
1

Mastering
MICROEJ SDK

 Development Tools

© MicroEJ 2025

Accelerate your product
development using
MICROEJ SDK Tools

2

DISCLAIMER

All rights reserved. Information, technical data and tutorials contained in this document are proprietary under copyright law
of MicroEJ S.A. Without written permission from MicroEJ S.A., copying or sending parts of the document or the entire document
by any means to third parties is not permitted. Granted authorizations for using parts of the document or the entire document

do not mean MicroEJ S.A. gives public full access rights.

The information contained herein is not warranted to be error-free.

MicroEJ® and all relative logos are trademarks or registered trademarks of MicroEJ S.A. in France and other Countries.

Other trademarks are proprietary of their respective owners.
Java is Sun Microsystems’ trademark for a technology for developing application software and deploying it in cross-platform, networked environments. When it is used in this site without adding the “ ” symbol, it includes

implementations of the technology by companies other than Sun. Java , all Java-based marks and all related logos are trademarks or registered trademarks of Sun Microsystems Inc, in the United States and other Countries.

V3.0 Mar. 2025© MICROEJ 2025

3

• Goal:

o Provide an overview of the development tools provided to developers to debug an
application

o Illustrate the use of the development tools

• Development tools categories:

o Runtime & Post-Mortem Debugging Tools

o Memory Inspection Tools (debug memory corruption, leaks)

o Static Analysis Tools

o GUI Application Debugging Tools (bottlenecks identification, rendering issues)

• The following icons are used in the next slides:

o : tool only working on Simulator

o : tool only working on the Device

o No icon means that the tool is working on the Device and on the Simulator.
V3.0 Mar. 2025© MICROEJ 2025

OVERVIEW

4V3.0 Mar. 2025© MICROEJ 2025

DEVELOPMENT TOOLS OVERVIEW
TOOLS RUNTIME & POST-

MORTEM
MEMORY INSPECTION STATIC ANALYSIS TOOLS GUI DEBUGGING TOOLS

Core Engine VM Dump

Debug on Device

Debug on Simulator

Port Qualification Tool (PQT)

SystemView

Logging & Message Libraries

Code Coverage

Memory Map Analyzer

Heap Dumper / Analyzer

Heap Usage Monitoring

Core Engine MEMORY integrity check

SonarQube / Klocwork (Java/C)

Null Analysis

UI Flush Visualizer

UI MWT & Widget Debug Utilities

5

Hardware required:

• NXP i.MX RT1170 Evaluation Kit (EVKB) + micro-USB cable + RK055HDMIPI4MA0 display panel

• More information about the Evaluation Kit: NXP i.MX RT1170 User Manual

Environment Setup:

• Follow the NXP i.MX RT1170 Evaluation Kit Getting Started to setup your environment and
run a demo application on the Virtual Device and on the i.MX RT1170 Evaluation Kit.

• Note: the next slides are using IntelliJ IDEA with MicroEJ plugin for IntelliJ IDEA 1.1.0. This training
supports all other available IDEs (Android Studio, VS Code, …)

This training requires the Getting Started to be completed until the
Run an Application on the i.MX RT1170 Evaluation Kit section (included).

V3.0 Mar. 2025© MicroEJ 2025

PREREQUISITES

The path to the NXP i.MX RT1170 VEE Port sources
should be as short as possible and contain no
whitespace or non-ASCII character.

https://www.nxp.com/part/RK055HDMIPI4MA0
file:///C:/Users/acolleux/Downloads/MIMXRT1170EVKBHUG-1.pdf
https://docs.microej.com/en/latest/SDK6UserGuide/gettingStartedIMXRT1170.html#sdk-6-getting-started-imxrt1170

6

GET TRAINING RESOURCES

• Download and extract the training resources provided with this training, it should contain:

o example-java-widget/

o slide-container/

o fill_array_heap_corruption.c

o jdwp-server-1.0.4.jar

V3.0 Mar. 2025© MICROEJ 2025

ENVIRONMENT SETUP (1/4)

7

OPEN THE EXAMPLE-JAVA-WIDGET PROJECT

• Open IntelliJ IDEA.

• If no project is opened in your IDE yet,
click on Open.
Otherwise, go to File > Open.

• Browse to the VEE Port sources folder:
example-java-widget

• Click on OK.

• The project sources appear in the Projects view.

V3.0 Mar. 2025© MICROEJ 2025

ENVIRONMENT SETUP (2/4)

8

VEE PORT SELECTION

• Get the path to the NXP i.MX RT1170 VEE Port (e.g. C:\workspaces\training\nxpvee-mimxrt1170-
evk\nxpvee-mimxrt1170-evk)

• Add the path to the VEE Port in the settings.gradle.kts file of the example-java-widget project:

• In the build.gradle.kts file of the example-java-widget project, add the dependency to the VEE Port:

• Reload the Gradle project to see the NXP i.MXRT1170 VEE Port project in the IDE:

V3.0 Mar. 2025© MICROEJ 2025

ENVIRONMENT SETUP (3/4)

rootProject.name = “widget-examples"
includeBuild("C:\\workspaces\\training\\nxpvee-mimxrt1170-evk\\nxpvee-mimxrt1170-evk")

dependencies {
 implementation("ej.api:edc:1.3.5")

 //Uncomment the microejVee dependency to set the VEE Port or Kernel to use
 microejVee("com.nxp.vee.mimxrt1170:vee-port:3.0.0")
}

9

ADD CUSTOM NATIVE FUNCTION

A native function needs to be implemented in the BSP to run the sample on the device:

• Copy/Paste fill_array_heap_corruption.c in the BSP project (e.g. copy it in nxpvee-mimxrt1170-evk
/bsp/vee/src/main).

• Add it to CMakeLists.txt (nxpvee-mimxrt1170-evk/bsp/vee/scripts/armgcc/CMakeLists.txt):

V3.0 Mar. 2025© MICROEJ 2025

ENVIRONMENT SETUP (4/4)

10

Run the sample on the Simulator and on the Device to make sure that the setup is correct:

V3.0 Mar. 2025© MICROEJ 2025

CHECK THE ENVIRONMENT SETUP

• Go to the Gradle tasks view

• Run the runOnSimulator task:

• Run the runOnDevice task. Make sure the hardware is
properly setup (cf. Prerequisites)

11

Example-Java-Widget
Overview

Introduction to the
Example-Java-Widget
project

V3.0 Mar. 2025© MICROEJ 2025

12

This project is a fork of
Example Widget 8.1.0, bugs have been
explicitly added.

The next slides will present those bugs
and explain how to fix them.

V3.0 Mar. 2025© MICROEJ 2025

GUI OVERVIEW

13

The application is composed of the following packages:

• Animated image: provides a page with an animated image widget
producing a GUI freeze

• Carousel: typical page without bugs

• Circular Dotted Progress: provides a page that produces a memory
leak

• Circular Slider: provides a page having a rendering issue

• Common: provides a navigation framework and common resources
used by the application

• Main: main page of the application

• Radio Button: provides a page generating a heap memory corruption

Each package contains:

• A Page class, describing the layout of the page

• A Widget package containing the widgets of the page

V3.0 Mar. 2025© MICROEJ 2025

PROJECT STRUCTURE

14

Debug the
BSP C Code

Start a Debug Session in VS
Code

V3.0 Mar. 2025© MICROEJ 2025

15

This section describes how to debug C code running on the NXP i.MXRT1170 using Visual Studio
Code and GDB.

This section is not MicroEJ specific.

A GDB debugger will be required in the next slides.
You can skip those slides if you already have a GDB client working to debug the NXP
i.MXRT1170.

Requirements:

• Install Visual Studio Code (https://code.visualstudio.com/)

• In VS Code, install the MCUXpresso extension for VS Code:

V3.0 Mar. 2025© MICROEJ 2025

OVERVIEW

https://code.visualstudio.com/

16

• Enable the DEBUG mode by setting RELEASE=0 in nxpvee-mimxrt1170-
evk\bsp\vee\scripts\set_project_env.bat:

V3.0 Mar. 2025© MICROEJ 2025

ENABLE THE DEBUG MODE

17

SELECT THE DEBUG BUILD MODE

VS Code allows to build, flash and debug embedded projects.

Open the NXP i.MX RT1170 VEE Port project in VS Code:

• In VS Code, go to File > Open Folder...

• Browse to the VEE Port sources folder:
nxpvee-mimxrt1170-evk

• Click on OK.

Once the project is opened:

• Open the MCUXpresso plugin view.

• Open the Build Configurations section in the PROJECTS view.

• Set flexspi_nor_sdram_debug_evkb as the default build
configuration.

V3.0 Mar. 2025© MICROEJ 2025

BSP DEBUGGING IN VS CODE (1/2)

19

Make sure that the example-java-widget project is running on the device.

Open the NXP i.MX RT1170 VEE Port project in VS Code:

• In VS Code, go to File > Open Folder...

• Browse to the VEE Port sources folder:
nxpvee-mimxrt1170-evk

• Click on OK.

Once the project is opened:

• Open the MCUXpresso plugin view.

• Right-click on the project.

• Select Debug (as the application is
already running on the device).

V3.0 Mar. 2025© MICROEJ 2025

BSP DEBUGGING IN VS CODE (2/2)

20

The debug view opens and the application runs on the device:

V3.0 Mar. 2025© MICROEJ 2025

DEBUG VIEW IN VS CODE

A control bar is
available to

start/stop/pause
the debugging

The Debug Console allows to
type GDB commands

Refer to VS Code
documentation for more

information.

https://code.visualstudio.com/docs/cpp/cpp-debug#_gdb-lldb-and-lldbmi-commands-gdblldb
https://code.visualstudio.com/docs/cpp/cpp-debug#_gdb-lldb-and-lldbmi-commands-gdblldb

22

In case of connection issue to the target, reset the debug
probe selection via the MCUXpresso plugin:

• Select the MCUXpresso plugin in the left banner.

• Right-click on the project name and select Reset Probe
Selection.

• Start the debug again.

If the issue persists, unplug/plug the USB cable and turn
OFF/ON the device:

V3.0 Mar. 2025© MICROEJ 2025

TROUBLESHOOTING

23

Runtime &
Post-Mortem

Debugging Tools

Debug the Application code

V3.0 Mar. 2025© MICROEJ 2025

24

• Tools:
o Core Engine VM Dump

o Debug on Device

o Debug on Simulator

o Port Qualification Tools (qualify a VEE Port)

o Event Tracing & Logging*

o Code Coverage*

• Example:

o Debug a deadlock in an application in the
Simulator and on Device

V3.0 Mar. 2025© MICROEJ 2025

RUNTIME & POST-MORTEM DEBUGGING TOOLS

GUI freeze when entering a page
* Tool not introduced in this presentation, visit docs.microej.com for more information.

https://docs.microej.com/en/latest/VEEPortingGuide/coreEngine.html#vm-dump
https://docs.microej.com/en/latest/SDKUserGuide/debug.html#debug-on-device
https://docs.microej.com/en/latest/SDKUserGuide/debug.html#debug-on-simulator
https://docs.microej.com/en/latest/VEEPortingGuide/veePortQualification.html
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/codeInstrumentationForLogging.html
https://docs.microej.com/en/latest/SDKUserGuide/codeCoverageAnalyzer.html
https://docs.microej.com/en/latest/

25

REPRODUCE THE ISSUE

• Run the example-java-widget project the on
Device:

• Enter the Animated Image page.

The GUI should freeze after the screen transition:

V3.0 Mar. 2025© MICROEJ 2025

DEBUG A DEADLOCK IN AN APPLICATION

26

• Core Engine VM Dump is a diagnose tool to investigate unexpected behavior occurring on
the target.

• When?
o Call the LLMJVM_dump() method in the Core Engine task at runtime to diagnose unexpected

behavior (ex: UI freeze).

o Call the LLMJVM_dump() as a last resort in a fault handler to get a snapshot of the Core Engine, to
check if the issue comes from a LLAPI or the underlying C code.

• What?
o Prints the state of the MicroEJ Core Engine to the standard output stream.

o For each Java thread, the Java stack trace, the name, the state and the priority are printed.

• Requirements:
o A way to read stdout (usually UART).

V3.0 Mar. 2025© MICROEJ 2025

CORE ENGINE VM DUMP (1/4)

https://docs.microej.com/en/latest/PlatformDeveloperGuide/platformConcepts.html#principle

27

• Trigger the LLMJVM Dump from the
debugger (see next slide):

HOW-TO?

• Example of LLMJVM Dump triggered from a
fault handler:

V3.0 Mar. 2025© MICROEJ 2025

CORE ENGINE VM DUMP (2/4)

28

TRIGGER THE LLMJVM DUMP FROM THE DEBUGGER (VS CODE / GDB)

• Start a serial terminal to get the application execution traces

• Start the debug session in VS Code

• Click the “Play” button to start the application

• Enter the Animated Image page

• Click the “Pause” button

• Run the following command in the Debug Console:

• Click the “Play” button, the VM dump can be see in the serial terminal
V3.0 Mar. 2025© MICROEJ 2025

CORE ENGINE VM DUMP (3/4)

-exec set $pc = __icetea__virtual__com_is2t_microjvm_mowana_VMTask___dump

29

=================================== VM Dump ====================================
Java threads count: 3
Peak java threads count: 3
Total created java threads: 4
Last executed native function: 0x9014DDFB
Last executed external hook function: 0x00000000
State: idle, not notified
--
Java Thread[1794]
name="Thread1" prio=5 state=MONITOR_QUEUED max_java_stack=492 current_java_stack=183
Locked on: java/lang/Object@0xC0081C4C (owned by thread[1281])

java/lang/Thread@0xC0082150:
 at com/microej/demo/widget/animatedimage/widget/AnimatedImage$1.run(AnimatedImage.java:190)
 Object References:
 - com/microej/demo/widget/animatedimage/widget/AnimatedImage$1@0xC00821B0
 - java/lang/Object@0xC0081C48
 - java/lang/Object@0xC0081C4C

--
Java Thread[1281]
name="UIPump" prio=5 state=MONITOR_QUEUED max_java_stack=1296 current_java_stack=850
Locked on: java/lang/Object@0xC0081C48 (owned by thread[1794])

java/lang/Thread@0xC008047C:
 at com/microej/demo/widget/animatedimage/widget/AnimatedImage.renderContent(AnimatedImage.java:233)
 Object References:
 - com/microej/demo/widget/animatedimage/widget/AnimatedImage@0xC0081C2C
 - ej/microui/display/GraphicsContext@0xC008042C
 - java/lang/Object@0xC0081C4C
 - java/lang/Object@0xC0081C48

EXAMPLE OF DUMP

• Use the Stack Trace Reader to decode
the stack trace

• A dead lock is identified in the stack
trace, lock between threads “Thread1”
and “UI Pump”

• The UI Tread (UI Pump) is locked
→ GUI Freeze

V3.0 Mar. 2025© MICROEJ 2025

CORE ENGINE VM DUMP (4/4)

https://docs.microej.com/en/latest/SDKUserGuide/stackTraceReader.html

30

DEBUG ON SIMULATOR

• Use of JDWP (Java Debug Wire Protocol) to use
Eclipse debugger

• Use mocks to simulate and debug corner cases
of the target

• Debugger features:

o Breakpoints

o Step-by-step execution

o Variables and fields value monitoring

o Thread execution stacks list

DEBUG ON DEVICE

• Use of JDWP (Java Debug Wire Protocol) to use
Eclipse debugger

• Need to setup the VEE Debugger Proxy

• Postmortem debug from a snapshot of the
memory

• Debugger features:

o Breakpoints

o Step-by-step execution (planned)

o Variables and fields value monitoring

o Thread execution stacks list

V3.0 Mar. 2025© MICROEJ 2025

SIMULATOR & DEVICE DEBUGGER

Note: import the Foundation Library Sources to the debugger to get the exact source code which
is executed.

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/debuggerProxy.html
https://docs.microej.com/en/latest/SDKUserGuide/debug.html#foundation-library-sources

31

Debug on Device

Debug the Application Code
on the Device

V3.0 Mar. 2025© MICROEJ 2025

32

The VEE Debugger Proxy is an implementation of the Java Debug Wire protocol (JDWP) for
debugging Applications executed by MICROEJ VEE.

• VEE Debugger Proxy principle:

• Available since Architecture 8.1

V3.0 Mar. 2025© MICROEJ 2025

VEE DEBUGGER PROXY PRINCIPLE

• No VEE Port update required

• Steps:

1. Generate a VEE memory dump script for the
target / toolchain

2. Run the application Executable on target

3. Dump the memory of the running Executable
using the C Debugger using the VEE memory
dump script

4. Run the VEE Debugger Proxy in a Command
Prompt

5. On the MicroEJ Simulator, run a Remote Java
Application Debugging session

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/debuggerProxy.html

33

• The VEE Debugger Proxy tool jdwp-server-1.0.4
is required to generate the VEE memory dump
script.
The tool is provided in the training package.

• The example-java-widget project provides the
generateDumpScript task that allows the user
to generate the VEE memory dump script:

This task is declared in the build.gradle.kts, it is
based on the command line provided in the VEE
Debugger Proxy documentation:

Note that this task is configured to generate a GDB
dump script.

V3.0 Mar. 2025© MICROEJ 2025

GENERATE THE VEE MEMORY DUMP SCRIPT (1/2)

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/debuggerProxy.html
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/debuggerProxy.html

34

Run the generateDumpScript task:

• The application is built and flashed on the device,

• The dump script is generated in the build/generated folder:

V3.0 Mar. 2025© MICROEJ 2025

GENERATE THE VEE MEMORY DUMP SCRIPT (2/2)

35

• Once the vee-memory-dump.gdb file is generated, open VS Code.

• Attach to the device in VS Code (cf. Debug the BSP C Code).

V3.0 Mar. 2025© MICROEJ 2025

DUMP THE DEVICE MEMORY (1/3)

36

• To make sure that the Core engine is not running when the dump is performed, it is
recommended to create a breakpoint at a specific safe point (Core Engine hooks or native
function).

• Otherwise, make sure that the Core engine is not running when pausing the debugger (see
Call Stack section in VS Code):

V3.0 Mar. 2025© MICROEJ 2025

DUMP THE DEVICE MEMORY (2/3)

Core Engine
is running

Core Engine is
NOT running

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/debuggerProxy.html#with-gnu-debugger-gdb

37

3. Heap dumps are generated in the
output folder:

Note: the output folder is specified
when generating the vee-memory-
dump.gdb script.

In VS Code, run the vee-memory-dump.gdb script file to dump
the memory:

1. Pause the debugger:

2. Run the following command in the Debug Console view:

V3.0 Mar. 2025

DUMP THE DEVICE MEMORY (3/3)

-exec source C:\[YOUR_PATH]\vee-memory-dump.gdb

© MICROEJ 2025

38

The example-java-widget project provides the
generateDumpScript task that allows the user to
run the VEE debugger proxy:

This task is declared in the build.gradle.kts, it is
based on the command line provided in the VEE
Debugger Proxy documentation:

The tool takes the dumped .hex files as input.

V3.0 Mar. 2025© MICROEJ 2025

RUN THE VEE DEBUGGER PROXY (1/2)

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/debuggerProxy.html
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/debuggerProxy.html

39

Run the runVeeDebuggerProxy task:

• The tool is launched in the console:

V3.0 Mar. 2025© MICROEJ 2025

RUN THE VEE DEBUGGER PROXY (2/2)

40

In IntelliJ IDEA:

• Click on Run > Edit Configurations….

• Click on + button (Add New
Configuration).

• Select Remote JVM Debug.

• Click on the New launch configuration
button.

• Give a name to the launcher in the Name
field.

• Set the debug host to localhost and port
to 8000.

• Click on the Debug button.

V3.0 Mar. 2025© MICROEJ 2025

RUN A REMOTE JAVA APPLICATION DEBUG SESSION

41

The following debug state can be seen when pausing the debugger and the threads:

V3.0 Mar. 2025© MICROEJ 2025

GET THE POST-MORTEM DEBUGGING STATE (1/2)

42

The 2nd Thread state can also be seen:

V3.0 Mar. 2025© MICROEJ 2025

GET THE POST-MORTEM DEBUGGING STATE (2/2)

43

Debug on Simulator

Debug the Application Code
on the Simulator

V3.0 Mar. 2025© MICROEJ 2025

44

• Execute the runOnSimulator Gradle task with the following options:

• The console opens with the following message, click on Attach debugger to start the debug session:

V3.0 Mar. 2025© MICROEJ 2025

DEBUG ON THE SIMULATOR (1/2)

-P"debug.mode"=true -P"debug.port"=8000

45

• Pause the Debugger once the freeze occurs.

• The same state that the debug on device view can be seen

V3.0 Mar. 2025

DEBUG ON THE SIMULATOR (2/2)

© MICROEJ 2025

46

The interlock is caused by the synchronization of resource1 and resource2 objects on 2 different
Threads:

• The renderContent method is called in the UIPump thread context

• Note: this method is called at every animation frame of the animated image

• The onShown method creates a TimerTask that is executed in the context of the Timer thread

• Note: this method is called once, when the Animated Page is shown

Fix: this code has been written for training purpose,
remove it to unlock the application.

V3.0 Mar. 2025© MICROEJ 2025

ISSUE ANALYSIS & FIX

49

Port Qualification Tool

V3.0 Mar. 2025© MICROEJ 2025

50

• The Port Qualification Tool (PQT) project provides the tools
required to validate each component of a MicroEJ VEE Port.

• After porting or adding a Foundation Library to a MicroEJ VEE
Port, it is necessary to validate its integration.

• For each Low Level API, an Abstraction Layer implementation is
required. The validation of the Abstraction Layer implementation
is performed by running tests at two-levels:

o In C, by calling Low Level APIs (usually manually).

o In Java, by calling Foundation Library APIs (usually automatically
using Platform Test Suite).

• PQT tests can be extended by the developer to support custom
Foundation Libraries.

• Please refer to the Platform Qualification documentation for more
information.

V3.0 Mar. 2025© MICROEJ 2025

PORT QUALIFICATION TOOL (1/2)

https://docs.microej.com/en/latest/glossary.html#term-Foundation-Library
https://docs.microej.com/en/latest/PlatformDeveloperGuide/platformQualification.html#platform-testsuite
https://docs.microej.com/en/latest/PlatformDeveloperGuide/platformQualification.html#platform-qualification

51

• PQT tests are provided with a Test Suite
project, to run tests automatically (CI or
locally)
→ Agility in the development flow

• A Test Suite contains one or more tests.
For each test, the Test Suite Engine will:

o Build a MicroEJ Firmware for the test.

o Program and Run the MicroEJ
Firmware onto the device.

o Retrieve the execution traces.

o Analyze the traces to determine
whether the test has PASSED or
FAILED.

o Append the result to the Test Report.

o Repeat until all tests of the Test Suite
have been executed.

V3.0 Mar. 2025© MICROEJ 2025

PORT QUALIFICATION TOOL (2/2)

VEE Port Testsuite on Device Overview

52

1. PQT: validate the vertical integration: Foundation Library > Abstraction Layer > C Library >
Driver

2. Event Tracing & Logging: instrument the application with debug logs

3. Core Engine VM Dump: diagnosis tool to display the state of the MicroEJ Runtime and the
MicroEJ threads on target (name, priority, stack trace, etc.)

4. Debugger (on device & simulator): analysis of an applicative issue

V3.0 Mar. 2025© MICROEJ 2025

KEY TAKEWAYS

53

Memory Inspection
Tools

V3.0 Mar. 2025© MICROEJ 2025

54

• Tools:
o Memory Map Analyzer*

o Heap Dumper & Heap Analyzer

o Core Engine Memory integrity check

o Heap Usage Monitoring Tool*

• Examples:

o Investigate memory leaks

o Detect memory corruption of the
Core Engine heap

V3.0 Mar. 2025© MICROEJ 2025

MEMORY INSPECTION TOOLS

Out Of Memory exception in a GUI
application

* Tool not introduced in this presentation, visit docs.microej.com for more information.

https://docs.microej.com/en/latest/SDK6UserGuide/memoryMapAnalyzer.html
https://docs.microej.com/en/latest/SDKUserGuide/heapAnalyzer.html
https://docs.microej.com/en/latest/VEEPortingGuide/coreEngine.html#check-internal-structure-integrity
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/heapUsageMonitoring.html
https://docs.microej.com/en/latest/

55

PRINCIPLE

When the Executable of an Application is built, a
Memory Map file is generated:

This file can be visualized with the Memory Map
Analyzer, an Eclipse IDE plugin. It displays the
memory consumption of different features in the
RAM and ROM.

USAGE

.map files can be opened using the Memory Map Analyzer plugin.
Make sure the Eclipse IDE is installed with the required plugin,
then launch it.

• In Eclipse IDE, click on File > Open File… to open the .map file:

Note: it does not include the memory usage of the BSP project.
V2.1 Feb. 2025© MicroEJ 2025

MEMORY MAP ANALYZER

https://docs.microej.com/en/latest/SDK6UserGuide/tools.html#sdk6-microejtools

56

• Heap Dumper is a tool that takes a snapshot of the heap.
Generated files (.heap extension) are available in the application output folder.

• Heap Analyzer is a tool that allows to inspect the heap dumps.
It provides the following features:

o Memory leaks detection

o Objects instances browse

o Heap usage optimization (using immortal or immutable objects)

o Comparison between Heap Dumps

• To generate .heap dump files, System.gc() must be called explicitly in the application code.

• .heap dump files can be generated in simulation and also dumped from the device.

V3.0 Mar. 2025© MICROEJ 2025

HEAP DUMPER & HEAP ANALYZER (1/8)

57

USAGE

Heap Dumper is a tool that allows to get a snapshot of the
heap of an Application running on the Simulator or on a
device.

To run the Heap Dumper on Simulator (IntelliJ IDEA /
Android Studio):

• Right-Click on the runOnSimulator task.

• Click on Modify Run Configuration...

• Add the following option:

• Click on Run.

Or use this command line:

V3.0 Mar. 2025© MICROEJ 2025

HEAP DUMPER & HEAP ANALYZER (2/8)

-D"microej.option.s3.inspect.heap=true"

.\gradlew.bat runOnSimulator
-D"microej.option.s3.inspect.heap=true"

Run Configuration options

58

REPRODUCE THE ISSUE

• Once the Simulator is started, enter / leave the
Circular Dotted Progress page
~10 times

• Get the error trace in the console:

• Close the Simulator.

• Heap Dumps are generated in the
build/output/<fqnMainClass>/heapDump/ folder of the project, where
<fqnMainClass> is the Fully Qualified Name of the Application Main class.

V3.0 Mar. 2025© MICROEJ 2025

HEAP DUMPER & HEAP ANALYZER (3/8)

Generated Heap
Dump files

59

IMPORT THE HEAP DUMPS

Heap Dumps can be opened using the Heap Analyzer plug-in. Make sure the Eclipse IDE is installed with
the required plugin, then launch it.

In Eclipse IDE, create a new empty Project:

• Go to File > New > Project…

• Select General > Project.

• Give it a name and click Finish.

• Copy paste the generated Heap Dumps into this project:

V3.0 Mar. 2025© MICROEJ 2025

HEAP DUMPER & HEAP ANALYZER (4/8)

https://docs.microej.com/en/latest/SDK6UserGuide/tools.html#sdk6-microejtools
https://docs.microej.com/en/latest/SDK6UserGuide/tools.html#sdk6-microejtools

60

PROGRESSIVE HEAP USAGE ANALYSIS

The progressive heap usage tool allows to see the number
of instances over time.
To use the tool:

• Select the last .heap file (e.g. heap-5.heap)

• Right-click on it and select
Heap Analyzer > Show progressive heap usage

The following view opens:

In the Threads tab, we can clearly notice that the memory
leak is coming from the UIThread:

Browsing the types, we notice that the instances of some
types are also growing (e.g. TimerTaskList):

Next step: compare 2 consecutive heap dumps focusing
the types that are growing continuously.

V3.0 Mar. 2025© MICROEJ 2025

HEAP DUMPER & HEAP ANALYZER (5/8)

61

COMPARE THE HEAP DUMPS

• Right-Click on 2 consecutive .heap files.
Preferably the ones generated just before the Out Of Memory error.

• Click on Compare With → Each Other.

• The Heap Viewer opens, select the following configuration:

V3.0 Mar. 2025© MICROEJ 2025

HEAP DUMPER & HEAP ANALYZER (6/8)

62

• Heap Compare between .heap-3 and .heap-4:

Guidelines:

• Lots of new objects have been
created (691 new instances)

• Use the compare by content
option to discard objects that
moved but have the same content

• Look for new objects that can have
an impact (Thread, Timer, Page,
Widget, StyleSheet)

→ knowledge of the application
required, need to understand the
objects hierarchy

• Once an object has been picked,
look its parent in the Instance
Browser

V3.0 Mar. 2025© MICROEJ 2025

HEAP DUMPER & HEAP ANALYZER (7/8)

New Timer Instance referenced from
AnimatedCircularDottedProgress

class

63

• New Timer instance created each time the
CircularDottedProgressPage is shown:

→ Memory leak is due to the useless Timer
instances keeping a reference on the widget
AnimatedCircularDottedProgress
Also, the TimerTask is never canceled

ROOT CAUSE ANALYSIS FIX

• Retrieve a global Timer instance (defined at
application startup)

• Cancel the TimerTask once the
CircularDottedProgressPage is hidden

V3.0 Mar. 2025© MICROEJ 2025

HEAP DUMPER & HEAP ANALYZER (8/8)

@Override
protected void onShown() {
 System.gc();
 this.startTime = Util.platformTimeMillis();
 final AnimatedCircularDottedProgress progress = this;
 Timer timer = ServiceFactory.getService(Timer.class, Timer.class);
 this.task = new TimerTask() {

 @Override
 public void run() {
 progress.tick();
 }
 };
 timer.schedule(this.task, 0, 100);
}

@Override
protected void onHidden(){
 if(this.task != null){
 this.task.cancel();
 }
 this.task = null;
}

64

• The LLMJVM_checkIntegrity API checks the internal memory structure integrity of the Core Engine
with the LLMJVM_checkIntegrity API to detect memory corruptions in native functions.

• This feature is for Applications deployed on hardware devices only:

o If an integrity error is detected, the LLMJVM_on_CheckIntegrity_error hook is called and this
method returns 0.

o If no integrity error is detected, a non-zero checksum is returned.

• Note: this function affects performance and should only be used for debug purpose.

V3.0 Mar. 2025© MICROEJ 2025

CORE ENGINE MEMORY INTEGRITY CHECK (1/3)

https://docs.microej.com/en/latest/PlatformDeveloperGuide/coreEngine.html#core-engine-check-integrity

65

REPRODUCE THE ISSUE

• Run the example-java-widget application on the device

• Enter the Radio Button page, click on one of the buttons

• The GUI should freeze, the Heap is corrupted

• Run the BSP Debug, the execution is stuck in a while loop because the CRC check of the VEE Heap failed:

V3.0 Mar. 2025© MICROEJ 2025

CORE ENGINE MEMORY INTEGRITY CHECK (2/3)

66

ROOT CAUSE ANALYSIS

• The fillArrayDo native function writes outside
the array memory area:

FIX

• Fix the implementation of fillArrayDo.

V3.0 Mar. 2025© MICROEJ 2025

CORE ENGINE MEMORY INTEGRITY CHECK (3/3)

void fillArrayDo(uint8_t * array, jint length){
 *(array-=2)=1; // Write outside of the array
}

void Java_com_microej_demo_widget_radiobutton_widget_RadioButton_fillArray(uint8_t * array, jint length){

 int32_t crcBefore = LLMJVM_checkIntegrity();
 fillArrayDo(array, length);
 int32_t crcAfter = LLMJVM_checkIntegrity();
 if(crcBefore != crcAfter){
 // Corrupted MicroJVM virtual machine internal structures
 while(1);
 }
}

67

• Heap Dumper:

• Generates heap dumps (.heap file) on System.gc() execution

• Heap Analyzer features:

• Compare: compares two heap dumps, showing which objects were created, or garbage
collected, or have changed values
→ useful for memory leaks detection

• Heap Viewer: shows which instances are in the heap, when they were created, and attempts to
identify problematic areas
→ useful for memory optimization

• Core Engine Memory Integrity Check: detect memory corruptions in native functions.

• Heap Usage Monitoring Tool: estimate the heap requirements of an application.

V3.0 Mar. 2025© MICROEJ 2025

KEY TAKEWAYS

68

Identify & Debug
Performance

Bottlenecks

Study done on a
UI Application

V3.0 Mar. 2025© MICROEJ 2025

69

Tools:

• Flush Visualizer

• Refresh Strategy Highlighting

• SystemView

• MicroUI Event Buffer Dump

Example:

• Identify performance bottlenecks that
prevents smooth slide animation

The next slides are using IntelliJ IDEA as
IDE.

Note: For UI2 and former versions, please
refer to MicroUI and multithreading for a
description of the threading model.

V3.0 Mar. 2025© MICROEJ 2025

IDENTIFYING & DEBUGGING BOTTLENECKS

Slide animation between 2 pages

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Simulation/flush-visualizer.html
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Simulation/refresh-strategy-highlighting.html
https://docs.microej.com/en/latest/VEEPortingGuide/systemView.html
https://docs.microej.com/en/latest/VEEPortingGuide/uiInput.html#event-buffer
https://forum.microej.com/t/gui-microui-and-multithreading/652

70

Flush Visualizer

Identify & Debug Bottlenecks on the
Simulator using the Flush Visualizer
tool

V3.0 Mar. 2025© MICROEJ 2025

71

Building smooth and visually appealing UI applications requires a
keen focus on performance. To achieve efficient UI rendering,
minimizing unnecessary work that consumes valuable CPU time
is essential.

The Flush Visualizer is a tool designed to investigate potential
performance bottlenecks in UI applications running on the
Simulator. The Flush Visualizer provides the following
information:

• A timeline with a step for each flush.

• A screenshot of what is shown on the display at flush time.

• The list of what is done before this flush (and after the previous
one) organized as a tree.

• A node of the tree can be either a region (the display or a clip)
or a drawing operation.

For more information, refer to the
Flush Visualizer documentation.

V3.0 Mar. 2025© MICROEJ 2025

PRESENTATION

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Simulation/flush-visualizer.html

72

Requirement (already fulfilled by NXP i.MXRT1170 VEE Port):

• VEE Port using UI Pack 14.0.0 or later.

• Frontpanel using the Display widget module version 4.+.

Open the slide-container example provided in the training
package.

Add the dependency to the VEE Port in the
slide-container/build.gradle.kts file.

To enable the Flush Visualizer on Simulator:

• Set the ej.fp.display.flushVisualizer to true in the
application options (configuration/common.properties)

• Click on Run.

V3.0 Mar. 2025© MICROEJ 2025

ENABLE THE FLUSH VISUALIZER

Application options of the
slide-container sample

73

Click on the Show next button, the Flush Visualizer displays a message in the Console:

A value of 100% indicates that the area drawn is equivalent to the surface of the region.
A value of 200% indicates that the area drawn is equivalent to twice the surface of the region.
A perfect application has 100% of its root region drawn but its very unlikely for an application that draws
anything else than a rectangle or an image.
A total area drawn between 100% to 200% is the norm in practice because widgets often overlap.

However, if the total area drawn is bigger than 200%, that means that the total surface of the region was
drawn more than twice. Probably meaning that a lot of drawings are done above others.

→ Next steps are about Identifying those drawings to reduce number of drawings done (or their surface).

V3.0 Mar. 2025© MICROEJ 2025

REPRODUCE THE ISSUE

74

The Flush Visualizer report is accessible in the project output
folder. It can be visualized in a web browser:

The report can also be opened clicking this button on the
Front Panel:

V3.0 Mar. 2025© MICROEJ 2025

FLUSH ANALYZER REPORT

75

Open the report and move the slider to the flush frame
corresponding to the 401% of drawings (e.g. frame 242):

The report is available at the bottom of the page.

You should observe the report displayed beside.

The following information are provided:

• The operations before a flush are structured as a tree,
where nodes represent either:
 a region (display or clip)
 a drawing operation.

• Each region has defined bounds, can contain other nodes,
and displays the percentage of its parent region it covers.

• Some drawings compute their coverage percentage

• Each region provides a summary of the total percentage
covered recursively.

V3.0 Mar. 2025© MICROEJ 2025

REPORT ANALYSIS (1/2)

1

3

1

4

2

5

2

5

3

4

76

SLIDE-CONTAINER PAGE BREAKDOWN

V3.0 Mar. 2025© MICROEJ 2025

REPORT ANALYSIS (2/2)

1

2

3

4

5

5

2

4

1

3

77

Taking a look at the report, we notice that the page is
actually rendered 2 times, exactly the same way:

V3.0 Mar. 2025© MICROEJ 2025

ROOT CAUSE ANALYSIS

public void tick(int value, boolean finished) {
 // Move the 2 pages
 updatePosition(value, leftChild, rightChild);
 if (finished) {
 // Refresh on the newly visible child.
 restore();
 }
}

1st

drawing
of the page

2nd

drawing
of the page

Taking a look at the code, we notice that the
page is fully redrawn when the transition
animation is over (SlideContainer class):

1st drawing of the page
updatePosition()

2nd drawing of the page
restore()

78

Run the updatePosition() code only when the animation is running:

V3.0 Mar. 2025© MICROEJ 2025

FIX PROPOSAL

public void tick(int value, boolean finished) {
 if (finished) {
 // Refresh on the newly visible child.
 restore();
 }else{
 // Move the 2 pages
 updatePosition(value, leftChild, rightChild);
 }
}

Next step: investigate why the area drawn is still above 200% (not part of this training)

79

Refresh Strategy
Highlighting

Identify & Debug Bottlenecks on
the Simulator using the Refresh
Strategy Highlighting

V3.0 Mar. 2025© MICROEJ 2025

80

This tool is complementary to the Flush Visualizer tool.

A buffer refresh strategy is responsible for making sure that what is shown on the display
contains all the drawings—the ones done since the last flush and the past.

To achieve that, it detects the drawn regions and refreshes the necessary data in the back
buffer.

This information can also be used to understand what happens for each frame in terms of
drawings and refreshes. It may be beneficial to identify performance issues.

The drawn and restored regions can be very different depending on the selected strategy and
the associated options. See Buffer Refresh Strategy for more information about the different
strategies and their behavior.

See Refresh Strategy Highlighting documentation for more information about this tool.

V3.0 Mar. 2025© MICROEJ 2025

REFRESH STRATEGY HIGHLIGHTING

https://docs.microej.com/en/latest/VEEPortingGuide/uiBRS.html#section-brs
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Simulation/refresh-strategy-highlighting.html

81

The following highlights can be enabled:

• Drawn Region(s)

• Restored Region(s)

• Dirty Region(s)

Enable the highlights in the slide-container example:

• Open the configuration/common.properties file

• Add the following properties, one per highlight type:

• Save common.properties

• Run the application on Simulator

• Highlights are displayed in the Simulator. They can also be
visualized in the Flush Visualizer report.

V3.0 Mar. 2025© MICROEJ 2025

ENABLE THE REFRESH STRATEGY HIGHLIGHTING

ej.fp.brs.drawnColor=0xff00ff00 // GREEN color
ej.fp.brs.restoredColor=0xffff00ff // PURPLE color
ej.fp.brs.dirtyColor=0x200000ff // BLUE color

82

The render area of the CircularIndeterminateProgress widget (green
area in DOCK LEFT) is taking all the height of the screen.

Analysis:

• The CircularIndeterminateProgress widget is included in a Dock
Container (see SlideContainerDemo class):

• The style configuration of the widget is not defining any size
constraint (see SlideContainerDemo class):

→ The widget fills all the space available in the left part of the Dock
container.

V3.0 Mar. 2025
© MICROEJ 2025

ANALYSIS

D
O

C
K

 L
E

FT

DOCK TOP

DOCK CENTER

CircularIndeterminateProgress progress = new CircularIndeterminateProgress();
dock.addChildOnLeft(progress);

private static Stylesheet createStylesheet() {
 CascadingStylesheet stylesheet = new CascadingStylesheet();
 …
 style = stylesheet.getSelectorStyle(new TypeSelector(CircularIndeterminateProgress.class));
 style.setColor(POMEGRANATE);
 style.setVerticalAlignment(Alignment.VCENTER);
 style.setPadding(new UniformOutline(PADDING_MARGIN));

83

The refresh area could be reduced to fit the size of the
CircularIndeterminateProgress widget.

This would allow to save some CPU time, avoiding useless drawing and
potentially improving the fluidity of the animation.

Update the style configuration of the example (createStylesheet method in the
SlideContainerDemo class) to set an optimal dimension to the
CircularIndeterminateProgress widget:

Run the updated code on Simulator to check that the refresh area has been
reduced.

© MICROEJ 2025

REDUCE THE REFRESH AREA OF THE WIDGET

private static Stylesheet createStylesheet() {
 CascadingStylesheet stylesheet = new CascadingStylesheet();
 …
 style = stylesheet.getSelectorStyle(new TypeSelector(CircularIndeterminateProgress.class));
 style.setColor(POMEGRANATE);
 style.setDimension(OptimalDimension.OPTIMAL_DIMENSION_XY);
 style.setVerticalAlignment(Alignment.VCENTER);
 style.setPadding(new UniformOutline(PADDING_MARGIN));

Before widget
style update

After widget
style update

84

Run the sample on the device.

The transition is laggy when clicking on the Show Next button (see slide-
container/videos/slide_containrer_nxp_rt1170_non-optimized.m4v).

An estimated FPS count is provided in the logs:

→ This board is theoretically able to run GUI applications near 60FPS. The next steps are about
investigating the bottlenecks in the application and in the VEE Port that prevent having a smooth
animation.

V3.0 Mar. 2025© MICROEJ 2025

RUN THE APPLICATION ON THE DEVICE

85

SystemView

Identify & Debug Bottlenecks on
the Device using
SEGGER SystemView

V3.0 Mar. 2025© MICROEJ 2025

86

• SystemView is a real-time recording and visualization tool for embedded systems that reveals the actual
runtime behavior of an application, going far deeper than the system insights provided by debuggers.

• SystemView can ensure a system performs as designed, can track down inefficiencies, and show unintended
interactions and resource conflicts, with a focus on the details of every single system tick.

• A specific SystemView extension made by MicroEJ allows to trace the OS tasks and the MicroEJ Java threads
at the same time.

• For example, it can be used to measure the rendering time of images in a GUI application:

V3.0 Mar. 2025© MICROEJ 2025

SYSTEMVIEW

Background:
4.5ms

Logo:
1.7ms

Mascot: 7.7ms

Custom trace event to track the
execution of the render() method

render()
starts

render()
stops

87

The following software are required:

• Install SEGGER J-Link:

• Create the JLINK_INSTALLATION_DIR environment variable that points to the SEGGER J-Link installation
directory (e.g. C:\Program Files\SEGGER\Jlink):

• Install SEGGER SystemView

The runtime traces of the application needs to be enabled to see MicroEJ VEE tasks activity in SystemView:

• Open the configuration file of the application project (e.g. common.properties):

• Set core.trace.enabled and core.trace.autostart to true

V3.0 Mar. 2025© MICROEJ 2025

SETUP THE ENVIRONMENT FOR SYSTEMVIEW (1/2)

https://www.segger.com/downloads/jlink/
https://www.segger.com/downloads/systemview/

88

Enable SystemView in the VEE Port:

• Open CMakePresets.json file located in nxp-vee-mimxrt1170-
evk/bsp/vee/scripts/armgcc/CMakePresets.json

• Set ENABLE_SYSTEM_VIEW to 1:

Remove the build folders of the BSP to ensure the ENABLE_SYSTEM_VIEW property to be taken into account
during next build (nxp-vee-mimxrt1170-evk/bsp/vee/scripts/armgcc/):

V3.0 Mar. 2025© MICROEJ 2025

SETUP THE ENVIRONMENT FOR SYSTEMVIEW (2/2)

90

SystemView is a SEGGER tool, consequently it requires a J-Link probe to be used.

There are 2 ways to use a J-Link probe with the NXP i.MX RT1170 EVK:

1. Option 1: Connect an external J-Link probe:
o Connect jumper JP5

o Connect the probe to the J1 Connector

2. Option 2: Reprogram the embedded probe of the EVK (MCU-Link):
o Unplug J86 and J43 connectors. Plug the J43 connector, then the J86.

o Make sure jumper JP5 is removed and the USB cable is connected to J86

o Run the following script: C:\nxp\MCU-LINK_installer_{version}\scripts\program_JLINK.cmd

o Turn OFF the EVK + unplug the J86 USB cable, then Connect jumper JP3 and turn the board
back ON + plug J86

o Press SPACE

o Remove the JP3 jumper

o Turn OFF and ON the EVK + unplug / plug the J86 USB cable.

o The probe can be seen in the device manager:

V3.0 Mar. 2025© MICROEJ 2025

USE A J-LINK PROBE

91

1. If not already done, enable the DEBUG mode by setting RELEASE=0 in nxpvee-mimxrt1170-
evk\bsp\vee\scripts\set_project_env.bat:

2. Update the FLASH_CMD variable to use a J-Link probe:

Once done, build and flash the application on the device using the runOnDevice task.
Once done, the following trace should appear in the console:

V3.0 Mar. 2025© MICROEJ 2025

UPDATE THE BUILD SCRIPT CONFIGURATION

92

• Start SystemView (tested with version 3.32)

• Set the following recorder configuration:

• Once done, click on the Play button.
The acquisition starts,
events can be see in
SystemView:

V3.0 Mar. 2025© MICROEJ 2025

START THE ACQUISITION ON SYSTEMVIEW

93

MicroUI logs several actions when traces are enabled (see Event Tracing).

Those traces can be added in SystemView to ease the analysis:

• Copy the traces provided in the following section:
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MicroUI/traces.html#systemview-
integration

• Warning: jump a line at the end of the line for it to be taken into account

• Save them in a SYSVIEW_MicroUI.txt file (the syntax of the file matters) in
C:\Program Files\SEGGER\SystemView\Description

• Restart SystemView and start a new acquisition

• The UI events are now detailed:

V3.0 Mar. 2025© MICROEJ 2025

GET MICROUI DEBUG TRACES

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/trace.html#event-tracing
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MicroUI/traces.html#systemview-integration
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MicroUI/traces.html#systemview-integration

94V3.0 Mar. 2025© MICROEJ 2025

TRACE ANALYSIS
• Start a new acquisition in SystemView.

• Press the Show next button.

• Stop the acquisition.

• The following diagram can be seen:

• At a first glimpse, we can see that the CPU is fully loaded during the slide
transition. There are no “Idle” events, all the time is spent in the UIPump
thread.

Slide transition

95

• Custom traces can be added in SystemView to figure out which events are occurring during the slide transition.

• Follow the steps below to add a custom trace:

o Add Trace library in the build.gradle.kts:

o Reload the Gradle project to get the dependency. Otherwise, the wrong TRACE library might be imported
(sun.java2d.windows.GDIRenderer)

o Create a new Tracer in the SlideContainer class:

o Update the doAnimation method to track the start and the end of the transition:

V3.0 Mar. 2025

© MICROEJ 2025

ADD A CUSTOM TRACE (1/2)

implementation("ej.api:trace:1.1.1")

private static final Tracer slideTracer = new Tracer("MyTracer", 1); // The Tracer object

private static final int MY_EVT_ID = 0; // The ID that will be used to track the slide transition event

private void doAnimation(final Widget leftChild, final Widget rightChild, int startX, final int endX) {

 . . .
 this.releasedAnimation = new MotionAnimation(getAnimator(), motion, new MotionAnimationListener() {
 @Override
 public void tick(int value, boolean finished) {

 . . .
 restore();
 slideTracer.recordEventEnd(MY_EVT_ID); // Finish the slide transition tracing when the animation ends
 }
 }
 });
 slideTracer.recordEvent(MY_EVT_ID); // Start the slide transition tracing when the animation starts
 this.releasedAnimation.start();
}

96

• The custom MyTracer event needs to be added to SystemView description files in order to be taken
into account during the analysis.

• Create a SYSVIEW_MyTracer.txt file in C:\Program Files\SEGGER\SystemView\Description

• Add the following content in it:

o Warning: jump a line at the end of the line for it to be taken into account:

• Restart SystemView and start a new acquisition + press the Show next button in the application.

• The MyTracer events can be seen in the events view:

V3.0 Mar. 2025© MICROEJ 2025

ADD A CUSTOM TRACE (2/2)

0 MyTracer (MyTracer) Transition start | (MyTracer) Transition end

97

TIMELINE OVERVIEW

The following events are occurring between MyTracer start and end:

V3.0 Mar. 2025© MICROEJ 2025

ANALYSIS (1/6)

What we can observe:

• The transition is during
approximately 550ms → ideally it
should last 400ms see
(TRANSITION_DURATION in
SlideContainer class)

• There are big “blocks” in the timeline
(138.7ms, 144.4ms)

→ The next slide will provide a way to
interpret the results

98

LOOK FOR TIME CONSUMING OPERATIONS

• Go down in the events list, between MyTracer start and MyTracer end

• Look for the big operations, for example this drawing operation that took 175.9ms:

• Once identified, scroll up 175.9ms earlier to see what was the nature of the drawing operation:

V3.0 Mar. 2025© MICROEJ 2025

ANALYSIS (2/6)

This is a drawImage operation

→ Locate all the other “time consuming”
operations until MyTracer end

99

DRAWIMAGE OPERATIONS ARE THE MAIN BOTTLENECK

Most of the time-consuming operations are related to drawImage operations:

V3.0 Mar. 2025© MICROEJ 2025

ANALYSIS (3/6)

175.9 ms 54.6 ms 147.3 ms 146.5 ms

drawImage operations are taking 95% of the slide
transition time.

We can see that there are 4 drawImage operations
performed. It is related to the 4 FPS observed in the
console logs.

The next steps are:

1. Check the application implementation to
understand why / how drawImage operations are
done.

2. Check that the drawImage LLAPI is properly
implemented in the BSP (use hardware accelerator,
front buffer located in a high speed memory,
memory cache enabled, …)

100

ABOUT THE SLIDE CONTAINER IMPLEMENTATION

The slide container sample is optimized for low
CPU usage:

• Drawings are done as less as possible during
the transition (from right to left).

• For each frame:

• The content previously drawn on the
screen is reused in the next frame on the
left part of the screen (like a screenshot).

• Only the right part of the screen is drawn
(Green area).

• The screen content can be reused using the
drawDisplayRegion API.
It allows to copy a part of the screen on
itself.

• The drawDisplayRegion implementation
is calling the drawImage API. This
confirms the drawImage events seen in
SystemView.

V3.0 Mar. 2025

ANALYSIS (4/6)

N
E

W
 A

R
E

A
 D

R
A

W
N

N
E

W
 A

R
E

A
 D

R
A

W
N

N
E

W
 A

R
E

A
 D

R
A

W
N

101

ABOUT THE DRAWIMAGE IMPLEMENTATION

The drawImage method is implemented in
the LLUI_PAINTER_impl.c source file.

The implementation chosen on the NXP
i.MXRT1170 is performing a memcpy when it
comes to copying the screen content on
itself.

Check the Image Renderer documentation to
learn more about the drawImage
implementations.

Next step: perform benchmarks on the NXP
i.MXRT1170

V3.0 Mar. 2025© MICROEJ 2025

ANALYSIS (5/6)

Ja
va

(M
ic

ro
U

I l
ib

ra
ry

)
B

S
P

 (C
 c

o
d

e)
(M

ic
ro

U
I C

 M
o

d
u

le
)

Performs a
memcpy

https://docs.microej.com/en/latest/VEEPortingGuide/uiImageCore.html#standard-formats-only-default

102

PERFORM BENCHMARKS ON THE TARGET

• Knowing that drawImage operations are “taking too much time” to execute, benchmarks should be performed on
the target to figure out which hardware element is the bottleneck.

• Several kinds of benchmarks can be executed:
o At the BSP level (see Core Testsuite Engine):

• EEMBC Coremark (see

• RAM speed tests

o At MICROEJ VEE level:

• Run GUI benchmarks in Java (see java-testsuite-runner-ui3)

Conclusions on NXP i.MXRT1170:

• The screen has a high resolution (1280x720), thus a high number of pixels to drive:
 1280x720x16BPP/8 ~ 1.8Mb to transfer each time the screen is fully refreshed

• Front buffers are located in External RAM due to memory requirements.

• The benchmarks are showing that External RAM to External RAM copy is the bottleneck when it comes to copy a
such amount of data. Hardware accelerators such as DMA or PXP are not improving results in that case.

→ On NXP i.MXRT1170 it is more interesting to limit RAM to RAM copy and perform drawings using the CPU to get a
better framerate.

V3.0 Mar. 2025© MICROEJ 2025

ANALYSIS (6/6)

The procedure on how to run
benchmarks is not described in this
training.

https://github.com/MicroEJ/VEEPortQualificationTools/tree/2.12.0/tests/core
https://github.com/MicroEJ/VEEPortQualificationTools/tree/2.12.0/tests/ui/ui3/java-testsuite-runner-ui3

103

• Open the SlideContainer class of the slide-container example.

• Comment the Render implementation 1 (render() and renderContent() methods).

• Look for the Render implementation 2, uncomment the render() content method:

• Run the application on the device.

V3.0 Mar. 2025© MICROEJ 2025

UPDATE THE APPLICATION CODE

104

• Click on the Show next button on the screen.

• The implementation looks way smoother, see video in
slide-container/videos/slide_containrer_nxp_rt1170_optimized.m4v

• The FPS have increased to 60 FPS:

• Next step (not part of this training): to go further in the optimizations, override the renderContent
method to only draw the 2 last children (the visible ones).

V3.0 Mar. 2025© MICROEJ 2025

RUN THE APPLICATION ON THE DEVICE

105

The SystemView Analysis shows that all drawImage operations are gone.
They have been replaced by many DRAW_STRING and FILL_RECTANGLE operations (corresponding to
what is drawn on the screen).

V3.0 Mar. 2025© MICROEJ 2025

SYSTEMVIEW ANALYSIS OF IMPLEMENTATION 2 (1/2)

The transition duration is now close to the
expected 400ms transition time (412 ms).

Note that the CPU load is still near 100% (almost
no idle time in the timeline)

• This is due to the implementation of the slide
animation. An Animator is used, it executes
animations as fast as possible to get the best
framerate.

• Check the Animations implementation
documentation to learn more about the
various implementations available.

https://repository.microej.com/javadoc/microej_5.x/apis/index.html?ej/mwt/animation/Animator.html
https://docs.microej.com/en/latest/Tutorials/tutorialValidateGUIs.html#animations-implementation

106

• The SystemView analysis results are available
slide-container/systemView.
They have been exported to CSV format to perform
a deeper analysis.

• Number of drawing operations:

• Implementation 1 (~10FPS): 54

• Implementation 2 (~60FPS): 925

V3.0 Mar. 2025© MICROEJ 2025

SYSTEMVIEW ANALYSIS OF IMPLEMENTATION 2 (2/2)

708

118

97

2

0 100 200 300 400 500 600 700 800

FILL_RECTANGLE

STRING_WIDTH

DRAW_STRING

DRAW_THICKFADEDCIRCLEARC

Occurrence of Drawing Operations in Render
Implementation 2 (~60FPS)

40

6

5

3

0 5 10 15 20 25 30 35 40 45

FILL_RECTANGLE

STRING_WIDTH

DRAW_STRING

DRAW_IMAGE

Occurrence of Drawing Operations in Render
Implementation 1 (~10FPS)

107

MicroUI Event Buffer Dump

V3.0 Mar. 2025© MICROEJ 2025

108

MicroUI is using a circular buffer to manage the input
events.

As soon as an event is added, removed, or replaced in
the queue, the event engine calls the associated
Abstraction Layer API (LLAPI)
LLUI_INPUT_IMPL_log_queue_xxx().
This LLAPI allows the BSP to log this event and to dump
it later thanks to a call to LLUI_INPUT_dump() (see
dump beside).

For more information, read MicroUI Event Buffer
documentation.

V3.0 Mar. 2025© MICROEJ 2025

MICROUI EVENT BUFFER DUMP
============================== MicroUI FIFO Dump ===============================
---------------------------------- Old Events ----------------------------------
[27: 0x00000000] garbage
[28: 0x00000000] garbage
[...]
[99: 0x00000000] garbage
[00: 0x08000000] Display SHOW Displayable (Displayable index = 0)
[01: 0x00000008] Command HELP (event generator 0)
[02: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[03: 0x07030000] Input event: Pointer pressed (event generator 3)
[04: 0x009f0063] at 159,99 (absolute)
[05: 0x07030600] Input event: Pointer moved (event generator 3)
[06: 0x00aa0064] at 170,100 (absolute)
[07: 0x02030700] Pointer dragged (event generator 3)
[08: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[09: 0x07030600] Input event: Pointer moved (event generator 3)
[10: 0x00b30066] at 179,102 (absolute)
[11: 0x02030700] Pointer dragged (event generator 3)
[12: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[13: 0x07030600] Input event: Pointer moved (event generator 3)
[14: 0x00c50067] at 197,103 (absolute)
[15: 0x02030700] Pointer dragged (event generator 3)
[16: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[17: 0x07030600] Input event: Pointer moved (event generator 3)
[18: 0x00d00066] at 208,102 (absolute)
[19: 0x02030700] Pointer dragged (event generator 3)
[20: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[21: 0x07030100] Input event: Pointer released (event generator 3)
[22: 0x00000000] at 0,0 (absolute)
[23: 0x00000008] Command HELP (event generator 0)
---------------------------------- New Events ----------------------------------
[24: 0x0d000000] Display REPAINT Displayable (Displayable index = 0)
[25: 0x07030000] Input event: Pointer pressed (event generator 3)
[26: 0x002a0029] at 42,41 (absolute)
--------------------------- New Events' Java objects ---------------------------
[java/lang/Object[2]@0xC000FD1C
 [0] com/microej/examples/microui/mvc/MVCDisplayable@0xC000BAC0
 [1] null
==

https://docs.microej.com/en/latest/VEEPortingGuide/uiInput.html#event-buffer

109

Debugging
Rendering Issues

V3.0 Mar. 2025© MICROEJ 2025

110

• Tools:

• Widget Debug Utilities

• MWT Debug Utilities

• Example:

• Debug the rendering issue of a page

V3.0 Mar. 2025© MICROEJ 2025

IDENTIFY GUI RENDERING ISSUES

Rendering issue when entering an application page

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Widgets/debug-utilities.html
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MWT/how-to-debug.html

111

Widget Debug Utilities

Debug tools provided in the
Widget library

V3.0 Mar. 2025© MICROEJ 2025

112

The Widget Library provides several Debug Utilities to investigate and troubleshoot GUI
applications:

• Print the hierarchy of widgets and styles

• Print the path to a widget

• Count the number of widgets or containers

• Count the maximum depth of a hierarchy

• Print the bounds of a widget

• Print the bounds of all the widgets in a hierarchy

Check the Debug Utilities page for more information.

V3.0 Mar. 2025© MICROEJ 2025

WIDGET DEBUG UTILITIES (1/3)

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Widgets/debug-utilities.html

113

REPRODUCE THE ISSUE

• Run the example-java-widget project the on Simulator.

• Enter the Circular Slider Page to see the rendering issue:

V3.0 Mar. 2025© MICROEJ 2025

WIDGET DEBUG UTILITIES (2/3)

114

ROOT CAUSE ANALYSIS

• The background is not redrawn when the page
shows up

• Add the following code in the CircularSlider
page to print the style hierarchy of the Desktop:

• The following output can be seen in the console:

→ There are only transparent backgrounds used in
the widget hierarchy

FIX

• Check the default style configuration:

→ The default style is providing a transparent background.

• The CircularSlider page is not setting the background neither:

• Fix proposals:

• Set an opaque background in the default StyleSheet (if
possible)

• Set the background in the StyleSheet of the CircularSlider page
(at least on the top level widget of the CircularSlider page
→ SimpleDock) V3.0 Mar. 2025© MICROEJ 2025

WIDGET DEBUG UTILITIES (3/3)

@Override
protected void onShown(){
 HierarchyInspector.printHierarchyStyle(getDesktop().getWidget());
 super.onShown();
}

115

MWT Debug Utilities

Debug tools provided in the
MWT library

V3.0 Mar. 2025© MICROEJ 2025

116

HIGHLIGHTING THE BOUNDS OF THE WIDGETS

• When designing a UI, it can be pretty convenient to highlight the bounds of each widget. Here are some
cases where it helps:

• Verify if the layout fits the expected design

• Set the outlines (margin, padding, border)

• Check the alignment of the widget content inside its bounds

• Example with the Home page and the Wheel page:

V3.0 Mar. 2025© MICROEJ 2025

MWT DEBUG UTILITIES (1/3)

Check the Debug Utilities page for more information.

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MWT/how-to-debug.html

117

MONITORING THE RENDER OPERATIONS

• It may not be obvious what/how exactly the UI is rendered, especially if:

• A widget is re-rendered from a distant part of the application code

• A specific RenderPolicy is used (e.g. OverlapRenderPolicy)

• The Widget library provides a default monitor implementation that prints the operations on the
standard output.

• The logs produced also contain information about what is rendered (widget and area) and what code
requested the rendering.

• Example with the RadioButton page (application logs after click):

V3.0 Mar. 2025© MICROEJ 2025

MWT DEBUG UTILITIES (2/3)

rendermonitor@ INFO: Render requested on com.common.PageHelper$2 > SimpleDock > OverlapContainer > SimpleDock > List > RadioButton at {0,0 87x25} of {221,116 87x25} by
com.microej.demo.widget.radiobutton.widget.RadioButtonGroup.setChecked(RadioButtonGroup.java:47)
rendermonitor@ INFO: Render requested on com.common.PageHelper$2 > SimpleDock > OverlapContainer > SimpleDock > List > RadioButton at {0,0 87x25} of {221,166 87x25} by
com.microej.demo.widget.radiobutton.widget.RadioButtonGroup.setChecked(RadioButtonGroup.java:50)
rendermonitor@ INFO: Render executed on com.common.PageHelper$2 > SimpleDock > OverlapContainer > SimpleDock > List > RadioButton at {-221,-116 87x25} of {221,116 87x25}
rendermonitor@ INFO: Render executed on com.common.PageHelper$2 > SimpleDock > OverlapContainer > SimpleDock > List > RadioButton at {-221,-141 87x25} of {221,141 87x25}

Click

Check the Debug
Utilities page for more
information.

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MWT/how-to-debug.html
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MWT/how-to-debug.html

118

• Since an animator ticks its animations as often as possible, the animator may take 100% CPU usage if
none of its animations requests a render.

• MWT notifies when none of the animations has requested a render during an animator tick:

• requestRender() is only executed when the widget is moving, or if the user is manipulating it.
The tick() method loops indefinitely if there is no animation to do.

 → Stop the animation when not required to save CPU time

MONITORING THE ANIMATORS

V3.0 Mar. 2025© MICROEJ 2025

MWT DEBUG UTILITIES (3/3)

animatormonitor WARNING: None of the animations has requested a render during the

animator tick. Animations list:

[com.microej.demo.widget.carousel.widget.Carousel$1@2d6d4]

Check the Debug Utilities page for more information.

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MWT/how-to-debug.html

119

• SystemView: live analysis of an application with a cross view between RTOS & VEE threads
→ bottlenecks analysis & profiling

• Flush Visualizer: show the pixel surface drawn between two MicroUI front buffer flushes
→ avoid useless redraws, improve performances

• MWT & Widget Debug utilities: detect issues with the widget hierarchy
→ debug rendering issues

V3.0 Mar. 2025© MICROEJ 2025

KEY TAKEWAYS

120

Static Analysis
Tools

V3.0 Mar. 2025© MICROEJ 2025

121

NULL ANALYSIS

Static analysis tools are helpful allies to prevent several classes of bugs.

• Use the Null Analysis tool to detect and prevent NullPointerException, one of the most common causes
of runtime failure of Java programs.

V3.0 Mar. 2025© MICROEJ 2025

STATIC ANALYSIS TOOLS (1/3)

https://docs.microej.com/en/latest/SDK6UserGuide/nullAnalysis.html
https://repository.microej.com/javadoc/microej_5.x/apis/java/lang/NullPointerException.html

122

SONARQUBE

• SonarQube is an open source platform for continuous inspection of code quality. SonarQube offers
reports on duplicated code, coding standards, unit tests, code coverage, code complexity, potential
bugs, comments, and architecture.

• SonarQube can be integrated with CI tools to monitor code quality during the project life.

• To set it up on your MicroEJ application project, please refer to this documentation. (configures the set
of rules relevant to the context of MicroEJ Application development)

V3.0 Mar. 2025© MICROEJ 2025

STATIC ANALYSIS TOOLS (2/3)

SonarQube code analysis
performed inside Eclipse IDE

SonarQube code analysis
performed on SonarQube server

https://docs.microej.com/en/latest/Tutorials/tutorialImproveCodeQuality.html#sonar-code-analysis
https://github.com/MicroEJ/ExampleTool-Sonar

123

KLOCWORK

• Klocwork is another code analysis platform that
can be integrated to MICROEJ SDK.
Documentation can be found here.

• Klocwork can be integrated with CI tools to monitor
code quality during the project life.

V3.0 Mar. 2025© MICROEJ 2025

STATIC ANALYSIS TOOLS (3/3)

Klocwork code analysis performed on Klocwork
server

Klocwork code analysis performed inside
Eclipse IDE

https://docs.roguewave.com/en/klocwork/current/

124

THANK YOU
f o r y o u r a t t e n t i o n !

	Default Section
	Slide 1
	Slide 2
	Slide 3: Overview
	Slide 4: Development Tools overview

	Environment Setup
	Slide 5: PREREQUISITES
	Slide 6: Environment setup (1/4)
	Slide 7: Environment setup (2/4)
	Slide 8: Environment setup (3/4)
	Slide 9: Environment setup (4/4)
	Slide 10: Check the environment setup
	Slide 11: Example-Java-Widget Overview
	Slide 12: GUI Overview
	Slide 13: Project structure

	Debug the BSP C Code
	Slide 14: Debug the BSP C Code
	Slide 15: Overview
	Slide 16: Enable the Debug mode
	Slide 17: BSP debugging in VS Code (1/2)
	Slide 19: BSP debugging in VS Code (2/2)
	Slide 20: Debug view in VS Code
	Slide 22: Troubleshooting

	Runtime & Post Mortem Debugging Tools
	Slide 23: Runtime & Post-Mortem Debugging Tools
	Slide 24: Runtime & Post-Mortem Debugging Tools
	Slide 25: Debug a deadlock in an application
	Slide 26: Core Engine VM Dump (1/4)
	Slide 27: Core Engine VM Dump (2/4)
	Slide 28: Core Engine VM Dump (3/4)
	Slide 29: Core Engine VM Dump (4/4)
	Slide 30: Simulator & Device Debugger
	Slide 31: Debug on Device
	Slide 32: Vee Debugger proxy Principle
	Slide 33: Generate the VEE memory dump script (1/2)
	Slide 34: Generate the VEE memory dump script (2/2)
	Slide 35: Dump the device memory (1/3)
	Slide 36: Dump the device memory (2/3)
	Slide 37: Dump the device memory (3/3)
	Slide 38: Run the VEE Debugger Proxy (1/2)
	Slide 39: Run the VEE Debugger Proxy (2/2)
	Slide 40: run a Remote Java Application debug session
	Slide 41: Get the post-mortem debugging state (1/2)
	Slide 42: Get the post-mortem debugging state (2/2)
	Slide 43: Debug on Simulator
	Slide 44: Debug on the simulator (1/2)
	Slide 45: Debug on the simulator (2/2)
	Slide 46: Issue analysis & Fix
	Slide 49: Port Qualification Tool
	Slide 50: Port Qualification Tool (1/2)
	Slide 51: Port Qualification Tool (2/2)
	Slide 52: Key Takeways

	Memory Inspection Tools
	Slide 53: Memory Inspection Tools
	Slide 54: Memory Inspection Tools
	Slide 55: Memory Map Analyzer
	Slide 56: Heap Dumper & Heap Analyzer (1/8)
	Slide 57: Heap Dumper & Heap Analyzer (2/8)
	Slide 58: Heap Dumper & Heap Analyzer (3/8)
	Slide 59: Heap Dumper & Heap Analyzer (4/8)
	Slide 60: Heap Dumper & Heap Analyzer (5/8)
	Slide 61: Heap Dumper & Heap Analyzer (6/8)
	Slide 62: Heap Dumper & Heap Analyzer (7/8)
	Slide 63: Heap Dumper & Heap Analyzer (8/8)
	Slide 64: Core Engine MEMORY integrity check (1/3)
	Slide 65: Core Engine MEMORY integrity check (2/3)
	Slide 66: Core Engine MEMORY integrity check (3/3)
	Slide 67: Key takeways

	Identify & Debug Performance Bottlenecks
	Slide 68: Identify & Debug Performance Bottlenecks
	Slide 69: Identifying & Debugging Bottlenecks
	Slide 70: Flush Visualizer
	Slide 71: Presentation
	Slide 72: Enable the Flush Visualizer
	Slide 73: Reproduce the issue
	Slide 74: Flush analyzer Report
	Slide 75: Report Analysis (1/2)
	Slide 76: Report Analysis (2/2)
	Slide 77: ROOT CAUSE ANALYSIS
	Slide 78: Fix proposal
	Slide 79: Refresh Strategy Highlighting
	Slide 80: Refresh Strategy Highlighting
	Slide 81: Enable the Refresh Strategy Highlighting
	Slide 82: Analysis
	Slide 83: Reduce the Refresh area of the widget
	Slide 84: Run the application on the device
	Slide 85: SystemView
	Slide 86: SYSTEMVIEW
	Slide 87: SETUP the ENVIRONMENT FOR SYSTEMVIEW (1/2)
	Slide 88: SETUP the ENVIRONMENT FOR SYSTEMVIEW (2/2)
	Slide 90: use A J-LINK probe
	Slide 91: Update the build script configuration
	Slide 92: Start the acquisition on Systemview
	Slide 93: Get microui debug traces
	Slide 94: Trace analysis
	Slide 95: Add a custom trace (1/2)
	Slide 96: Add a custom trace (2/2)
	Slide 97: Analysis (1/6)
	Slide 98: Analysis (2/6)
	Slide 99: Analysis (3/6)
	Slide 100: Analysis (4/6)
	Slide 101: Analysis (5/6)
	Slide 102: Analysis (6/6)
	Slide 103: Update the application code
	Slide 104: Run the application on the device
	Slide 105: Systemview Analysis of implementation 2 (1/2)
	Slide 106: Systemview Analysis of implementation 2 (2/2)
	Slide 107: MicroUI Event Buffer Dump
	Slide 108: MicroUI Event Buffer Dump

	Debugging Rendering Issues
	Slide 109: Debugging Rendering Issues
	Slide 110: Identify GUI Rendering Issues
	Slide 111: Widget Debug Utilities
	Slide 112: Widget Debug Utilities (1/3)
	Slide 113: Widget Debug Utilities (2/3)
	Slide 114: Widget Debug Utilities (3/3)
	Slide 115: MWT Debug Utilities
	Slide 116: MWT Debug Utilities (1/3)
	Slide 117: MWT Debug Utilities (2/3)
	Slide 118: MWT Debug Utilities (3/3)
	Slide 119: Key takeways

	Static Tools Analysis
	Slide 120: Static Analysis Tools
	Slide 121: Static Analysis Tools (1/3)
	Slide 122: Static Analysis Tools (2/3)
	Slide 123: Static Analysis Tools (3/3)
	Slide 124

