int pin) {

// Returns false by default
return GPIO.getOrDefault(Integer.valueOf(pin), Boolean.FALSE).booleanValue();

}
}

83

• Build the Mockup with MMM:

• Right-Click on the gpio-mockup project and select Build Module.

• A .rip named gpio-mockup.rip is generated in the gpio-mockup\target~\artifacts
folder.

• Add it to the VEE Port:

• Unzip the gpio-mockup.rip

• Drop the content of the folder content into the project [platform]-[Version]/source/

MOCKUP DEPLOYMENT

Warning: This folder is overwritten at each VEE Port build. To avoid that, add the mock
module as a VEE Port dependency in the –configuration/module.ivy

Note: to ease the mock development phase, use the Resolve Foundation Library in
workspace to retrieve mock sources in simulation → the above steps can be avoided
during the development in MICROEJ SDK.

https://docs.microej.com/en/latest/SDKUserGuide/resolveDependenciesInWorkspace.html#resolve-foundation-libraries-in-workspace
https://docs.microej.com/en/latest/SDKUserGuide/resolveDependenciesInWorkspace.html#resolve-foundation-libraries-in-workspace

84

• The project gpio-example contains an example that uses the gpio library:

• The gpio library has been added as dependency in the module.ivy of gpio-example:

• Right click on the MicroEJ project gpio-example.

• Run as -> MicroEJ Application.

RUN ON THE SIMULATOR

private static final int PIN = 0;
private static final long DELAY = 500;

public static void main(String[] args) throws InterruptedException {
while (true) {

Gpio.set(PIN, !Gpio.get(PIN));
Thread.sleep(DELAY);

}
}

=============== [Initialization Stage] ===============
=============== [Launching on Simulator] ===============
Set GPIO 0 to on
Set GPIO 0 to off
Set GPIO 0 to on
…

<dependency org="com.microej.training.gpio" name="gpio" rev="1.1.0"/>

85

Run the Foundation Library
Example on Device

86

• Build the gpio-example project for the device:

• Go to Run -> Run Configurations.

• Select the gpio-example BlinkGpio Run Configuration.

• Go to Execution Tab.

• Select Execute on Device.

• Click Run.

• Compile, Link and Flash with the 3rd party IDE.

RUN THE EXAMPLE ON DEVICE

87

• The following errors show up during the link step of the BSP:

• The GPIO set() and get() methods are native methods. They must be implemented in the
BSP.

• Add a simple implementation of the 2 methods:

GET THE LINKER ERRORS

C:\XXX\com.microej.training.gpio.example.BlinkGpio\SOAR.o:(.text.soar+0x24dc): undefined reference to
`Java_com_microej_training_gpio_Gpio_get’

C:\XXX\com.microej.training.gpio.example.BlinkGpio\SOAR.o:(.text.soar+0x24f0): undefined reference to
`Java_com_microej_training_gpio_Gpio_set'

#include <stdio.h>
#include "sni.h"

jint Java_com_microej_training_gpio_Gpio_get(jint pin){
 printf("GPIO get status of pin: %d \n", pin);
 return 0;
}

void Java_com_microej_training_gpio_Gpio_set(jint pin, jboolean value){
 printf("GPIO set pin %d to %d\n", pin, value);
}

88

• Build the gpio-example project for the device:

• Go to Run -> Run Configurations.

• Select the gpio-example BlinkGpio
Run Configuration.

• Go to Execution Tab.

• Select Execute on Device.

• Click Run.

• Compile, Link and Flash with the 3rd party IDE.

• Open the Termite serial terminal to get
execution traces.

RUN THE EXAMPLE ON DEVICE

89

• The LLAPI project defines the natives to be implemented in the BSP project:

ABSTRACTION LAYER INTERFACE: LLAPI

#define LLGPIO_set Java_com_microej_training_gpio_Gpio_set
#define LLGPIO_get Java_com_microej_training_gpio_Gpio_get
/**
 * Sets a value on the digital pin.
 *
 * @param pin
 * the pin identifier
 * @param value
 * digital pin value: JTRUE for high, JFALSE for low.
 */
void LLGPIO_set(int32_t pin, uint8_t state);

/**
 * Gets the value of the digital pin.
 *
 * @param pin
 * the pin identifier
 * @return JTRUE when the GPIO digital value is currently high, JFALSE
otherwise.
 */
uint8_t LLGPIO_get(int32_t pin);

/**
 * GPIO management class.
 */
public class Gpio {
/**
 * Sets a value on the digital pin.
 *
 * @param pin
 * the pin identifier
 * @param value
 * digital pin value: true for high, false for low.
 */
native public static void set(int pin, boolean value);

/**
 * Gets the value of the digital pin.
 *
 * @param pin
 * the pin identifier
 * @return true when the GPIO digital value is currently high, false
otherwise.
 */
native public static boolean get(int pin);
}

90

• The implementation is done in the stm32f7508_freertos-bsp/ project.

• Add the LLGPIO_impl.h header file to the compiler path in the 3rd party IDE.

• Implement the LLGPIO_get(int32_t pin) and LLGPIO_set(int32_t pin, uint8_t state) functions in the BSP.

ABSTRACTION LAYER IMPLEMENTATION:
LLIMPL

Implementation available in LLGPIO_STM32F7508-{version}.zip

91

Packaging and Tests

92

BUILD A LIBRARY WITH MICROEJ MODULE MANAGER (MMM)

• Generate a JAR file with the classfiles.

• Generate a zip file with the sources.

• Generate the Javadoc.

• Execute the tests (defined in src/test/java folder).

• Publish the library in an MMM repository.

PACKAGING AND TESTS

93

1. Right-Click on the source/ folder of the VEE Port project.

2. Go to Properties.

3. Copy the location path.

4. Open the file module.ivy of the gpio project.

5. Uncomment the definition of the property platform-loader.target.platform.dir.

6. Paste the path previously copied.

CONFIGURE THE TESTSUITE

94

• Right-Click on the gpio project and select Build Module.

• Build result is available in the folder target~/artifacts:

• Build result is published in a local MMM repository:
~\.ivy2\repository\com\microej\training\gpio

LAUNCH MMM BUILD

95

Testsuite report is available in the target~/artifacts/myfoundation-report-${version}.zip
file or in target~\test\html\test:

TESTS RESULT

96

Javadoc is available in target~/javadoc folder

JAVADOC

97

SNI

Manage Multithreading

© MICROEJ 2024

98

• Green threads are threads that are scheduled by the virtual machine instead of natively by the
underlying operating system.

• Green threads emulate multithreaded environments without relying on any native OS abilities,
enabling them to work in environments that do not have native thread support.

GREEN THREAD ARCHITECTURE

Native
task

Native
task

G
T
1

G
T
2

G
T
3

JVM
scheduler

RTOS

Native
task

99

THREAD SYNCHRONIZATION: BLOCKING CASE

G
reen

 th
read

 1
1

G
reen

 th
rea

d
 2

2

Read
GPIO
State

MICROEJ VEE
RTOS task

T
im

e

waitButton()

button_pin

• While a native method is executed, other Java threads
can’t be scheduled.

▪ SNI functions stop the Java world.

• Usually, the actions are asynchronous on the BSP side
and the result takes times to be returned (e.g.,
IP/USB/Bluetooth stacks).

• Goal: Execute a native in another task and wait for the
result.

MicroEJ Core
Engine

100

• The code of the gpio-exercise project does the following
actions:

• Wait for a button event and prints the index of the pressed
button (User/Blue button)

• Toggles the board LED1 each 500ms

• Each action in performed in a dedicated thread

GPIO EXERCISE OVERVIEW
public class GpioExercise {

private static final int PIN = 0;
private static final long DELAY = 500;

public static void main(String[] args) throws InterruptedException
{

 // This thread waits for button actions.
Thread t = new Thread(new Runnable() {

@Override
public void run() {
while (true) {

System.out.println("Waiting for a button event...");
int action = waitButton();
System.out.println("Button pressed! Action ID=0x" +
Integer.toHexString(action));

}
}
});
t.start();

// The main thread loops indefinitely and blinks the LED.
while (true) {

Gpio.set(PIN, !Gpio.get(PIN));
Thread.sleep(DELAY);

}

}

public static native int waitButton();
}

101

Run the GPIO Exercise code

102

• Important note:
• This exercise uses the User button (blue button) of the STM32F7508 board to demonstrate how to implement a

blocking Java native method without blocking the execution of other Java threads.

• The STM32F7508 platform already implements the Button events management in the MicroUI stack (see
button_manager.c)

• It is recommended to use the MicroUI library to get button events in the application code (e.g. MicroUI Input
Example)

• The next slides are showing how to run the exercise with STM32CubeIDE, it is also possible to use IAR.

• A C implementation is provided in the LLGPIO_STM32F7508-{version}.zip package.

• Add LLGPIO_exercise.c to the BSP project:
• Copy / Paste LLGPIO_exercise.c in the stm32f7508_freertos-bsp\projects\microej\gpio\src folder.

• Remove the previous LLGPIO.c implementation.

• LLGPIO_exercise.c redefines an interrupt handler defined in the ui folder. The folder needs to be excluded
from BSP build to run this sample.

• Exclude the ui folder from the BSP build:

• In STM32CubeIDE, right-click on the ui folder

• Click on Properties

• Click on Exclude resource from build

SETUP

gpio/ folder in
STM32CubeIDE

https://github.com/MicroEJ/VEEPort-STMicroelectronics-STM32F7508-DK/blob/master/stm32f7508_freertos-bsp/projects/microej/ui/src/buttons_manager.c#L74
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/com.microej.example.foundation.microui.input
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries/tree/master/com.microej.example.foundation.microui.input

103

• Compile the application in MICROEJ SDK:
• Right click on the GpioExercise.java class of the gpio-exercise project

• Run as -> Run Configurations..

• Double click on MICROEJ Application

• Go to Execution tab

• Select the STM32F7508 platform

• Select Execute on Device

• Click Run

• In STM32CubeIDE, click on your project once to select it.
• Go to Project > Build Project.

• Wait for the end of the build.

• Plug the STM32F7508-DK board to the PC

• In STM32CubeIDE, select Run > Run Configurations > STM32 C/C++ Application >
application_debug > Run.

RUN THE EXERCISE CODE (1/2)

104

• Open the Termite serial terminal.

• Reset the STM32F7508-DK board by pressing
the black button near to the screen.

• The application starts and waits for a button
event.

• LED1 is not blinking each 500ms as
expected.
The waitButton() native blocks the
execution of the other Java threads.

• When pressing the button once:

• The ID of the button event is printed
in the console

• The LED turns on

• When pressing again, the ID of the button
event is printed and the LED turns off

RUN THE EXERCISE CODE (2/2)

Traces when the application starts

Traces after 1 button press

105

• In this example, the execution of the waitButton() native method will block until the button is pressed.

• In other words, while Java_com_microej_training_gpio_example_GpioExercise_waitButton() has not
returned, no other Java thread can be scheduled.

• This is because the native function is called in the same RTOS/OS task as the Java application.

• This schematic explains what is going on:

GPIO EXERCISE: BLOCKING BEHAVIOR

M
a

in
 th

rea
d

 (1)
1

B
u

tto
n

 th
read

(2)

2

Waiting
for
a

button
event

MICROEJ VEE RTOS task

T
im

e

waitButton()

button_pin

MicroEJ Core
Engine

106

Hand’s On

Implement a blocking Java
native method without
blocking the execution of
other Java threads.

107

• Only the C code should be updated

• Here is a summary of what should be done in C:

• Signal the MicroEJ Core Engine to suspend the current thread when the native function returns.

• Remove the blocking operations from the native function so that it returns immediately.

• Implement a callback function that returns the index of the pressed button.

• Register this callback function in the MicroEJ Core Engine to call it when the Java thread is
resumed.

• Resume the Java thread when a button is pressed.

• Tips:

• Use the SNI functions defined in sni.h

• SNI documentation: https://docs.microej.com/en/latest/PlatformDeveloperGuide/sni.html#sni

HAND’S ON DIRECTIVES

https://docs.microej.com/en/latest/PlatformDeveloperGuide/sni.html#sni

108

G
reen

 th
read

 1
1

G
reen

 th
read

 2
2

GPIO
Pin

Interrupt
handler

MICROEJ VEE
RTOS task

Button IRQ

SNI_getCurrentJavaThreadID() : 2

SNI_suspendCurrentJavaThread(callback)

callback()

T
im

e

waitButton()

SNI_resumeJavaThreadWithArg(2, button_pin)

button_pin

1

THREAD SYNCHRONIZATION: CALLBACK PATTERN

MicroEJ Core
Engine

109

G
reen

 th
read

 1
1

G
reen

 th
read

 2
2

GPIO
Pin

Interrupt
handler

MICROEJ VEE
RTOS task

Button IRQ

SNI_getCurrentJavaThreadID() : 2

SNI_suspendCurrentJavaThread(callback)

callback()

T
im

e

waitButton()

SNI_resumeJavaThreadWithArg(2, button_pin)

button_pin

1

THREAD SYNCHRONIZATION: CALLBACK PATTERN

MicroEJ Core
Engine The native action may take some time:

• If so delegate the action.
• If not return read value.

110

THREAD SYNCHRONIZATION: CALLBACK PATTERN

G
reen

 th
read

 1
1

G
reen

 th
read

 2
2

GPIO
Pin

Interrupt
handler

MICROEJ VEE
RTOS task

Button IRQ

SNI_getCurrentJavaThreadID() : 2

callback()

T
im

e

waitButton()

SNI_resumeJavaThreadWithArg(2, button_pin)

button_pin

1

MicroEJ Core
Engine

SNI_suspendCurrentJavaThread(callback)

Will suspend the current thread at
the end of the current function.
The callback function is called
when the Java thread is resumed.

111

THREAD SYNCHRONIZATION: CALLBACK PATTERN

G
reen

 th
read

 1
1

G
reen

 th
read

 2
2

GPIO
Pin

Interrupt
handler

MICROEJ VEE
RTOS task

Button IRQ

SNI_getCurrentJavaThreadID() : 2

SNI_suspendCurrentJavaThread(callback)

callback()

T
im

e

waitButton()

button_pin

1

MicroEJ Core
Engine

SNI_resumeJavaThreadWithArg(2, button_pin)

When the native event occurs,
resume the Java thread.

112

THREAD SYNCHRONIZATION: CALLBACK PATTERN

G
reen

 th
read

 1
1

G
reen

 th
read

 2
2

GPIO
Pin

Interrupt
handler

MICROEJ VEE
RTOS task

Button IRQ

SNI_getCurrentJavaThreadID() : 2

SNI_suspendCurrentJavaThread(callback) T
im

e

waitButton()

SNI_resumeJavaThreadWithArg(2, button_pin)

1

MicroEJ Core
Engine

button_pin

callback is automatically called
after resume.
It returns the native result.

callback()

113

• The Java_com_microej_training_gpio_example_GpioExercise_waitButton() function will now
suspend the current Java thread.
It will also store the information required to resume it and register the callback function.

• The function SNI_suspendCurrentJavaThreadWithCallback() returns immediately. The current
thread is actually suspended when the native function returns.

• The value returned by the Java_com_microej_training_gpio_example_GpioExercise_waitButton()
doesn’t matter anymore. The callback function will be in charge of returning the value.

STEP 1: UPDATE THE C NATIVE FUNCTION

static int32_t java_thread_id;

jint Java_com_microej_training_gpio_example_GpioExercise_waitButton()
{
 // Initialize the GPIOs
 LLGPIO_initialize();

 java_thread_id = SNI_getCurrentJavaThreadID();
 SNI_suspendCurrentJavaThreadWithCallback(0, (SNI_callback)waitButton_callback, NULL);
 return SNI_IGNORED_RETURNED_VALUE; // Returned value not used
}

114

• The role of the button interrupt is now to resume the Java thread when a button event occurs.
Update it this way:

STEP 2: UPDATE THE BUTTON INTERRUPT FUNCTION

static volatile int32_t button_index;

void BUTTON_MANAGER_interrupt(void)
{
 uint32_t intStat = GPIO_PortGetInterruptStatus(GPIO, GPIO_PORT, kGPIO_InterruptA);
 if (intStat & (1UL << BUTTON_INTERRUPT_PIN))
 {
 GPIO_PortClearInterruptFlags(GPIO, GPIO_PORT, kGPIO_InterruptA,
 (1UL << BUTTON_INTERRUPT_PIN));

 button_index = (int32_t)BUTTON_INTERRUPT_PIN;
 SNI_resumeJavaThreadWithArg(java_thread_id, (void*)&button_index);
 }
}

115

• The callback function must have the same signature as the SNI native (same parameters and return
type): jint waitButton_callback()

• The callback function is automatically called by the Java thread when it is resumed.

• Use the SNI_getCallbackArgs() function to retrieve the arguments that was previously given to the
SNI_suspendCurrentJavaThreadWithCallback() or SNI_resumeJavaThreadWithArg() functions.

STEP 3: IMPLEMENT THE CALLBACK FUNCTION

static jint waitButton_callback(){
 int32_t *button_index_addr;
 SNI_getCallbackArgs(NULL, (void**)&button_index_addr);
 return (jint)*button_index_addr; // Actual value returned to Java
}

116

• Open the Termite serial terminal.

• Reset the STM32F7508-DK board by pressing
the black button near to the screen.

• The application starts and waits for a button
event.

• LED1 is now blinking each 500ms.

• When pressing the button once:

• The ID of the button event is printed
in the console

• When pressing again, the ID of the button
event is printed and the LED turns off

RUN THE UPDATED CODE

Traces when the application starts

Traces after 1 button press

117

Resources

118

• https://developer.microej.com/

• Examples, platforms, libraries, user guides, application notes…

• Javadocs (Java API)

• Addon tools

• https://docs.microej.com

• https://github.com/MICROEJ/

• Source code repository

• https://forum.microej.com/

• https://repository.microej.com/

• MICROEJ Central Repository (modules repository)

ONLINE RESOURCES

https://forum.microej.com/

119

• https://docs.microej.com/en/latest/ApplicationDeveloperGuide/index.html : Describes
MICROEJ usage for end developers

• https://docs.microej.com/en/latest/PlatformDeveloperGuide/index.html: Describes how
to interact with the platform and integrate MICROEJ to a board

• https://github.com/MICROEJ/Example-Standalone-Foundation-Libraries: Snippets of code
for foundation libraries (EDC, BON, Net, MicroUI…)

• https://github.com/MICROEJ/ExampleJava-Widget: Source code for using the widget
library

MAIN RESOURCES

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/index.html
https://docs.microej.com/en/latest/PlatformDeveloperGuide/index.html
https://github.com/MicroEJ/Example-Standalone-Foundation-Libraries
https://github.com/MicroEJ/ExampleJava-Widget

120

Shortcuts

MICROEJ SDK / Studio

121

• CTRL + Space

• Auto completion

• Probably the most useful one

• CTRL + D

• Delete row

• ALT + Up/Down Arrow

• Move the row (or the entire selection) up or down. Very useful when rearranging code

• CTRL+SHIFT+O

• Organize imports.

SHORTCUTS

122

• CTRL+SHIFT+T

• Open Type.

SHORTCUTS

123

• CTRL+SHIFT+R

• Open Resource (any file)

SHORTCUTS

124

• CTRL + O

• Open Outline (find method or field)

• Press CTRL + O again to show methods from superclasses

SHORTCUTS

125

• F2

• Display the Javadoc

• Hold CTRL + Click on class

• Go through the definition of class

• CTRL + T

• On a method: display implementations of the method in subclasses or definitions in
superclasses

• On a class: display class hierarchy (superclasses and subclasses)

• CRTL + 1

• Extract variable to

• Local variable

• Constant

SHORTCUTS

126

• CTRL + I

• Correct indentation

• ALT + Shift + R on a class / method / field

• Rename

• CTRL + F

• Search in file

• CTRL + H

• Search plugin of Eclipse

SHORTCUTS

127

IDE

Link the explorer
and the editor

128

IDE

Re-Run the last
Run configuration

129

IDE

Resolve all MMM
projects

130

IDE

Build selected
module

131

IDE

Change console view
- Ivy console
- Addon Processor
- C/C++ Build Console

132

THANK YOU
f o r y o u r a t t e n t i o n !

	Default Section
	Slide 1
	Slide 2

	Agenda
	Slide 3: agenda
	Slide 4: What you will learn
	Slide 5: Requirements
	Slide 6: Installing MICROEJ architecture
	Slide 7: Activating MICROEJ Architecture License
	Slide 8: Activating MICROEJ Architecture License
	Slide 9: Activating MICROEJ Architecture License

	Platform Concept
	Slide 10: VEE Port Concept
	Slide 11: VEE Port
	Slide 12: State of play
	Slide 13: VEE Port and Abstraction
	Slide 14: Purpose of abstraction

	VEE
	Slide 15: Virtual Execution Environment
	Slide 16: MICROEJ VEE
	Slide 17: MICROEJ VEE
	Slide 18: MICROEJ VEE – detailed view
	Slide 19: GUI Examples for $1 to $5 MCU

	Workbench
	Slide 20: Build Flow
	Slide 21: Overview
	Slide 22: MICROEJ Architecture
	Slide 23: MICROEJ VEE Port
	Slide 24: Build flow / VEE Port
	Slide 25: build flow / Firmware
	Slide 26: Build VEE Port
	Slide 27: Import vee port sources
	Slide 28: Build STM32F7508 VEE Port
	Slide 29: Application
	Slide 30: Application Creation
	Slide 31: build flow
	Slide 32: Application Creation
	Slide 33: build flow
	Slide 34: MICROEJ and 3rd Party IDE
	Slide 35: Run the Java Application on Device
	Slide 36: Run the Java Application on Device
	Slide 37: Run the Java Application on Device
	Slide 38: MicroEJ Core Engine Startup
	Slide 39: Application
	Slide 40: Library Dependency file
	Slide 41: Library Dependency file
	Slide 42: Run Configurations
	Slide 43: Run Configurations
	Slide 44: MICROEJ Application
	Slide 45: MICROEJ Application
	Slide 46: Run configuration
	Slide 47: Front Panel
	Slide 48: Front Panel
	Slide 49: Front Panel
	Slide 50: Front Panel
	Slide 51: Front Panel

	MICROEJ SDK Tools
	Slide 52: MICROEJ SDK
	Slide 53: Stack trace Reader
	Slide 54: Stack trace Reader
	Slide 55: Stack trace Reader
	Slide 56: Stack trace Reader
	Slide 57: Debugger
	Slide 58: Heap Dumper
	Slide 59: Heap Dumper
	Slide 60: Heap Dumper
	Slide 61: Memory Map Inspector
	Slide 62: Code Coverage
	Slide 63: Code Coverage
	Slide 64: Dump the States of the Core Engine
	Slide 65: LLMJVM Dump
	Slide 66: LLMJVM Dump Example

	SNI
	Slide 67: SNI
	Slide 68: Principle (1/2)
	Slide 69: principle (2/2)
	Slide 70: naming convention
	Slide 71: data types
	Slide 72: Implement a Java Native Method with SNI
	Slide 73: ADD the JAVA NATIVE METhOD
	Slide 74: Get the linker errors
	Slide 75: Implement the native method in the BSP
	Slide 76: Run the example on Device

	Foundation Libraries
	Slide 77: Foundation Library
	Slide 78: DEFINITION
	Slide 79: FOUNDATION LIBRARY EXAMPLE
	Slide 80: GPIO FOUNDATION LIBRARY
	Slide 81: Run the Foundation Library Example on Simulator
	Slide 82: mockup implementation
	Slide 83: mockup deployment
	Slide 84: run on the simulator
	Slide 85: Run the Foundation Library Example on Device
	Slide 86: RUN THE EXAMPLE ON DEVICE
	Slide 87: GET THE LINKER ERRORS
	Slide 88: RUN THE EXAMPLE ON DEVICE
	Slide 89: ABSTRACTION LAYER INTERFACE: LLAPI
	Slide 90: ABSTRACTION LAYER IMPLEMENTATION: LLIMPL
	Slide 91: Packaging and Tests
	Slide 92: PACKAGING AND TESTS
	Slide 93: Configure the Testsuite
	Slide 94: Launch MMM Build
	Slide 95: Tests Result
	Slide 96: Javadoc

	SNI
	Slide 97: SNI
	Slide 98: green thread architecture
	Slide 99: Thread Synchronization: blocking case
	Slide 100: GPIO EXERCISE Overview
	Slide 101: Run the GPIO Exercise code
	Slide 102: SETUP
	Slide 103: Run the Exercise code (1/2)
	Slide 104: Run the Exercise code (2/2)
	Slide 105: GPIO Exercise: Blocking behavior
	Slide 106: Hand’s On
	Slide 107: Hand’s on directives
	Slide 108: Thread Synchronization: callback pattern
	Slide 109: Thread Synchronization: callback pattern
	Slide 110: Thread Synchronization: callback pattern
	Slide 111: Thread Synchronization: callback pattern
	Slide 112: Thread Synchronization: callback pattern
	Slide 113: Step 1: Update the C Native Function
	Slide 114: Step 2: Update the Button Interrupt Function
	Slide 115: Step 3: Implement the Callback Function
	Slide 116: Run the updated code

	Resources
	Slide 117: Resources
	Slide 118: Online Resources
	Slide 119: Main Resources

	Shortcuts
	Slide 120: Shortcuts
	Slide 121: Shortcuts
	Slide 122: Shortcuts
	Slide 123: Shortcuts
	Slide 124: Shortcuts
	Slide 125: Shortcuts
	Slide 126: Shortcuts
	Slide 127: IDE
	Slide 128: IDE
	Slide 129: IDE
	Slide 130: IDE
	Slide 131: IDE
	Slide 132

