
1

Sandboxed
Applications

Training

© MicroEJ 2024

2

DISCLAIMER

All rights reserved. Information, technical data and tutorials contained in this document are proprietary under copyright law
of MicroEJ S.A. Without written permission from MicroEJ S.A., copying or sending parts of the document or the entire document
by any means to third parties is not permitted. Granted authorizations for using parts of the document or the entire document

do not mean MicroEJ S.A. gives public full access rights.

The information contained herein is not warranted to be error-free.

MicroEJ® and all relative logos are trademarks or registered trademarks of MicroEJ S.A. in France and other Countries.

Other trademarks are proprietary of their respective owners.
Java is Sun Microsystems’ trademark for a technology for developing application software and deploying it in cross-platform, networked environments. When it is used in this site without adding the “ ” symbol, it includes

implementations of the technology by companies other than Sun. Java , all Java-based marks and all related logos are trademarks or registered trademarks of Sun Microsystems Inc, in the United States and other Countries.

V2.1 Aug. 2024© MicroEJ 2024

3

INTRODUCTION

© MicroEJ 2024

4

• Sandboxed Applications Concepts.

• Sandboxed Application Project.

• Inter Application Communication: focus on Shared interface.

© MicroEJ 2024

AGENDA

5

Sandboxed
Applications

Concepts

V2.1 Aug. 2024© MicroEJ 2024

6V2.1 Aug. 2024© MicroEJ 2024

MONO-SANDBOX DEVELOPMENT WORKFLOW

MicroEJ SDK

• Platform development

• App development

Standalone
Application

MicroEJ VEE
+ Libraries

+ BSPP
la

tf
o

rm

Executable
Binary

ProgramA
p

p

Monolithic
MicroEJ

Firmware

Monolithic
MicroEJ

Firmware

Link

7V2.1 Aug. 2024© MicroEJ 2024

MULTI-SANDBOX DEVELOPMENT WORKFLOW

MicroEJ Studio

• App development

MicroEJ SDK

• Firmware development

MicroEJ VEE
+ Libraries

+ BSP

P
la

tf
o

rm

App App App

MicroEJ
Firmware

MicroEJ
Firmware

App App

App App App

Sandboxed App binaries
(built for a specific firmware)

Deployment
to

Infrastructure

Program

Dynamic
Load & Install

Resident App

MicroEJ
Firmware

Link

Executable
Binary

MicroEJ Store

8

• INSTALLED:
• Application has been successfully linked to the Kernel and is not running. There are no references from the

Kernel to objects owned by this application.

• STARTED:
• Application has been started and is running.

• STOPPED:
• Application has been stopped and all its threads are terminated. There are remaining references from the

Kernel to objects owned by this Application.

• UNINSTALLED:
• Application has been unlinked from the Kernel.

V2.1 Aug. 2024© MicroEJ 2024

APPLICATION LIFECYCLE STATES (1/2)

9V2.1 Aug. 2024© MicroEJ 2024

APPLICATION LIFECYCLE STATES (2/2)

INSTALLED
Feature.start()

STARTED

UNINSTALLED STOPPED

Kernel.install()

Explicit or implicit
stop by Feature.stop()
or Resources Control
Manager

No remaining alive
objects owned by
the FeatureKernel.uninstall()

10

• A Sandboxed Application project needs to implement the ej.kf.FeatureEntryPoint
interface.

• start() is called after the application has been started:

• Starts a thread or simply registers a shared interface.

• stop() is called just before the application is stopped:

• Opportunity to save the state of the application (Properties)

V2.1 Aug. 2024© MicroEJ 2024

ENTRY POINT

11

Sandboxed
Application

Project

Create and run a Sandboxed
Application on a Kernel

V2.1 Aug. 2024© MicroEJ 2024

12

• Multi-Sandbox firmware.

• In this training, the STM32F7508-DK 1.2.0 Green firmware is used.

• The list of firmware flavors can be found in the Kernel Developer Guide.

• Download GREEN-STM32F7508-DK-1.2.0.out

• Download GREEN-STM32F7508-DK-1.2.0.vde

• Import GREEN-STM32F7508-DK-1.2.0.vde in MICROEJ SDK:
• Go to File -> Import -> MicroEJ -> Virtual Device.

• Select the file.

• Accept the license.

• Click Finish.

• To get the lost of the imported Virtual Devices:

o Go to Window -> Preferences -> MicroEJ -> Virtual Devices.

V2.1 Aug. 2024© MicroEJ 2024

PREREQUISITES

https://docs.microej.com/en/latest/KernelDeveloperGuide/gettingStarted.html#what-is-a-microej-demo-flavor
https://repository.microej.com/packages/green/1.2.0/firmwares/STM32F7508-DK/GREEN-STM32F7508-DK-1.2.0.out
https://repository.microej.com/packages/green/1.2.0/vd/STM32F7508-DK/GREEN-STM32F7508-DK-1.2.0.vde

13

• Go to File -> New -> Sandboxed Application Project.

• Fill the input fields.

• Click Finish.

V2.1 Aug. 2024© MicroEJ 2024

CREATE THE APPLICATION PROJECT

14

• src/main/java:

• Sources folder.

• src/main/resources:

• Folder for future resources (images, fonts, etc.).

• feature.cert:

• X509 certificate for identification (6 first fields RFC 2253)

• feature.kf:

• Defines the Kernel name and the version.

• Defines the Application Entry Point.

• List of all types that can be included in the Feature.
Default value = “* “.

• module.ivy:

• Module description file, dependencies description for the current
project.

V2.1 Aug. 2024© MicroEJ 2024

PROJECT STRUCTURE

feature.kf file

Sandboxed Application
project structure

15

• Right-Click on the MyFeature.java class

• Run As -> Run Configurations

• Double click on MicroEJ Application.

• Go to Execution tab:

• Select the VDE-Green Virtual Device.

• Select Execute on Simulator.

• Click Run.

• The Feature is started:

V2.1 Aug. 2024© MicroEJ 2024

RUN MY-APPLICATION IN SIM

=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============
=============== [Converting images] ===============
=============== [Launching on Simulator] ===============
=============== [Launch Shielded Plug server on port 10082] ===============
ShieldedPlug client "/127.0.0.1:1991" disconnected.
ntpservice INFO: Start the ntp client
ntpservice INFO: Use the connectivity manager
commandserverentrypoint INFO: Start the admin server
Feature MyFeature started!
remotecommandserver INFO: Server listening on port 4000
ntpservice INFO: Scheduled update time task
ntpservice INFO: Update time Fri Jun 03 09:42:44 GMT 2024
ntpservice INFO: Stopped retry task

16

• Connect your STM32F7058-DK board to your computer

• Install and open STM32CubeProgrammer

• Go to the section, select the following line:

• Go to the section, select the GREEN-STM32F7508-DK-1.2.0.out file.

• Click on the green button ‘Connect’ to connect STM32CubeProgrammer to your board.

• Once connected, click on Start Programming to program the board.

RUN THE FIRMWARE ON DEVICE

17

• Open the Termite serial terminal.

• Click the Settings button.

• Select the STM32F7508-DK board COM
port.

• Reset the STM32F7508-DK board
pressing the black button.

• The Kernel starts and logs are printed in
the console.

• If the board is connected to the
network, its local IP address is printed in
the console.

GET THE FIRMWARE TRACES

18

• Right-Click on the MyFeature.java class

• Run As -> Run Configurations

• Double click on MicroEJ Application.

• Go to Execution tab:

• Select the VDE-Green Virtual Device.

• Select Execute on Device.

• Select the Local Deployment (Socket) option.

• Go to the Configuration tab:

• In the Local Deployment (Socket) section, set the IP address of
the board.

• Click Run.

• The Feature is installed and started on the device.

V2.1 Aug. 2024© MicroEJ 2024

RUN MY-APPLICATION ON DEVICE

19

Shared Interfaces

V2.1 Aug. 2024© MicroEJ 2024

20

• The Shared Interface mechanism provided by MicroEJ Core Engine is an object communication bus
based on plain Java interfaces where method calls are allowed to cross MicroEJ Sandboxed
Applications boundaries.

• The Shared Interface mechanism is the cornerstone for designing reliable Service Oriented
Architectures on top of MicroEJ. Communication is based on the sharing of interfaces defining APIs
(Contract Oriented Programming).

• The basic schema:

• A provider application publishes an implementation for a shared interface into a system registry.

• A user application retrieves the implementation from the system registry and directly calls the methods
defined by the shared interface.

V2.1 Aug. 2024© MicroEJ 2024

OVERVIEW

21

• In the process of a cross-application method call, parameters and return value of methods declared in
a Shared Interface must be transferred back and forth between application boundaries.

• Some restrictions apply to Shared Interfaces compared to standard java interfaces:

• Types for parameters and return values must be transferable types.

• Thrown exceptions must be classes owned by the MicroEJ Firmware.

V2.1 Aug. 2024© MicroEJ 2024

TRANSFERABLE TYPES (1/3)

22

• The table bellow describes the rules applied depending on the element to be transferred:

V2.1 Aug. 2024© MicroEJ 2024

TRANSFERABLE TYPES (2/3)

Type Type Owner Instance Owner Rule

Primitive Type N/A N/A Passing by value. (boolean, byte, short, char, int,
long, double, float)

Any Class, Array or Interface Kernel Kernel Passing by reference

Any Class, Array or Interface Kernel Application MicroEJ Kernel specific or forbidden

Array of base types Any Application Clone by copy

Arrays of references Any Application Clone and transfer rules applied again on each
element

Shared Interface Application Application Passing by indirect reference (Proxy creation)

Any Class, Array or Interface Application Application Forbidden

23

• Objects created by a Sandboxed Application which type is owned by the Kernel can be transferred to
another Sandboxed Application provided this has been authorized by the Kernel.

• The list of Kernel types that can be transferred is Kernel specific, so you have to consult your Kernel
specification.

• When an argument transfer is forbidden, the call is abruptly stopped and a
java.lang.IllegalAccessError is thrown by the Core Engine.

• For the forbidden types to be transferable, a dedicated Kernel Type Converter must have been
registered in the Kernel.

V2.1 Aug. 2024© MicroEJ 2024

TRANSFERABLE TYPES (3/3)

https://docs.microej.com/en/latest/KernelDeveloperGuide/featuresCommunication.html#kernel-type-converter

24

• The Shared Interface mechanism is based on automatic proxy objects created by the underlying
MicroEJ Core Engine, so that each application can still be dynamically stopped and uninstalled.

• This offers a reliable way for users and providers to handle the relationship in case of a broken link.

• Once a Java interface has been declared as Shared Interface, a dedicated implementation is required
(called the Proxy class implementation).

• Its main goal is to perform the remote invocation and provide a reliable implementation regarding the
interface contract even if the remote application fails to fulfill its contract (unexpected exceptions,
application killed…).

• The MicroEJ Core Engine will allocate instances of this class when an implementation owned by
another application is being transferred to this application.

V2.1 Aug. 2024© MicroEJ 2024

PROXY CLASS (1/2)

25

• A proxy class is implemented and executed on the client side, each method of the implemented
interface must be defined according to the following pattern:

• Each implemented method of the proxy class is responsible for performing the remote call and
catching all errors from the server side and to provide an appropriate answer to the client application
call according to the interface method specification (contract).

• Remote invocation methods are defined in the super class ej.kf.Proxy and are named invokeXXX()
where XXX is the kind of return type.

V2.1 Aug. 2024© MicroEJ 2024

PROXY CLASS (2/2)

26

Hand’s On

V2.1 Aug. 2024© MicroEJ 2024

27

• A my-provider application provides a MyOutput service with two methods (println / nbExec).

• my-application will be updated to call this methods using the shared interface mechanism.

V2.1 Aug. 2024© MicroEJ 2024

HAND’S ON OVERVIEW

MICROEJ CORE ENGINE

my-application

MyOuput.nbExec()
MyOuput.println()

my-provider

println() {
// code

}

nbExce() {
// code

}

Shared Interface call

28

Update my-application

Update the application to call
the MyOutput service provided
by the provider application.

V2.1 Aug. 2024© MicroEJ 2024

29

• The definition of a Shared Interface starts by defining a standard Java interface.

• In the my-application project:

• Create a new package com.microej.example.sharedinterface.shared

• Create a MyOutput Interface :

V2.1 Aug. 2024© MicroEJ 2024

INTERFACE DEFINITION (1/2)

package com.microej.example.sharedinterface.shared;

import java.io.IOException;

public interface MyOutput {
/**
 * Print function.
 *
 * @param str
 * The string to print.
 * @throws IOException
 * Throws an IOException when the service is not available.
 */
void println(String str) throws IOException;
/**
 * Returns the number of time the println has been executed.
 *
 * @return the number of time the println has been executed.
 */
int nbExec();
}

30

• To declare an interface as a Shared Interface, it must be registered in a Shared Interfaces identification
file.

• A Shared Interface identification file is an XML file with the .si suffix with the following format:

• Shared Interface identification files must be placed at the root of a path of the application classpath.

• For a MicroEJ Sandboxed Application project, it is typically placed in src/main/resources folder.

• Hand’s on:

• Add a sharedInterfaces.si file in the src/main/resources folder of the Application project:

V2.1 Aug. 2024© MicroEJ 2024

INTERFACE DEFINITION (2/2)

<sharedInterfaces>
 <sharedInterface name="com.microej.example.sharedinterface.shared.MyOutput" />
</sharedInterfaces>

31

• In the my-application project:

• Create a sub-class of Proxy that implements MyOutput:

• Note: the Proxy class name must follow the following pattern: {InterfaceName}Proxy and should be
put in the same package that the interface.

V2.1 Aug. 2024© MicroEJ 2024

PROXY IMPLEMENTATION

public class MyOutputProxy extends Proxy<MyOutput> implements MyOutput {

 @Override

 public void println(String str) throws IOException {

 try {

 invoke();

 } catch (Throwable e) {

 throw new IOException();

 }

 }

 @Override

 public int nbExec() {

 try {

 return invokeInt();

 } catch (Throwable e) {

 return -1;

 }

 }

}

Returned Type

The interface

32

• In the my-application project:

• In the module.ivy, add the following dependency:

 <dependency org="ej.library.runtime" name="service" rev="1.1.1" />

• Update the application start() method code to use a Timer task that periodically uses the service:

V2.1 Aug. 2024© MicroEJ 2024

USE THE SERVICE

ej.bon.Timer myTimer = new ej.bon.Timer();
myTimer.schedule(new ej.bon.TimerTask() {

@Override
public void run() {

MyOutput output = ServiceFactory.getService(MyOutput.class);
if (output != null) {

try {
 output.println("Hello World ! n° " + output.nbExec());
} catch (IOException e) {
 System.out.println("MyOutput Service unavailable !");
}

}
}

}, 0, 1000);

33

my-provider

Implement MyOutput in an
other application

V2.1 Aug. 2024© MicroEJ 2024

34

• Import the my-provider application template:

• Open menu File > Import... > General > Existing Projects into Workspace.

• Select the archive file [training-package]/my-provider.zip

• Click on Finish.

• The my-provider application template is equivalent to the my-application template. The following
elements have been modified:

• Entry Point class has been renamed.

• Print message has been updated to distinguish the 2 applications.

• kernel.kf has been updated to change the Feature name and Entry Point.

V2.1 Aug. 2024© MicroEJ 2024

IMPORT THE MY-PROVIDER APPLICATION

35

• In my-provider:

• Copy the following elements from my-application to my-provider:

• MyOutput, MyOutputProxy, sharedInterface.si.

• Create a new class MyStandardOutput that implements MyOutput:

V2.1 Aug. 2024© MicroEJ 2024

IMPLEMENT THE SERVICE

package com.microej.example.sharedinterface.shared;

import java.io.IOException;

public class MyStandardOutput implements MyOutput {

private int nbExec = 0;

@Override
public void println(String str) throws IOException {
 this.nbExec++;
 System.out.println("MyOutput Print : " + str);
}

@Override
public int nbExec() {
 return this.nbExec;
}

}

36

• In my-provider:

• Add the following dependency to module.ivy:

 <dependency org="ej.library.wadapps" name="wadapps" rev="2.1.1" />

• Update the MyFeatureProvider class.

V2.1 Aug. 2024© MicroEJ 2024

REGISTER THE SERVICE

public class MyFeatureProvider implements FeatureEntryPoint {

private final MyStandardOutput standardOutput = new MyStandardOutput();

@Override
public void start() {
 System.out.println("Feature MyFeatureProvider started!"); //$NON-NLS-1$
 SharedServiceFactory.getSharedServiceRegistry().register(MyOutput.class, this.standardOutput);
}

@Override
public void stop() {
 System.out.println("Feature MyFeatureProvider stopped!"); //$NON-NLS-1$
 SharedServiceFactory.getSharedServiceRegistry().unregister(MyOutput.class, this.standardOutput);
}

}

37

• The my-provider application should be built in
order to be used by my-application:

• Right-Click on my-provider.

• Click Build Module.

• A target~/ folder appears in the project folder.

• Open the my-application SIM launcher.

• Go to the Configuration tab:

• In the Simulator -> Applications section, set the
path to generated artifacts of my-provider:
${project_loc:my-provider}/target~/artifacts.

• Click Run.

• The Features are started. my-application uses the
service provided by my-provider.

V2.1 Aug. 2024© MicroEJ 2024

RUN THE EXAMPLE IN SIM

=============== [Initialization Stage] ===============
=============== [Converting fonts] ===============
=============== [Converting images] ===============
=============== [Launching on Simulator] ===============
=============== [Launch Shielded Plug server on port 10082] ===============
ShieldedPlug client "/127.0.0.1:1447" disconnected.
Feature MyFeatureProvider started!
Feature MyFeature started!
ntpservice INFO: Start the ntp client
ntpservice INFO: Use the connectivity manager
MyOutput Print : Hello World ! N° 0
commandserverentrypoint INFO: Start the admin server
remotecommandserver INFO: Server listening on port 4000
MyOutput Print : Hello World ! N° 1
ntpservice INFO: Scheduled update time task
ntpservice INFO: Update time Fri Jun 03 13:33:52 GMT 2024
ntpservice INFO: Stopped retry task
MyOutput Print : Hello World ! N° 2
MyOutput Print : Hello World ! N° 3

38

• Deploy my-application and my-provider on
the device.

• Open the Termite serial terminal.

• Click the Settings button.

• Select the STM32F7508-DK board COM port.

• Reset the STM32F7508-DK board pressing the
black button.

• The Features are installed and started. my-
application uses the service provided by my-
provider.

V2.1 Aug. 2024© MicroEJ 2024

RUN THE EXAMPLE ON DEVICE

39

Tools

40

• Go to Run -> Run Configuration.

• Double-click MicroEJ Tool.

• Go to Execution tab:

• Select the VDE-Green Virtual Device.

• Select the tool: Wadapps Admin Console over Socket.

• Click Run.

=============== [Connect to 192.168.111.3:4000] ===============

*** Admin console ready ***

$

• Click the red square to stop the Admin Console.

ADMIN CONSOLE

41

• Main commands:

• help

• man

• list

• start

• stop

• install

• uninstall

• exit

V2.1 Aug. 2024© MicroEJ 2024

ADMIN CONSOLE COMMANDS

42

THANK YOU
f o r y o u r a t t e n t i o n !

	Slide 1
	Slide 2
	Slide 3
	Slide 4: Agenda
	Slide 5: Sandboxed Applications Concepts
	Slide 6: MONO-SANDBOX DEVELOPMENT WORKFLOW
	Slide 7: MULTI-SANDBOX DEVELOPMENT WORKFLOW
	Slide 8: Application lifecycle states (1/2)
	Slide 9: Application lifecycle states (2/2)
	Slide 10: ENTRY POINT
	Slide 11: Sandboxed Application Project
	Slide 12: Prerequisites
	Slide 13: Create the Application project
	Slide 14: Project Structure
	Slide 15: Run My-Application in SIM
	Slide 16: RUN THE Firmware ON DEVICE
	Slide 17: Get the Firmware traces
	Slide 18: Run My-Application On Device
	Slide 19: Shared Interfaces
	Slide 20: Overview
	Slide 21: Transferable Types (1/3)
	Slide 22: Transferable Types (2/3)
	Slide 23: Transferable Types (3/3)
	Slide 24: Proxy Class (1/2)
	Slide 25: Proxy Class (2/2)
	Slide 26: Hand’s On
	Slide 27: Hand’s on Overview
	Slide 28: Update my-application
	Slide 29: Interface Definition (1/2)
	Slide 30: Interface definition (2/2)
	Slide 31: Proxy Implementation
	Slide 32: Use the service
	Slide 33: my-provider
	Slide 34: Import the MY-provider application
	Slide 35: Implement the Service
	Slide 36: Register the Service
	Slide 37: Run the Example in SIM
	Slide 38: Run the Example on device
	Slide 39: Tools
	Slide 40: Admin Console
	Slide 41: Admin Console Commands
	Slide 42

