
1

User Interface
Training

© MICROEJ

With MICROEJ SDK

V. 1.3.0© MICROEJ 2025

2

DISCLAIMER

All rights reserved. Information, technical data and tutorials contained in this document are proprietary under copyright Law of Industrial
Smart Software Technology (MicroEJ S.A.) operating under the brand name MicroEJ®. Without written permission from MicroEJ S.A., copying

or sending parts of the document or the entire document by any means to third parties is not permitted. Granted authorizations for using
parts of the document or the entire document do not mean MicroEJ S.A. gives public full access rights.

The information contained herein is not warranted to be error-free.

MicroEJ® and all relative logos are trademarks or registered trademarks of MicroEJ S.A. in France and other Countries.

Java is Sun Microsystems’ trademark for a technology for developing application software and deploying it in cross-platform, networked
environments. When it is used in this site without adding the “ ” symbol, it includes implementations of the technology by companies other
than Sun. Java , all Java-based marks and all related logos are trademarks or registered trademarks of Sun Microsystems Inc, in the United

States and other Countries.

Other trademarks are proprietary of their respective owners.

Feb. 2025© MICROEJ 2025

3

Agenda

Feb. 2025© MICROEJ 2025

4

By the end of this training, you will be able to:

• Compose a GUI using widgets

• Tune the look of widgets using style, images and fonts

• Change the rendering of widgets

• Interact with the GUI (e.g., touch or button)

• Animate a GUI

Feb. 2025© MICROEJ 2025

WHAT YOU WILL LEARN

5

• IntelliJ IDEA or Android Studio

• MICROEJ SDK 6: follow the installation steps at
https://docs.microej.com/en/latest/SDK6UserGuide/install.html

• The source code of the training, packaged with this document

• Access to internet and to the following websites:

• https://repository.microej.com/

• https://forge.microej.com/

• https://docs.microej.com/

• https://github.com/MicroEJ/

Feb. 2025© MICROEJ 2025

REQUIREMENTS

https://docs.microej.com/en/latest/SDK6UserGuide/install.html
https://repository.microej.com/
https://forge.microej.com/
https://docs.microej.com/
https://github.com/MicroEJ/

6

Introduction

Feb. 2025© MICROEJ 2025

7

INTENDED AUDIENCE

• Java developers designing GUIs for embedded devices

PRE-REQUISITES

• Basic knowledge of application development with MicroEJ

GOAL

• Understand the key concepts of the UI framework

Feb. 2025© MICROEJ 2025

FOREWORDS

8

MICROUI (Micro User Interface)

• Framework for operating with outputs and user-inputs

(e.g., pixelated display, touch, buttons, etc.).

DRAWING

• Extension of MicroUI for advanced drawing.

MWT (Micro Widget Toolkit)

• Toolkit for creating widgets.

WIDGET

• Collection of widgets commonly found in user interfaces.

Feb. 2025

© MICROEJ 2025

OVERVIEW OF THE GUI LIBRARIES

HARDWARE
ELECTRONICS

LCD ButtonsTouch

Application

ADD-ON LIBRARIES

FOUNDATION LIBRARIES

MicroUI DrawingEDC - BON

RTOS

Drivers

Graphical Engine

Abstraction Layer

MWT Widget

Platform

9

Code Setup

Feb. 2025© MICROEJ 2025

10

• The training will be conducted within an existing application that simulates the user
interface of a basic watch.

• It is not required to have a full understanding of all the classes used in this demo
application. We will focus only on the specific challenges that matter for the training.

• We will benefit from the code and resources already provided in the project (images,
menus, navigation, etc.). The training's outcome will look fancier than starting from an
empty project.

Feb. 2025© MICROEJ 2025

FOREWORDS

11

• Go to File > Open …

• Browse to the directory with the source code of the training.

• Click OK.

Feb. 2025© MICROEJ 2025

IMPORT THE SOURCE CODE

12

• The project is self-contained in a git repository.

• The git repository will help us moving along the steps of the training, using the step/…
branches.

Feb. 2025© MICROEJ 2025

GIT REPOSITORY SETUP

13

• The training is composed of 10 progressive steps.

• Each branch step/… of the repository is the start of a step.

• The branch step/1 is the branch to start with.

• When the first step is complete, move to branch step/2, and so on.

• The branches solution/… contain the solution for a given step.

• For example, the branch solution/1 contains the solution for the step 1.

• You can commit your work before moving to the next step if needed.

• To change branch and drop local changes : git checkout -f BRANCH-NAME

• The final branch with all steps completed is on branch solution/10

Feb. 2025© MICROEJ 2025

MOVING INTO STEPS

14

• The instructions, objective and details needed to complete a step will be given in this presentation.

• This information is also available within the project files.

• If you are lost, you can locate the step instructions by searching for the text STEP X in this project
files (match upper case). For example, for the first step, look for STEP 1.

• Note: The Find in Files action may not find the “STEP X” anchor text after changing branch. Make
sure to do File > Reload All From Disk to sync the files in the editor.

• The place to write code is marked with this text: // WRITE CODE HERE

• Every graphics resource or utility code is already provided in the project, so that the trainee can
focus on the code that matters for the training.

Feb. 2025© MICROEJ 2025

STEP INSTRUCTIONS

15

• The application features 4 pages:

• A watchface

• An application menu (list)

• An activity monitoring application, « Activity »

• A stub application

• The code for a page is in a well-identified package, that contains:

• A *Page class, that creates and setups the content of the page

• The widgets used in this page

• Additional packages:

• style: the classes for styling management

• util: utility classes for the purposes of the training

Feb. 2025© MICROEJ 2025

OVERVIEW OF THE PROJECT

16

To run the application in simulation:

1. Open the Gradle pane

2. Select Tasks > microej > runOnSimulator

The application launches in the simulator.

Note: if a message prompts you to accept MICROEJ SDK End-User License
Agreement (EULA), please refer to our documentation for details on the
available options for accepting the SDK EULA.

https://docs.microej.com/en/latest/SDK6UserGuide/licenses.html#sdk-
eula-acceptation

Feb. 2025© MICROEJ 2025

RUNNING THE APPLICATION IN THE SIMULATOR

https://docs.microej.com/en/latest/SDK6UserGuide/licenses.html#sdk-eula-acceptation
https://docs.microej.com/en/latest/SDK6UserGuide/licenses.html#sdk-eula-acceptation

17

• At step/1, the so-called opening page “Digital watchface” is very simple. It will be enhanced in
next steps.

• You can navigate in the application using the physical buttons and the touch:

• Button to go back and forth from the watchface to the application menu.

• Touch to select an item in the application menu.

• Button to exit an application.

Feb. 2025© MICROEJ 2025

APPLICATION FLOW

Button

Click

Button

18

• Check the appendix at the end of this presentation for links to the MicroEJ online documentation.

Feb. 2025© MICROEJ 2025

NEED HELP?

19Feb. 2025© MICROEJ 2025

Widgets

20

• Widget: an element of a GUI that displays an information or provides a way to interact with
the user.

• Widgets are semantic elements of the GUI. They help describe the structure and function of
the content.

• Widgets classes are subclasses of the class Widget, they are contained in another widget or
a Desktop.

• Desktop: a top-level object that can be displayed on a Display. It contains a Widget, and at
most one desktop is shown on a Display at any given time.

• Desktop automatically triggers the layout and rendering phases for itself and its children.

Feb. 2025© MICROEJ 2025

DEFINITION

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Widget.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Desktop.html

21

• The Widget library contains a collection of widgets commonly used in GUIs.

• To use the Widget library in an application, add the following dependency to the Gradle build file:

 implementation("ej.library.ui:widget:5.0.0")

Note: the Widget Demo provides examples for these widgets.

Feb. 2025© MICROEJ 2025

THE WIDGET LIBRARY

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Widgets/index.html
https://github.com/MicroEJ/Demo-Widget

22

• Label: a widget that displays a text.

 example: Label label = new Label("Some Text");

• Button: a widget that displays a text and reacts to clicks.

 example: Button button = new Button("Some Text");

• ImageWidget: a widget that displays an image.

 example: ImageWidget image = new ImageWidget(“/path/to/someImage.png");

• ImageButton: a widget that displays an image and reacts to clicks.

 example: ImageButton imageButton = new ImageButton("/path/to/someImage.png");

Feb. 2025© MICROEJ 2025

LIST OF WIDGETS

23

Definition: A Container is a widget that contains other widgets.

• List: a container that lays out widgets horizontally or vertically, on the same row or column.

 List list = new List(LayoutOrientation.HORIZONTAL);

 list.addChild(new Label("1"));

 list.addChild(new Label("2"));

 list.addChild(new Label("3"));

• Flow: lays out widgets horizontally or vertically, using multiple rows or columns if necessary.

 Flow flow = new Flow(LayoutOrientation.HORIZONTAL);

 flow.addChild(new Label("Widget 1"));

 flow.addChild(new Label("Widget 2"));

 flow.addChild(new Label("Widget 3"));

 flow.addChild(new Label("Widget 4"));

 flow.addChild(new Label("Widget 5"));

Feb. 2025© MICROEJ 2025

LIST OF CONTAINERS (1)

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/Container.html

24

• Grid: lays out widgets in a grid. All widgets have the same width and the same height.

 Grid grid = new Grid(LayoutOrientation.HORIZONTAL, 3);

 grid.addChild(new Label("1"));

 grid.addChild(new Label("2"));

 grid.addChild(new Label("3"));

 grid.addChild(new Label("4"));

 grid.addChild(new Label("5"));

 grid.addChild(new Label("6"));

• Dock: stacks the widgets on the edges, in order. The center widget takes the remaining space.

 Dock dock = new Dock();

 dock.addChildOnLeft(new Label("1"));

 dock.addChildOnTop(new Label("2"));

 dock.addChildOnRight(new Label("3"));

 dock.addChildOnBottom(new Label("4"));

 dock.addChildOnLeft(new Label("5"));

 dock.setCenterChild(new Label("6"));

Feb. 2025© MICROEJ 2025

LIST OF CONTAINERS (2)

25

• SimpleDock: simple version of the Dock. Stacks at most 3 widgets: 2 on the edges, 1 in the center.

 SimpleDock simpleDock = new SimpleDock(LayoutOrientation.HORIZONTAL);

 simpleDock.setFirstChild(new Label("1"));

 simpleDock.setCenterChild(new Label("2"));

 simpleDock.setLastChild(new Label("3"));

• Canvas: lays out the widgets at given bounds (x, y, width, height).

 Canvas canvas = new Canvas();

 canvas.addChild(new Label("1"), 20, 20, 40, 40);

 canvas.addChild(new Label("2"), 120, 65, 100, 200);

 canvas.addChild(new Label("3"), 170, 20, 100, 80);

 canvas.addChild(new Label("4"), 350, 150, 80, 60);

Feb. 2025© MICROEJ 2025

LIST OF CONTAINERS (3)

26

• A view is composed by assembling widgets and containers.

• Example:

Feb. 2025© MICROEJ 2025

VIEW COMPOSITION

Label

Label

ImageWidget Button

SimpleDock

List

SimpleDock

ListLabel Label

The corresponding widget tree:

ImageWidget Button

27

Let’s see how it turns into code:

Feb. 2025© MICROEJ 2025

VIEW COMPOSITION EXAMPLE

Label

Label

Image
Widget

Button

SimpleDock

List

SimpleDock simpleDock = new SimpleDock(LayoutOrientation.VERTICAL);

// sets the top child
simpleDock.setFirstChild(new Label("Header"));

// sets the center child
List list = new List(LayoutOrientation.HORIZONTAL);
list.addChild(new ImageWidget("/images/someImage.png"));
list.addChild(new Button("Button"));
simpleDock.setCenterChild(list);

// sets the bottom child
simpleDock.setLastChild(new Label("Footer"));

Code

28

Coding: step 1

Feb. 2025© MICROEJ 2025

29

• git checkout -f step/1, then search for “STEP 1”.

• You will learn how to compose a view by assembling widgets together.

• It consists of 5 widgets:

• The goal is to display all 5 widgets on the screen, no matter their position (see an example above).

• Note: These are not widgets from the Widget library, but custom widgets developed for this demonstration.

GOAL: COMPOSE THE DIGITAL WATCHFACE

heartRate

steps

distance

clock

battery

For example

Feb. 2025© MICROEJ 2025

30

To complete the digital watchface:

1. Go to the method createDigital() of the class WatchfacePage. It is responsible for creating
the layout of the digital watchface.

2. Choose one or more containers from the Widget library (see the provided containers).

3. Build a hierarchy by adding the widgets to the containers (look for addChild() and set*Child()
methods).

4. Return the root container of the resulting widget hierarchy.

• Note: The 5 widgets have already been instantiated in the code to make things easier.

INSTRUCTIONS

Feb. 2025© MICROEJ 2025

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/Widgets/widgets-list.html

31

• There are a lot of valid solutions, as long as all the 5 widgets are laid out and visible on the
display.

• For example, this can be as simple as the following:

 List list = new List(LayoutOrientation.VERTICAL);

 list.addChild(this.heartRate);

 list.addChild(this.steps);

 list.addChild(this.distance);

 list.addChild(clock);

 list.addChild(this.battery);

 return list;

• In this simple example, the 5 widgets are laid out in a vertical list.

Another example can be found on the solution/1 branch.

EXAMPLE

Feb. 2025© MICROEJ 2025

32Feb. 2025© MICROEJ 2025

Style

33

• Widgets describe the structure and function of the content.

• Widgets do not define the style options (colors, fonts, margin, padding, background, etc.).

• We do not recommend to hardcode style options in the widget code. Separation of content
and style help keep the GUI implementation flexible.

• The style API is inspired by CSS (Cascading Style Sheets):

• A stylesheet

• Selectors

• Styles

Feb. 2025© MICROEJ 2025

SEPARATION OF CONTENT AND STYLE

34

• The stylesheet manages the styles defined by the application.

• The stylesheet determines which style applies to widgets using a « Cascade » algorithm
and a selector specificity.

 CascadingStylesheet stylesheet = new CascadingStylesheet();

 desktop.setStylesheet(stylesheet);

Feb. 2025© MICROEJ 2025

STYLESHEET

35

• Selectors are used to select (or find) the widgets to style.

• Selectors determine the widgets to which a style applies.

• Main types of selectors:

• ClassSelector: selects from a class ID, equivalent to .class in CSS.

 new ClassSelector(2) // selects class with ID = 2

• TypeSelector: selects from the Java class type or subtype.

 new TypeSelector(Label.class) // selects labels

• StateSelector: selects from a state, equivalent to CSS Pseudo-classes like :active

 new StateSelector(Button.ACTIVE) // selects active buttons

Feb. 2025© MICROEJ 2025

SELECTORS

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/selector/Selector.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/selector/ClassSelector.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/selector/TypeSelector.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/stylesheet/selector/StateSelector.html

36

• The style describes the visual attributes of the widgets.

• Generic attributes are inspired by CSS Properties:

• Background

• Border

• Color

• Dimension

• Font

• Alignment (horizontal and vertical)

• Margin

• Padding

• Dimension

Feb. 2025© MICROEJ 2025

STYLES

37

• First, get the style that maps with a given selector in the stylesheet (e.g., the style for labels):

 EditableStyle style = stylesheet.getSelectorStyle(new TypeSelector(Label.class));

• Then, edit the style using the setters of type EditableStyle:

Feb. 2025© MICROEJ 2025

STYLE EDITION

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/EditableStyle.html

38

• The color of a widget is set with style.setColor()

• Example:

 style.setColor(Colors.BLACK);

• Equivalent to style.setColor(0x000000) with RGB values in hexadecimal.

Feb. 2025© MICROEJ 2025

SET COLOR

39

• The background of a widget is set with style.setBackground()

Main types of backgrounds:

• RectangularBackground: a plain rectangular-shaped background with color

 style.setBackground(new RectangularBackground(Colors.BLACK));

• ImageBackground: a background that displays an image

 style.setBackground(new ImageBackground(someImage));

• NoBackground: a background that draws nothing (i.e., background is transparent)

 style.setBackground(NoBackground.NO_BACKGROUND);

Feb. 2025© MICROEJ 2025

SET BACKGROUND

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/RectangularBackground.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/ImageBackground.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/NoBackground.html

40

• The font of a widget is set with style.setFont()

• Example:

 style.setFont(someFont);

Feb. 2025© MICROEJ 2025

SET FONT

41

• The alignment within a widget is set with style.setAlignment()

• Example to set the content of a widget horizontally centered and vertically top-aligned:

 style.setHorizontalAlignment(Alignment.HCENTER);

 style.setVerticalAlignment(Alignment.TOP);

• Horizontal alignment constants: LEFT, RIGHT, HCENTER

• Vertical alignment constants: TOP, BOTTOM, VCENTER

Feb. 2025© MICROEJ 2025

SET ALIGNMENT

42

• The border of a widget is set with style.setBorder()

Main types of borders:

• NoOutline: no border

 style.setBorder(NoOutline.NO_OUTLINE);

• RectangularBorder: a rectangular-shaped colored border with uniform thickness

 style.setBorder(new RectangularBorder(Colors.RED,5)); // a 5px-thick red border

• FlexibleRectangularBorder: a rectangular-shaped colored border with variable thickness

 style.setBorder(new FlexibleRectangularBorder(Colors.RED,5,0,5,0)); // one thickness per side

• RoundedBorder: a round-shaped colored border with uniform thickness and corner radius

 style.setBorder(new RoundedBorder(Colors.RED,10,5)); // 10px corner-radius, 5px thickness

Feb. 2025© MICROEJ 2025

SET BORDER

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/NoOutline.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/border/RectangularBorder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/border/FlexibleRectangularBorder.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/border/RoundedBorder.html

43

• The padding of a widget is set with style.setPadding()

Main types of padding:

• NoOutline: no padding

 style.setPadding(NoOutline.NO_OUTLINE);

• UniformOutline: sets the same padding for each side

 style.setPadding(new UniformOutline(10)); // a 10px padding

• FlexibleOutline: sets a different padding for each side

 style.setPadding(new FlexibleOutline(10, 0, 10, 0)); // one padding per side

Feb. 2025© MICROEJ 2025

SET PADDING

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/NoOutline.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/UniformOutline.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/FlexibleOutline.html

44

• The margin of a widget is set with style.setMargin()

Main types of margin:

• NoOutline : no margin

 style.setMargin(NoOutline.NO_OUTLINE);

• UniformOutline : sets the same margin for each side

 style.setMargin(new UniformOutline(10)); // a 10px margin

• FlexibleOutline : sets a different margin for each side

 style.setMargin(new FlexibleOutline(10, 0, 10, 0)); // one margin per side

Feb. 2025© MICROEJ 2025

SET MARGIN

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/NoOutline.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/UniformOutline.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/outline/FlexibleOutline.html

45

• For advanced style customization, extra style attributes for specific widgets can be created with
setExtra*(id, value).

• Extra style attributes can be integers, floats or objects.

• Example: imagine a widget that uses two colors and two fonts to render

 // sets black color for the text

 style.setColor(Colors.BLACK);

 // sets teal color for the icon

 style.setExtraInt(0, Colors.TEAL); // uses extra field with ID = 0

 // sets Roboto font for the main text

 style.setFont(roboto);

 // sets Noto font for the secondary text

 style.setExtraObject(1, noto); // uses extra field with ID = 1

Feb. 2025© MICROEJ 2025

SET CUSTOM ATTRIBUTES

46

• Widgets can retrieve their style by calling the method getStyle();

• All the style attributes are available with getters.

• Example:

Style style = getStyle();

Font mainFont = style.getFont();

int textColor = style.getColor();

// icon color is at extra field with ID = 0, and defaults to the text color if not set.

int iconColor = style.getExtraInt(0, textColor);

// secondary font is at extra field with ID = 1, and defaults to the main font if not set.

Font secondsFont = style.getExtraObject(1, Font.class, mainFont);

int verticalAlignment = style.getVerticalAlignment();

Feb. 2025© MICROEJ 2025

GET THE STYLE

47

1. Define the style attributes that match with the selectors.

2. Assign class selectors to widgets when necessary.

3. The widgets request the style and use the style attributes.

Feb. 2025© MICROEJ 2025

OVERVIEW OF THE STYLE PROCESS

48

Coding: step 2

Feb. 2025© MICROEJ 2025

49

• git checkout -f step/2, then search for “STEP 2”.

• You will learn how to set style attributes to widgets.

• The method populateStylesheet() already defines the styles for the watchface.

• We can edit the style attributes to change the look of the watchface (colors, fonts, …)

GOAL: CHANGE THE LOOK OF THE WATCHFACE

Feb. 2025© MICROEJ 2025

50

Edit the existing styles to:

1. Go to the method populateStylesheet() of the class WatchfacePage.
 It is responsible for defining the styles of the digital watchface.

2. Change the color of the background of the watchface.

3. Use the large font for the heart rate.

4. Set the icon color of the heart rate to be blue (see Colors).

5. Use the medium font for the seconds of the digital clock.

6. Make the digital clock to be horizontally centered-aligned and vertically bottom-aligned.

7. Set the text color of the steps and distance to be yellow by giving them a class and using a
ClassSelector (see addClassSelector()).

8. Set the battery indicator to be black.

• Note: you can go beyond these instructions and edit the styles as you want.

INSTRUCTIONS

Feb. 2025© MICROEJ 2025

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Colors.html

51

Loading Images

Feb. 2025© MICROEJ 2025

52

• To be displayed, the images have to be converted from their source format to a RAW format that is managed by
the BSP display driver.

• The conversion is done at build-time or at runtime.

• Images have to be:

• in the application classpath (typically in the src/main/resources folder).

• declared in a *.images.list file.

Feb. 2025© MICROEJ 2025

IMAGE DECLARATION

/images/someImage.png:ARGB4444

Preview of the file example.images.list

53

• Image path: the absolute path to the image from the root of the resources source folder (starts with a /).

• Output format: specifies the format in which to embed the image in the application.

• In this example (ARGB4444), the image is converted to the output format ARGB4444 at build-time.

The application embeds a 16 bpp raw representation of the image (4 bits for Alpha, 4 bits for Red, 4 bits for Green,
4 bits for Blue).

• Main output formats: ARGB8888, ARGB4444, RGB888, RGB565, A8, A4, display

• ARGBxxxx for multicolored images with transparency.

• RGBxxx for multicolored images without transparency.

• Ax for alpha images. Images can be colorized at runtime.

• display: same encoding as the display.

Feb. 2025© MICROEJ 2025

DECLARATION SEMANTIC
/images/someImage.png:ARGB4444

Output formatImage path

54

• To get the image at runtime, use the method Image.getImage()

 Image image = Image.getImage("/images/someImage.png");

• The image can now be used in a widget or as background.

• For example:

 style.setBackground(new ImageBackground(Image.getImage("/images/someImage.png")));

• More about images:
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MicroUI/images.html

Feb. 2025© MICROEJ 2025

GET THE IMAGE

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Image.html#getImage-java.lang.String-
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MicroUI/images.html

55

Coding: step 3

Feb. 2025© MICROEJ 2025

56

• git checkout -f step/3, then search for “STEP 3”.

• The designer provided the resources and preview of the design: we have to change the
code to match with the new design.

• You will use what you learned in step 1 (layout composition) and step 2 (style), to
implement the given design.

• All the necessary resources for this step are in the folder src/main/resources/step3

GOAL: A NEW DESIGN FOR THE WATCHFACE

Feb. 2025© MICROEJ 2025

57

• The background is now a full-screen image.

• The text color is now black.

• The steps and distance icons have changed.

• The steps and distance icon are now black.

• The widgets positions have changed.

• We have to review the composition and style to adapt the code.

NEW DESIGN

Feb. 2025© MICROEJ 2025

58

We will use what we learned in step 1 to lay out the widgets like in the given design.

1. Go to the method createDigital() of the class WatchfacePage. It is responsible for
creating the layout of the digital watchface.

2. Create a new Canvas. It is a container from the Widget library which is very flexible
because it can lay out widgets at any given coordinates.

3. Add the 5 widgets (heart rate, steps, distance, digital clock and battery) to the canvas. The
bounds to use are given in the next slide.

4. Make the method createDigital() return the canvas.

STEP 3.1 CHANGE THE LAYOUT OF THE WATCHFACE

Feb. 2025© MICROEJ 2025

https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/container/Canvas.html

59

To speed-up the not-very-exciting process of finding the positions of
the widgets within the canvas, we provide here the bounds to use when
calling the method Canvas.addChild():

• Heart rate: (110, 5, 170, 54)

• Digital clock: (110, 70, 185, 65)

• Steps: (53, 200, 125, 55)

• Distance: (215, 200, 125, 55)

• Battery: (183, 352, 32, 32)

• For example:

canvas.addChild(this.heartRate, 110, 5, 170, 54);

STEP 3.1 NEW WIDGET POSITIONS

In green, the widgets bounds

Feb. 2025© MICROEJ 2025

60

We will use what we learned in step 2 to customize the style of the widgets like in the given
design:

1. Go to the method populateStylesheet() of the class WatchfacePage. It is responsible for
defining the styles of the digital watchface.

2. Change the existing styles accordingly to match with the design:

o The text color of widgets is now black.

o The background of the watchface is now an image (use ImageBackground).

3. In the class Images, change the path of the constants SHOE_ICON and LOCALIZATION_ICON
to be the path to the new icons. These constants are used by the steps and distance
widgets of the watchface.

• Note: the new images are in src/main/resources/step3

STEP 3.2 CHANGE THE STYLE OF THE WATCHFACE

background.png

shoe.png localization.png

Feb. 2025© MICROEJ 2025

https://repository.microej.com/javadoc/microej_5.x/apis/ej/mwt/style/background/ImageBackground.html

61

Coding: step 4

Feb. 2025© MICROEJ 2025

62

• git checkout -f step/4, then search for “STEP 4”.

• The designer provided an alternative background image for the design.

• You will learn how to load the image in the application and use it.

GOAL: A NEW BACKGROUND FOR THE WATCHFACE

Feb. 2025© MICROEJ 2025

63

• Only the background image has changed since last step.

• The image is background.png and is in the folder
src/main/resources/step4

NEW DESIGN

Feb. 2025© MICROEJ 2025

64

We have to edit the project configuration to declare the image in a *.images.list.

1. Edit the file step4.images.list in this folder.

2. Add a line that declares the image (specify the path and output format).

3. Go to the method populateStylesheet() of the class WatchfacePage. It is responsible
for defining the styles of the digital watchface.

4. Change the style of the digital watchface, to use the new image as background.

• Note: the output format depends on the image, its usage and the display capability:

• Is it multicolored and opaque? Look for RGBxxx

• Is it multicolored with transparency? Look for ARGBxxxx

• Is it grayscale and colorized at runtime? Look for Ax

INSTRUCTIONS

Feb. 2025© MICROEJ 2025

65

Creating and
Loading Fonts

Feb. 2025© MICROEJ 2025

66

• MicroEJ Fonts (EJF) are bitmap fonts (collection of the glyphs images).

• EJF fonts are created with a tool bundled with the SDK 5 called the Font Designer.

• The SDK 6 does not yet provide any substitution tool.

• The SDK 5 is required for EJF font creation. Please check the online documentation:
https://docs.microej.com/en/latest/SDKUserGuide/installSDKDistributionLatest.html#sdk-
installation-latest

Feb. 2025© MICROEJ 2025

FONTS

https://docs.microej.com/en/latest/SDKUserGuide/installSDKDistributionLatest.html#sdk-installation-latest
https://docs.microej.com/en/latest/SDKUserGuide/installSDKDistributionLatest.html#sdk-installation-latest

67

• Start MicroEJ SDK 5 (see https://docs.microej.com/en/latest/SDKUserGuide/startup.html)

• Select File > New > MicroEJ Font

Feb. 2025© MICROEJ 2025

FONT CREATION (1)

https://docs.microej.com/en/latest/SDKUserGuide/startup.html

68Feb. 2025© MICROEJ 2025

FONT CREATION (2)

• Select the parent folder and file name.

• Example:

• We select the folder fonts in the resources source folder

• We name it with a comprehensive name

 (family, height, weight)

• Click Finish.

69

• Set the font height to be the required size, in pixels. Example:

• The specified height is the height of the glyphs images in the font. It differs from the font size
as expressed in the designer output or in a text editor for example.

• From a typography perspective, the height corresponds to the distance from max ascent to
max descent lines. All the glyphs of the font will be fully enclosed between these two lines.

• The font size specifies the height of the text bounding box, but some glyphs of the font may
extend beyond the box.

Feb. 2025© MICROEJ 2025

FONT CREATION (3)

height

70

• Once you have determined the required height for the font, click on Import…

• Select system font to use a font installed on your system.

• Before starting the Font Designer, make sure that you have the font installed on your
system (can be TTF, OTF, WOFF, …)

Feb. 2025© MICROEJ 2025

FONT CREATION (4)

71

• Select a font in the list of installed font.

• This automatically updates the preview on the right.

• Select the character range to import in the font.

• Multiple options:

• From pre-defined Unicode ranges (e.g., Basic Latin)

• From a custom list of ranges

• All

• Example: import the custom range for Basic Latin and Latin-1 Supplement:

Feb. 2025© MICROEJ 2025

FONT CREATION (5)

72

• Select the size that fits the best for the font.

• The best fit is generally when:

• no character is cropped

• characters look well-sized in the image box

• Click on Finish

Feb. 2025© MICROEJ 2025

FONT CREATION (6)

73

• Set the baseline, the line on which most
characters sit.

1. Select a character that sits on the baseline, like
the ‘A’.

2. Adjust the value of the field Baseline to align the
blue line with the character, like in the picture.

3. Save the font.

• The baseline information can be used in the
code, to align two texts for example.

• To get the baseline position for a given font:

 int baseline = font.getBaselinePosition();

Feb. 2025© MICROEJ 2025

FONT CREATION (7)

74

• Set the space size.

1. Select a punctuation character with a width close to a
space, like the ‘.’

2. Adjust the value of the field Space size to match the
width of the character, like in the picture.

3. Save the font.

• A suitable space size is required for proper word
spacing.

Feb. 2025© MICROEJ 2025

FONT CREATION (8)

75

• The Font Designer depends on the system native Font engine to render the glyphs images.

• The rendering is known to be different on Windows and Mac OS.

• We recommend to create fonts on a Mac for better-looking fonts.

• This task can typically be done by the designer.

• Side note: bitmap fonts support comes by default with MicroUI but we support vector fonts with our
Foundation library for drawing vector graphics (MicroVG).
Please contact your MicroEJ sales representative or our support team for more information about
Vector fonts support.

Feb. 2025© MICROEJ 2025

FONT CREATION (9)

76

• EJF fonts are converted at build-time to a compatible format.

• Fonts have to be:

• in the application classpath (typically in the src/main/resources folder).

• declared in a *.fonts.list file.

Feb. 2025© MICROEJ 2025

FONT DECLARATION

/fonts/Roboto30px-500.ejf:0x21-0x7e:4

Preview of example.fonts.list

77

• Font path: the absolute path to the font from the root of the resources source folder (starts with a /).

• Set: the set of characters to embed.

• Pixel depth: specifies the pixel depth of the glyphs bitmaps for a font.

• In this example, the application embeds a 4 bpp raw representation of the font glyphs (anti-aliasing with 16
levels of opacity).

• Examples of valid sets:

• 0x21-0x7e: Basic Latin range from character ‘!’

• 0x0-0x7e,0xc0-0xff: Basic Latin + some accentuated characters from Latin-1 Supplement

• 0x0-0x7e,0xb0: Basic Latin + character ‘°’

Feb. 2025© MICROEJ 2025

DECLARATION SEMANTIC

/fonts/Roboto_30px-500.ejf:0x21-0x7e:4

Pixel depthFont path Set

78

• To get the font at runtime, use the method Font.getFont()

 Font font = Font.getFont("/fonts/Roboto_30px-500.ejf");

• The font can now be used in a style.

• For example:

 style.setFont(Font.getFont("/fonts/Roboto_30px-500.ejf"));

• More about fonts:
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MicroUI/fonts.html

Feb. 2025© MICROEJ 2025

GET THE FONT

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Font.html#getFont-java.lang.String-
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MicroUI/fonts.html

79

Coding: step 5

Feb. 2025© MICROEJ 2025

80

• git checkout -f step/5, then search for “STEP 5”.

• You will learn how to create an EJF font and use it in the application.

• We want to change the font of the digital clock (the largest font).

• You can use any system font that you want for this step.

GOAL: A NEW FONT FOR THE WATCHFACE

Feb. 2025© MICROEJ 2025

81

1. Use the Font Designer to create a new EJF font. Set the height in pixels (e.g. 60px).

2. Declare the new EJF font in the file step5.fonts.list in the folder
src/main/resources/step5.

3. Go to the method populateStylesheet() of the class WatchfacePage.

4. Get the font from its path with the Font.getFont() API.

5. Edit the style of the digital clock to replace its font with the new one.

INSTRUCTIONS

Feb. 2025© MICROEJ 2025

82

Widget
Customization

Feb. 2025© MICROEJ 2025

83

• Out-of-the-box widgets provide great features but you may need custom widgets for your
specific needs.

• By creating new widgets or modifying existing ones, you can design a widget that displays
the desired content.

• The next slides discuss the principles of widget rendering.

Feb. 2025© MICROEJ 2025

CUSTOMIZATION

84

• The method Widget.renderContent() is responsible for drawing the content of a widget.

• There are 3 main kinds of drawings:

• Shapes (line, rectangle, circle, arc, …)

• Images

• Texts

• This method only renders the content of the widget, without the border, padding and margin
specified in the style.

• The border, padding and margin are applied before renderContent() is called.

Feb. 2025© MICROEJ 2025

WIDGET RENDERING

85

• Typical implementation:

1. Get the style of the widget

2. Get the style attributes from the style (color, alignment, font, …)

3. Compute the positions of the elements within the widget content box

4. Call MicroUI/Drawing APIs to draw the elements of the widgets

• Example:

 @Override

 protected void renderContent(GraphicsContext g, int contentWidth, int contentHeight) {

 Style style = getStyle();

 Font font = style.getFont();

 // sets the color on the Graphics Context, then draw a text with the given font at (0,0)

 g.setColor(style.getColor());

 Painter.drawString(g, "Hello World", font, 0, 0);

 }

Feb. 2025© MICROEJ 2025

THE RENDERCONTENT METHOD

86

 @Override

 protected void renderContent(GraphicsContext g, int contentWidth, int contentHeight) {

 Style style = getStyle();

 Font font = style.getFont();

 // sets the color of the Graphics Context, then draw a text with the given font at (0,0)

 g.setColor(style.getColor());

 Painter.drawString(g, "Hello World", font, 0, 0);

 }

• The GraphicsContext provides access to the modifiable pixel buffer. It can be used to read and
write to the pixels of the display. Use the given graphics context for the drawings.

• The class Painter provides methods to draw basic shapes such as lines, rectangles, circles, text and
images.

• The arguments contentWidth and contentHeight define the content bounds that are available for
the widget content. They are used to size and position the elements within the widget.

Feb. 2025© MICROEJ 2025

THE RENDERCONTENT METHOD

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/GraphicsContext.html

87

The optimal size is the minimal size that allow to show correctly the content of a widget. It is computed
by computeContentOptimalSize(Size) method. This size is then used by the parent container to lay
out (set position and size) the widget along with its siblings.

For instance, the optimal size of a label that displays a string will be the size of the string with the font
defined in the style:

@Override

protected void computeContentOptimalSize(Size size) {

 Style style = getStyle();

 Font font = style.getFont();

 // retrieves the text width and height depending on the font

 int width = font.stringWidth(“Some text”);

 int height = font.getHeight();

 size.setSize(width, height);

}

Feb. 2025© MICROEJ 2025

THE COMPUTECONTENTOPTIMALSIZE METHOD

88

• The APIs for drawing are provided by two Foundation libraries:

• MicroUI: provides the core features

• Drawing: extends MicroUI to add more features

• The drawing methods are available in the painter classes (*Painter):

• Painter (MicroUI): drawing of aliased shapes, texts and images

• ShapePainter (Drawing): drawing of anti-aliased shapes

• TransformPainter (Drawing): drawing of transformed images and texts

• Click on the links above to have the full list of supported drawings.

• Note: The Widget library defines two more painter classes for manipulating texts and images:

• StringPainter (Widget): utility methods for drawing texts

• ImagePainter (Widget): utility methods for drawing images

Feb. 2025© MICROEJ 2025

DRAWINGS

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/MicroUI/index.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/drawing/ShapePainter.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/drawing/TransformPainter.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/render/StringPainter.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/render/ImagePainter.html

89

g.setColor(Colors.YELLOW);

Painter.drawLine(g, 100, 50, 150, 300);

ShapePainter.drawThickFadedLine(g, 110, 50, 160, 300, 2, 1, Cap.PERPENDICULAR, Cap.ROUNDED);

g.setColor(Colors.TEAL);

Painter.fillRectangle(g, 60, 70, 200, 30);

Painter.fillEllipse(g, 170, 200, 20, 100);

g.setColor(Colors.LIME);

ShapePainter.drawThickFadedCircle(g, 130, 100, 100, 20, 2);

g.setColor(0x002020);

ShapePainter.drawThickFadedCircle(g, 250, 200, 100, 10, 1);

g.setColor(Colors.TEAL);

ShapePainter.drawThickFadedCircleArc(g, 250, 200, 100, 0, 90, 10, 1, Cap.ROUNDED, Cap.ROUNDED);

Feb. 2025© MICROEJ 2025

DRAWING BASIC SHAPES (EXAMPLE)

90

Image image = Image.getImage("/images/heart.png");

g.setColor(Colors.RED);

Painter.drawImage(g, image, 100, 100);

g.setColor(Colors.GREEN);

TransformPainter.drawFlippedImage(g, image, 150, 100, Flip.FLIP_180);

g.setColor(Colors.MAGENTA);

TransformPainter.drawRotatedImageBilinear(g, image, 200, 100, 200, 100, 45);

g.setColor(Colors.CYAN);

TransformPainter.drawScaledImageBilinear(g, image, 250, 100, 1.5f, 1.5f);

g.setColor(Colors.YELLOW);

ImagePainter.drawImageInArea(g, image, 0, 0, 390, 390, Alignment.HCENTER, Alignment.VCENTER);

Feb. 2025© MICROEJ 2025

DRAWING IMAGES (EXAMPLE)

91

Font font = Font.getFont("/fonts/SourceSansPro_53px-600.ejf"); //$NON-NLS-1$

g.setColor(Colors.RED);

Painter.drawString(g, "Hello", font, 30, 80);

g.setColor(Colors.CYAN);

TransformPainter.drawScaledStringBilinear(g, "World", font, 70, 30, 1.5f, 1f);

g.setColor(Colors.LIME);

StringPainter.drawStringInArea(g, "!!!", font, 0, 0, 390, 390, Alignment.HCENTER, Alignment.VCENTER);

Feb. 2025© MICROEJ 2025

DRAWING TEXT (EXAMPLE)

92

Coding: step 6

Feb. 2025© MICROEJ 2025

93

• git checkout -f step/6, then search for “STEP 6”.

• You will learn how to implement the rendering of widgets by using the
Painter classes of MicroUI and Drawing.

• We will now work on the Activity entry of the application menu.

• To show Activity, push the button and select Activity in the list.

• Currently, Activity displays the step count.

• We want Activity to also display the progress towards the step goal,
with a progress bar.

• The progress bar can be anything like:

GOAL: DRAW A PROGRESS BAR

Feb. 2025© MICROEJ 2025

94

• First let’s have a quick overview of the Activity page, ActivityPage.

• In a similar way to WatchfacePage, it defines:

• a layout (getWidget())

• and styles (populateStylesheet()).

• The layout consists in a SimpleDock with:

• a Label at the top for the title

• a Progress at the center for the step count monitoring

• Progress is a custom widget, we will work on it to improve some of its
aspects.

THE ACTIVITY PAGE

Label

Progress

SimpleDock

Feb. 2025© MICROEJ 2025

95

• The widget Progress displays a value.

• In the method renderContent(), it gets the style and draws the value as a text
(Painter.drawString).

• To draw the goal progress, we will now append the code that draws the shapes of the bar.

• The simpler approach is to draw an horizontal progress bar with rectangles or thick lines.

THE PROGRESS WIDGET

Feb. 2025© MICROEJ 2025

96

1. Browse the API of class Painter and class ShapePainter and look for good candidates
for drawing a progress bar.

2. Get the progress value [0,1] with the method getProgress().

3. Get the style for the progress bar (colors, bar thickness).

4. Draw the shapes that makes the progress bar.

• If you choose to draw an horizontal progress bar, see methods
Painter.fillRectangle() and ShapePainter.drawThickLine().

• The next two slides are a cheat sheet to visualize the design of an horizontal bar.

INSTRUCTIONS

Feb. 2025© MICROEJ 2025

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/drawing/ShapePainter.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/display/Painter.html#fillRectangle-ej.microui.display.GraphicsContext-int-int-int-int-
https://repository.microej.com/javadoc/microej_5.x/apis/ej/drawing/ShapePainter.html#drawThickLine-ej.microui.display.GraphicsContext-int-int-int-int-int-

97

CHEAT SHEET

1314

progressWidth

barY

barThickness

accentColor

secondaryColor

Text box of the step counttextY

textHeight

Feb. 2025© MICROEJ 2025

98

• To save you some time finding the correct style attributes and progress variables, the code
of renderContent() already provides some values:

 int accentColor = style.getExtraInt(EXTRA_FIELD_BAR_ACCENT_COLOR, textColor);

 int secondaryColor = style.getExtraInt(EXTRA_FIELD_BAR_SECONDARY_COLOR, 0xcccccc);

 int barThickness = style.getExtraInt(EXTRA_FIELD_BAR_THICKNESS, DEFAULT_THICKNESS);

 float progress = getProgress();

 int progressWidth = (int) (progress * contentWidth);

 int barY = textY + textHeight;

• accentColor defines the progress bar color.

• secondaryColor defines the color of the remaining progress bar.

• barThickness defines the thickness of the bar.

• progress is the progress value between 0 and 1.

• progressWidth is the width of the bar for the current progress. It is a ratio of the width of the widget.

• barY is the y coordinate of the bottom of the text. It can be used as the y for the bar.

CHEAT SHEET

Feb. 2025© MICROEJ 2025

99

Updating the content
of a widget

Feb. 2025© MICROEJ 2025

100

• The widget content can change (e.g., a value changed)

• To reflect the change, call the method requestRender() to make the widget render again

• For example, imagine a Label widget that displays some text:

 Label label = new Label("Some Text");

• Later in the execution of the application, the text changes:

 label.setText("A new text");

• To update the content on the display, call requestRender() afterwards:

 label.requestRender();

Feb. 2025© MICROEJ 2025

REFLECT CONTENT UPDATE

101

Coding: step 7

Feb. 2025© MICROEJ 2025

102

• git checkout -f step/7, then search for “STEP 7”.

• You will learn how to update the content of a widget and request it to render again, to
reflect the changes on the display.

• The application manages a simple data model that simulates sensing data (HR, step count)
and battery level.

• The model updates its data every 5 seconds and notifies the pages.

• Currently, the Activity page does nothing when the model updates: the displayed step
count value remains the same.

• We will make the Activity page responsive to changes by updating the value of the
Progress widget.

GOAL: UPDATE THE PROGRESS VALUE DYNAMICALLY

Feb. 2025© MICROEJ 2025

103

• For the purposes of the demonstration, we implemented a simple data model in the class
Model.

• Pages are notified when the model data changes: the model calls the method update() of
the current page.

• The method update() of the ActivityPage is a good place for writing the update code.

MODEL

Feb. 2025© MICROEJ 2025

104

1. Locate the method update() of the class ActivityPage.

2. Set the new step count value to the widget this.activityProgress (use
Progress.setValue()).

3. Request a new render of the activity progress widget to update the display.

INSTRUCTIONS

Feb. 2025© MICROEJ 2025

105

Interacting with
widgets

Feb. 2025© MICROEJ 2025

106

• MicroUI exposes the user inputs to the application layer:

1. MicroUI processes the data from input-sensors

2. MicroUI generates integer-based events which encode the sensor type and action

3. The event is sent to the application’s event handler

4. The event handler processes the event

• MicroUI defines 4 generic types of events:

• Pointer: actions on touch screens (press, move, release, etc.)

• Buttons: actions on physical buttons (press, release, long press, etc.)

• Command: actions with application-level logic (Start, Cancel, Pause, Back, Up, Down, etc.)

• States: actions on stateful devices such as switches

Feb. 2025© MICROEJ 2025

EVENTS

https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Pointer.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Buttons.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/Command.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/microui/event/generator/States.html

107

• Touch events are often used in modern GUI.

• The main events are:

• Buttons.PRESSED : the user pressed the touch screen

• Pointer.DRAGGED : the user moved its pointer/finger

• Buttons.RELEASED : the user released its pointer/finger from the touch screen

Feb. 2025© MICROEJ 2025

TOUCH EVENTS

108

• The method Widget.handleEvent() is responsible for handling the events received by a
widget.

• The handleEvent() method returns a boolean that indicates whether the event has been
consumed or not. Once an event is consumed, it is not dispatched to other widgets: the
widget that consumed the event is the last one to receive it.

• The general guideline is to consume an event only if it triggers an action from the widget.

Feb. 2025© MICROEJ 2025

THE HANDLE EVENT METHOD

109

• Typical implementation:

1. Get the type and action of the event.

2. Update the widget state given the type and action.

3. Return true to consume the event, false otherwise.

• Example:

 @Override

 public boolean handleEvent(int event) {

 int type = Event.getType(event);

 if (type == Pointer.EVENT_TYPE) {

 int action = Buttons.getAction(event);

 if (action == Buttons.RELEASED) {

 handleClick();

 return true;

 }

 }

 return super.handleEvent(event);

 }
Feb. 2025© MICROEJ 2025

THE HANDLE EVENT METHOD

110

• Widgets have to be « enabled » to receive events: the default event dispatch policy forwards
the incoming events to enabled widgets only.

• Widgets can be enabled:

• By construction (constructor Widget(boolean enabled))

• On demand (setter setEnabled(boolean enabled))

Feb. 2025© MICROEJ 2025

RECEIVING EVENTS

111

Coding: step 8

Feb. 2025© MICROEJ 2025

112

• git checkout -f step/8, then search for “STEP 8”.

• You will learn how to handle events, to interact with widgets using touch or physical buttons.

• Currently, the Activity page shows the step count and the progress towards the daily goal.

• We want to make it also display the progress in percent (e.g., 43 %)

• Clicking on the progress widget should toggle between the step count and the progress in percent.

GOAL: HANDLE THE USER CLICKS

click

Feb. 2025© MICROEJ 2025

113

1. Locate the method handleEvent() of the class Progress.

2. When the event action is Buttons.RELEASED, toggle the value of the boolean showValue.

o When showValue is true, the widget shows the value (here the step count)

o When showValue is false, the widget shows the progress in percent

3. Request a new render to update the display.

4. Return true to indicate that the event has been consumed by this widget.

INSTRUCTIONS

Feb. 2025© MICROEJ 2025

114

Animation

Feb. 2025© MICROEJ 2025

115

• Animations make a graphical interface engaging and visually appealing.

• The animation API allows for creating animations.

• Animation examples:

Feb. 2025© MICROEJ 2025

ANIMATIONS

116

• The class MotionAnimation defines an animation from:

• An Animator

• A Motion

• A MotionAnimationListener

• The Animator is the instance that will execute the animation. It schedules the steps of the animation.

• The Motion describes the parameters of the animation:

• The start and end value of the animation

• The rate of change of the value over time (easing)

• The duration of the animation

• The MotionAnimationListener is an instance that will be notified at each frame of the animation, it
will typically update the widget with the current value of the animation.

Feb. 2025© MICROEJ 2025

MOTION ANIMATION

117

• Imagine a Label that displays an integer value.

• We animate this value from 0 to 100 over 2000 ms, with a Quart easing out

• When notified, the MotionAnimationListener updates the value of the Label

int value = 0;

final Label label = new Label(String.valueOf(value));

final Animator animator = getDesktop().getAnimator();

Motion motion = new Motion(QuartEaseOutFunction.INSTANCE, 0, 100, 2000);

final MotionAnimation animation = new MotionAnimation(animator, motion, new MotionAnimationListener() {

 @Override

 public void tick(int value, boolean finished) {

 label.setText(String.valueOf(value));

 label.requestRender();

 }

});

animation.start();

Feb. 2025© MICROEJ 2025

ANIMATION EXAMPLE

118

• Easing functions specify how a value changes over time.

• Help controlling the motion of graphics to achieve the desired effect (acceleration, bounce, etc.).

• Easing functions available:

• Linear

• Ease in, ease out, ease in-out for quad, quart, quint, cubic, bounce, elastic, …

• Full list here

• Example of linear function: Function function = LinearFunction.INSTANCE;

• You can preview these easing functions at https://easings.net/

Feb. 2025© MICROEJ 2025

EASING FUNCTIONS

https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/Function.html
https://easings.net/

119

• The animator schedules the animation “as fast as possible”: the next frame of the animation is drawn
as soon as the drawing of the previous frame is finished.

• An instance of the Animator is available for widgets from the root Desktop.

• Within the widget code, call getDesktop().getAnimator()

• Only one Animator can be running at any time.

Feb. 2025© MICROEJ 2025

ANIMATOR

120

Coding: step 9

Feb. 2025© MICROEJ 2025

121

• git checkout -f step/9, then search for “STEP 9”.

• You will learn how to use the animation API to make the user interface fancier.

• Currently, the Activity page updates the step count every 5 seconds without any animation.

• We would like to make it a bit nicer by animating the value and progress bar when the
value changes.

GOAL: ANIMATE WHEN THE VALUE CHANGE

Feb. 2025© MICROEJ 2025

122

1. Locate the method setValue() of the class Progress. A call to this method will trigger the animation.

2. Create a new Motion: specify the easing function, the start value, the stop value and the duration of the
animation:

o Easing function: any implementation of Function (for example QuartEaseOutFunction)

o Start value: the current widget value (this.value)

o End value: the target value (the argument newValue)

o Duration: a value in milliseconds

3. Create a new MotionAnimation instance to define the animation:

o Animator: use the field this.animator

o Motion: use the created motion

o Animation listener: use this (the widget implements MotionAnimationListener)

4. Call the method startAnimation() to start the motion animation.

5. Locate the method tick() and update the value when the motion value changes.

o Update this.value with the motion value

o Request a new render

INSTRUCTIONS

Feb. 2025© MICROEJ 2025

https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/Motion.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/motion/Function.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/util/motion/MotionAnimation.html
https://repository.microej.com/javadoc/microej_5.x/apis/ej/widget/util/motion/MotionAnimationListener.html

123

Coding: step 10

Feb. 2025© MICROEJ 2025

124

• git checkout -f step/10, then search for “STEP 10”.

• You will learn how to add swipe transitions when navigating between views.

• The application provides only one watchface: the digital watchface.

• We would like to have two watchfaces: a digital and an analog.

• We will introduce the analog watchface and add swipe navigation between the watchfaces.

GOAL: ADD SWIPE NAVIGATION

Feb. 2025© MICROEJ 2025

125

• We provide the code for the analog watchface and the swipe handling:

• WatchHands: a widget that draws an analog clock, using images for the hands.

• SwipeContainer: a widget that can swipe between its children widgets.

NEW MATERIAL

Feb. 2025© MICROEJ 2025

126

1. Locate the method getWidget() of the class WatchfacePage. It defines the layout of the page.

2. Instantiate a new SwipeContainer.

3. Create the digital watchface widget with the method createDigital().

4. Add it to the swipe container.

5. Create the analog watchface widget with the method createAnalog().

6. Add it to the swipe container.

7. Return the swipe container.

INSTRUCTIONS

Feb. 2025© MICROEJ 2025

127

Coding: step 11

Feb. 2025© MICROEJ 2025

128

• git checkout -f step/11, then search for “STEP 11”.

• In this step, you will learn how to add a new page to the application.

• The new page will use the RadioButton widget provided by the Example-Java-Widget demo.

• Currently, the Parameters page is a blank page. We want to implement it to match this design:

GOAL: CREATE A NEW PAGE

Feb. 2025© MICROEJ 2025

https://github.com/MicroEJ/Example-Java-Widget

129

The page ParametersPage has been created but its methods need to be implemented.

1. Go to the Example-Java-Widget demo and look at the RadioButton example. Add the classes RadioButton
and RadioButtonGroup to your project. (Open the files on GitHub and click on “Download raw file” in the
top right corner of the file. Then, move the files to the correct package in your project
com.microej.exercise.ui.parameters.widget)

2. In the method getWidget() of the ParametersPage, create a RadioButtonGroup and three
RadioButton. You can add them to a List or another Container. Look at the RadioButtonPage example
in the Example-Java-Widget demo for the correct use of the widget.

3. Check the first RadioButton, using group.setChecked(radioButton);

INSTRUCTIONS (1/2)

Feb. 2025© MICROEJ 2025

https://github.com/MicroEJ/Example-Java-Widget/tree/master/src/main/java/com/microej/demo/widget/radiobutton
https://github.com/MicroEJ/Example-Java-Widget/tree/master/src/main/java/com/microej/demo/widget/radiobutton

130

4. Create a new SimpleDock for the “Languages” subtitle. Create an ImageWidget and a Label, add them
inside the new SimpleDock. The icon is declared in the step11.images.list resource file. Add the
SimpleDock at the top of your List.

5. Add the List (or other Container) to the root SimpleDock as the lastChild and the page title should be
the centerChild.

6. Now that the layout is complete, add style in the correct method (note that you may need to create new entries
in the ClassIdentifiers.java class):

• Apply style to the title Label. Refer to the ActivityPage if needed. Don’t forget to use ClassIdentifiers!

• Add some margins to your List to center it: style.setMargin(new FlexibleOutline(0, 0, 70, 100));

• Align the three RadioButton horizontally

• Define the inner color of the RadioButton with the extra int field RadioButton.CHECKED_COLOR_FIELD

• Align the title Label vertically at the top

• Align the subtitle SimpleDock horizontally on the left and give it a 20px bottom padding

• Add a right margin of 15px to the ImageWidget

INSTRUCTIONS (2/2)

Feb. 2025© MICROEJ 2025

131

Internationalization

Feb. 2025© MICROEJ 2025

132

• Internationalization can be achieved with the Native Language Support (NLS) library.

• Localization source files can be internal (this tutorial uses PO files) or loaded as external
resources.

• Internal PO files have to be:

• in the application classpath (typically in the src/main/resources folder).

• declared in a *.nls.list file.

Note: The project might need to be rebuilt in order to generate the sources

INTERNATIONALIZATION

com.example.generated.Labels

Preview of example.nls.list

This will retrieve all the translations from files
named Labels*

Feb. 2025© MICROEJ 2025

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/nls.html
https://www.gnu.org/software/gettext/manual/gettext.html#PO-Files

133

• The binary-nls module must be added to the Application project build file build.gradle.kts:

 implementation("com.microej.library.runtime:binary-nls:3.1.0")

• Manage the locales:

• Set the locale

 Labels.NLS.setCurrentLocale(“en_US");

• Check available locales

 for (String locale : Labels.NLS.getAvailableLocales()) {
 System.out.println(locale);
 }

• Retrieve the current locale

 Labels.NLS.getCurrentLocale();

• Apply to a text:

 Label label = new Label(Labels.NLS.getMessage(Labels.LabelId));

USAGE

Feb. 2025© MICROEJ 2025

134

Coding: step 12

Feb. 2025© MICROEJ 2025

135

• git checkout -f step/12, then search for “STEP 12”.

• You will learn how to implement internationalization by using the NLS library.

• Currently the application is only available in English. This step will show you how to change
the ParametersPage locale dynamically.

GOAL: ADD INTERNATIONALIZATION

Feb. 2025© MICROEJ 2025

136

In order to implement internationalization, some changes have been made:

• Import for the NLS Library has been added to the build.gradle.kts file.

• Localization source files have been added, they can be found in the resources/step12
folder. Each file corresponds to a different locale.

• The fonts range in resources/fonts/exercises.fonts.list has been updated to
accommodate accents in the new languages :

/fonts/*.ejf:0x21-0x7a:4 → /fonts/*.ejf:0x0-0x7e,0xc0-0xff:4

• In the RadioButton class, a new attribute has been created to store the locale in the
button.

NEW MATERIAL

Feb. 2025© MICROEJ 2025

137

We will use the existing Model class to handle the current locale changes. When a RadioButton
is clicked, it will update the Model, which will then notify the ParametersPage.

The Model class uses the NLS methods to update or retrieve the current locale.

The Model is an Observable, and its setCurrentLocale() method has been configured to
trigger an update of its observers (in our case, the ParametersPage) which allows the
propagation of the locale change through the application.

ADAPTING NLS TO THE PROJECT ARCHITECTURE

Feb. 2025© MICROEJ 2025

138

1. Create the NLS list file step12.nls.list in the resources/step12 folder. Provide the
Fully Qualified Name of the Java interface that will be generated and used in the
application (e.g. com.mycompany.myapp.Labels).

2. Build the project in order to generate the sources: open the Gradle pane and select Tasks >
build > clean then Tasks > build > build.

3. In the Model class, update the getCurrentLocale() and setCurrentLocale()
methods to use NLS.

4. Set the current locale in the ParametersPage.getWidget() method by calling the
Model method you just updated.

INSTRUCTIONS (1/2)

Feb. 2025© MICROEJ 2025

139

5. Replace the RadioButton creations in the ParametersPage.getWidget() method to use
Labels.NLS.getAvailableLocale(). This will make future changes easier if you decide to
add/remove a language to the application.

 // creates one RadioButton per available locale

 for (String locale: Labels.NLS.getAvailableLocales()) {

 RadioButton radio = new RadioButton(locale, Labels.NLS.getDisplayName(locale), group);

 radio.addClassSelector(ClassIdentifiers.RADIO_BUTTON);

 if(locale.equals(Model.getInstance().getCurrentLocale())) {

 group.setChecked(radio);

 }

 list.addChild(radio);

 }

This also checks the RadioButton corresponding to the current locale.

INSTRUCTIONS (2/3)

Feb. 2025© MICROEJ 2025

140

6. Update both Labels instantiation in the ParametersPage.getWidget() method to
use NLS and allow translation:
 myLabel = new Label(Labels.NLS.getMessage(Labels.msgid));

7. Create and override the public void update() method of the ParametersPage:

• Set the text of the title and subtitle Label widgets using the corresponding msgid found in
the Labels*.po files, for example:

this.title.setText(Labels.NLS.getMessage(Labels.Parameters));

• Request a render of the SimpleDock at the root of the page to update it and its children.

8. In the RadioButton.handleEvent() method, set the current locale every time a
button is clicked by calling the correct Model method.

INSTRUCTIONS (2/2)

Feb. 2025© MICROEJ 2025

141

Appendix

Feb. 2025© MICROEJ 2025

142

• Application Developer Guide, UI section:
https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/ui.html

• Demo Widget: shows the widgets and containers of the Widget library and many others in action:
https://github.com/MicroEJ/Example-Java-Widget

• MWT examples: https://github.com/MicroEJ/ExampleJava-MWT

• Getting Started MicroUI in https://github.com/MicroEJ/How-To/

• MicroEJ Libraries APIs: https://repository.microej.com/javadoc/microej_5.x/apis/index.html

• General MicroEJ documentation and resources:

• https://docs.microej.com/en/latest/

• https://forum.microej.com/

Feb. 2025© MICROEJ 2025

USEFUL DOCUMENTATION

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/UI/ui.html
https://github.com/MicroEJ/Example-Java-Widget
https://github.com/MicroEJ/ExampleJava-MWT
https://github.com/MicroEJ/How-To/
https://repository.microej.com/javadoc/microej_5.x/apis/index.html
https://docs.microej.com/en/latest/
https://forum.microej.com/

143

THANK YOU
f o r y o u r a t t e n t i o n !

	Slide 1
	Slide 2
	Slide 3: Agenda
	Slide 4: What you will learn
	Slide 5: REQUIREMENTS
	Slide 6: Introduction
	Slide 7: Forewords
	Slide 8: Overview of the GUI Libraries
	Slide 9: Code Setup
	Slide 10: Forewords
	Slide 11: Import the source code
	Slide 12: GIT REPOSITORY SETUP
	Slide 13: Moving into steps
	Slide 14: Step Instructions
	Slide 15: Overview of the project
	Slide 16: Running the application in the simulator
	Slide 17: Application Flow
	Slide 18: Need Help?
	Slide 19: Widgets
	Slide 20: Definition
	Slide 21: THE Widget LIBRARY
	Slide 22: List Of Widgets
	Slide 23: List Of Containers (1)
	Slide 24: List Of Containers (2)
	Slide 25: List Of Containers (3)
	Slide 26: View Composition
	Slide 27: View Composition Example
	Slide 28: Coding: step 1
	Slide 29: GOAL: Compose the digital watchface
	Slide 30: Instructions
	Slide 31: Example
	Slide 32: Style
	Slide 33: Separation of Content and Style
	Slide 34: Stylesheet
	Slide 35: Selectors
	Slide 36: Styles
	Slide 37: Style edition
	Slide 38: SET COlor
	Slide 39: SET Background
	Slide 40: SET Font
	Slide 41: SET Alignment
	Slide 42: SET Border
	Slide 43: SET Padding
	Slide 44: SET Margin
	Slide 45: SET CUSTOM Attributes
	Slide 46: Get the style
	Slide 47: Overview of the style process
	Slide 48: Coding: step 2
	Slide 49: GOAL: Change the look of the watchface
	Slide 50: Instructions
	Slide 51: Loading Images
	Slide 52: Image declaration
	Slide 53: Declaration semantic
	Slide 54: GET the image
	Slide 55: Coding: step 3
	Slide 56: GOAL: A new design For the watchface
	Slide 57: NEW DESIGN
	Slide 58: Step 3.1 Change the layout of the watchface
	Slide 59: STEP 3.1 NEW Widget positions
	Slide 60: Step 3.2 Change the style of the watchface
	Slide 61: Coding: step 4
	Slide 62: GOAL: A new background For the watchface
	Slide 63: NEW DESIGN
	Slide 64: Instructions
	Slide 65: Creating and Loading Fonts
	Slide 66: Fonts
	Slide 67: Font Creation (1)
	Slide 68: Font Creation (2)
	Slide 69: Font CREATION (3)
	Slide 70: Font Creation (4)
	Slide 71: Font Creation (5)
	Slide 72: Font Creation (6)
	Slide 73: FONT CREATiON (7)
	Slide 74: Font Creation (8)
	Slide 75: Font CREATION (9)
	Slide 76: FONT declaration
	Slide 77: Declaration semantic
	Slide 78: GET the Font
	Slide 79: Coding: step 5
	Slide 80: GOAL: A new FONT For the watchface
	Slide 81: Instructions
	Slide 82: Widget Customization
	Slide 83: Customization
	Slide 84: Widget Rendering
	Slide 85: The Rendercontent method
	Slide 86: The Rendercontent method
	Slide 87: The computeContentOptimalSize method
	Slide 88: Drawings
	Slide 89: Drawing Basic Shapes (Example)
	Slide 90: Drawing Images (Example)
	Slide 91: Drawing text (Example)
	Slide 92: Coding: step 6
	Slide 93: GOAL: Draw a progress bar
	Slide 94: The ACTIVITY PAGE
	Slide 95: The Progress widget
	Slide 96: Instructions
	Slide 97: Cheat sheet
	Slide 98: Cheat sheet
	Slide 99: Updating the content of a widget
	Slide 100: Reflect Content update
	Slide 101: Coding: step 7
	Slide 102: GOAL: Update the Progress value dynamically
	Slide 103: Model
	Slide 104: Instructions
	Slide 105: Interacting with widgets
	Slide 106: EVENTS
	Slide 107: Touch Events
	Slide 108: The Handle Event method
	Slide 109: The Handle Event method
	Slide 110: Receiving events
	Slide 111: Coding: step 8
	Slide 112: GOAL: Handle the user clicks
	Slide 113: Instructions
	Slide 114: Animation
	Slide 115: Animations
	Slide 116: Motion Animation
	Slide 117: Animation example
	Slide 118: Easing functions
	Slide 119: Animator
	Slide 120: Coding: step 9
	Slide 121: GOAL: Animate When the value change
	Slide 122: Instructions
	Slide 123: Coding: step 10
	Slide 124: GOAL: Add swipe navigation
	Slide 125: New Material
	Slide 126: Instructions
	Slide 127: Coding: step 11
	Slide 128: GOAL: CREATE A new page
	Slide 129: Instructions (1/2)
	Slide 130: Instructions (2/2)
	Slide 131: Internationalization
	Slide 132: Internationalization
	Slide 133: Usage
	Slide 134: Coding: step 12
	Slide 135: Goal: add Internationalization
	Slide 136: New material
	Slide 137: Adapting NLS to the project architecture
	Slide 138: Instructions (1/2)
	Slide 139: Instructions (2/3)
	Slide 140: Instructions (2/2)
	Slide 141: Appendix
	Slide 142: Useful documentation
	Slide 143

