
1

Testing
Java Code

With MICROEJ SDK 6

© MicroEJ 2024

2

DISCLAIMER

All rights reserved. Information, technical data and tutorials contained in this document are proprietary under copyright law
of MicroEJ S.A. Without written permission from MicroEJ S.A., copying or sending parts of the document or the entire document
by any means to third parties is not permitted. Granted authorizations for using parts of the document or the entire document

do not mean MicroEJ S.A. gives public full access rights.

The information contained herein is not warranted to be error-free.

MicroEJ® and all relative logos are trademarks or registered trademarks of MicroEJ S.A. in France and other Countries.

Other trademarks are proprietary of their respective owners.
Java is Sun Microsystems’ trademark for a technology for developing application software and deploying it in cross-platform, networked environments. When it is used in this site without adding the “ ” symbol, it includes

implementations of the technology by companies other than Sun. Java , all Java-based marks and all related logos are trademarks or registered trademarks of Sun Microsystems Inc, in the United States and other Countries.

V3.0 Aug. 2024© MICROEJ 2024

3

• JUnit Basics

• Create and configure unit tests on a Java project

• Run tests on the Simulator

• Generate a Code Coverage report

• Run tests on a Device

• Advanced Configurations

V3.0 Aug. 2024© MICROEJ 2024

WHAT YOU WILL LEARN

4

JUnit
Academic

V3.0 Aug. 2024© MICROEJ 2024

5

JUnit is a unit testing framework for the Java programming language.

JUnit provides:

- Annotations to structure your test case

- A set of assertion methods useful for writing tests

- Facilities to execute test suites

- Stats for each test:

- Pass / Fail status

- Execution time

V3.0 Aug. 2024© MICROEJ 2024

JUNIT DEFINITION

6

MicroEJ is compliant with a subset of JUnit version 4. MicroEJ JUnit processor supports the
following annotations:

• @Before

• Code executed before each test.

• Name Convention : setUp()

• @After

• Code executed after each test

• Name Convention : tearDown()

• @Test

• Indicates that the method is a test method that should be executed by the JUnit
framework.

• @Test(expected = MyException.class)

• Indicates that the method is a test method that is expected to throw a specific
exception, in this case, “MyException”.

V3.0 Aug. 2024© MICROEJ 2024

ANNOTATIONS (1/2)

7

• @BeforeClass

• Code executed before the first test method

• Name Convention : setUpBeforeClass()

• @AfterClass

• Code executed after the last test method

• Name Convention : tearDownClass()

• @Ignore

• Code ignored by the test suite

V3.0 Aug. 2024© MICROEJ 2024

ANNOTATIONS (2/2)

8

• Junit 4 – Annotations Based

• Each test case entry point must be declared using the
org.junit.Test annotation (@Test before a method
declaration).

• Tests execution order is not guaranteed.
JUnit considers that tests are independent of one
another. It is recommended to write tests that are
independent of one another to avoid issues related to
execution order.

• Refer to JUnit documentation to get details on the
usage of other annotations.

V3.0 Aug. 2024© MICROEJ 2024

JUNIT EXAMPLE

vz

https://junit.org/junit4/

9

In each test, the function and the result are checked by assertion, here is a non-exhaustive list of the
available assertions:

- assertEquals(a,b)

- Return true if ‘a’ is equals with ‘b’ (‘a’ and ‘b’ should be primitive or object)

- assertTrue(a) and assertFalse(a)

- Asserts that a condition is true.

- assertSame(a,b) and assertNotSame(a,b)

- Check if ‘a’ or ’b’ referred to the same object

- assertNull(a) and assertNotNull(a)

- Return true if ‘a’ is NULL or not. ‘a’ must be an Object.

- fail(message)

- Stop the test and raise exception.

Check JUnit Javadoc for more information about available Assertions.

V3.0 Aug. 2024© MICROEJ 2024

ASSERTIONS

https://repository.microej.com/javadoc/microej_5.x/apis/index.html?org/junit/Assert.html

10

• Prefer black-box tests (with a maximum coverage).

• Here is the test packages naming convention:

o Suffix package with .test for black-box tests.

o Use the same package for white-box tests (allow to use classes with package visibility).

• Run tests as often as possible, ideally after each code change. You can execute tests in CI
every day.

• Write a test for any reported bugs, even if it’s fixed.

• Test each methods separately, JUnit stops at the first error.

• Be careful, private methods cannot be tested!

• If you want to test a function but you don’t want to expose it, use the package visibility.

V3.0 Aug. 2024© MICROEJ 2024

GOOD PRACTICES

11

Hand-On

Create and Run tests in an
Add-On Library project

V3.0 Aug. 2024© MICROEJ 2024

12

• MICROEJ SDK 6 (https://docs.microej.com/en/latest/SDK6UserGuide/install.html)

• NXP i.MX RT1170 VEE Port (https://github.com/MicroEJ/nxp-vee-imxrt1170-evk/tree/main)

• This training has been tested on:

• Android Studio IDE with MICROEJ SDK plug-in 0.6.0.

• NXP i.MX RT1170 VEE Port 2.2.0.

V3.0 Aug. 2024© MICROEJ 2024

PREREQUISITES

https://docs.microej.com/en/latest/SDK6UserGuide/install.html
https://github.com/MicroEJ/nxp-vee-imxrt1170-evk/tree/main

13

The creation of a project with Android Studio is done as
follows:

• Click on File > New > Project….

• Select Generic > New MicroEJ project.

• Click on the Next button.

• Fill the name of the project in the Name field.

• Fill the package name of the project in the Package
name field.

• Select the location of the project in the Save location
field.

• Keep the default Android SDK in the Minimum SDK
field.

• Select Kotlin for the Build configuration language
field.

V3.0 Aug. 2024© MICROEJ 2024

CREATE AN ADD-ON LIBRARY PROJECT (1/2)

14

• Click on Next button.

• Fill the group of the artifact to publish in the Group
field.

• Fill the version of the artifact to publish in the
Version field.

• Select the Addon-Library module type among in the
drop-down list.

• Click on Finish button.

V3.0 Aug. 2024© MICROEJ 2024

CREATE AN ADD-ON LIBRARY PROJECT (1/2)

15

• Right-Click on the
com.microej.example.mylibrary package.

• Select New > Java Class:

• Create the Calculator class.

V3.0 Aug. 2024© MICROEJ 2024

ADD CLASSES TO THE PROJECT (1/2)
• Add the following code:

public class Calculator {
 private final int a, b;

 /**
 * Calculator class providing methods to compute the sum and
 * the division of 2 parameters.
 * @param a the 1st parameter
 * @param b the 2nd parameter
 */
 public Calculator(int a, int b) {
 this.a = a; this.b = b;
 }

 /**
 * @return the sum of ‘a’ and ‘b’
 */
 public int sum() {
 return this.a + this.b;
 }

 /**
 * @return the division of ‘a’ and ‘b’
 */
 public int divide() {
 return this.a / this.b;
 }
}

16

• Right-Click on the
com.microej.example.mylibrary package.

• Select New > Java Class:

• Create the Statistics class.

V3.0 Aug. 2024© MICROEJ 2024

ADD CLASSES TO THE PROJECT (2/2)
• Add the following code:

public class Statistics {

 /* Prevent class initialization */
 private Statistics(){

 }

 /**
 * Computes the mean of an array.
 * @param numbers array of numbers
 * @return mean of the array
 */
 public static int mean(int[] numbers) {
 if (numbers.length == 0) {
 throw new IllegalArgumentException("Array cannot be empty");
 }
 int sum = 0;
 for (int num : numbers) {
 sum += num;
 }
 return sum / numbers.length;
 }
}

17

Running Tests On Simulator

V3.0 Aug. 2024© MICROEJ 2024

18

• Tests can be executed on the Simulator. They are run on a target VEE Port and generate a
JUnit XML report.

• Executing tests on the Simulator allows to check the behavior of the code in an environment
similar to the target device but without requiring the board.
This solution is therefore less constraining and more portable than testing on the board.

V3.0 Aug. 2024© MICROEJ 2024

TEST ON SIMULATOR

19

The configuration of the testsuite of a project must be defined inside the following block in the build.gradle.kts file:

This piece of configuration is the minimum configuration required to define a testsuite on the Simulator:

• (1): configures all the testsuites of the project.

• (2): configures the built-in test suite provided by Gradle. Use this testsuite to configure the tests on the Simulator.

• (3): declares that this testsuite uses the MicroEJ Testsuite Engine. By default, the MicroEJ Testsuite Engine executes
the tests on the Simulator.

• (4): adds the dependencies required by the tests. The first line declares a dependency to the code of the project. The
second line declares a dependency on the edc Library. The third line declares a dependency to the JUnit API used to
annotate Java Test classes. Finally the fourth line declares a dependency to a required JUnit library.

Note: the testsuite is already configured when creating an Add-On library project.

V3.0 Aug. 2024© MICROEJ 2024

TESTSUITE CONFIGURATION

testing {
 suites { // (1)
 val test by getting(JvmTestSuite::class) { // (2)
 microej.useMicroejTestEngine(this) // (3)

 dependencies { // (4)
 implementation(project())
 implementation("ej.api:edc:1.3.5")
 implementation("ej.library.test:junit:1.10.0")
 implementation("org.junit.platform:junit-platform-launcher:1.8.2")
 }
 }
 }
}

20

CREATE THE TEST CLASS

• Right-Click on the src/test/java folder.

• Select New > Package:

• Create the com.microej.example.mylibrary
package.

• Select New > Java Class:

• Create the CalculatorTest class.

CREATE A TEST CASE

• In the CalculatorTest editor, press Alt + Insert.

• Select TestMethod > Junit 4.

• Call it sumTest.

• Add the following code to test the sum()
function of the Calculator class.

• The CalculatorTest class should look like that:

V3.0 Aug. 2024© MICROEJ 2024

ADD CALCULATOR TEST CLASS

assertEquals(3, new Calculator(1, 2).sum());

21

CREATE THE TEST CLASS

• Right-Click on the
com.microej.example.mylibrary package.

• Select New > Java Class.

• Create the StatisticsTest class.

CREATE A TEST CASE

• In the StatisticsTest editor, press Alt + Insert.

• Select TestMethod > Junit 4.

• Call it meanTest.

• Add the following code to test the meanTest()
function of the Statistics class:

V3.0 Aug. 2024© MICROEJ 2024

ADD STATISTICS TEST CLASS

/**
 * Tests the {@link Statistics#mean(int[])} method with a valid data set.
 * Asserts that the mean is not equal to 0 and checks that the calculated mean
 * is equal to the expected value of 6.
 */
@Test
public void meanTest() {
 int[] data = {10,5,5,10,2,4};
 assertNotEquals(0, Statistics.mean(data));
 assertEquals(6, Statistics.mean(data));
}

22

Before running tests, at least one target VEE Port must be configured.
If several VEE Ports are defined, the testsuite is executed on each of them.

In build.gradle.kts, add the NXP i.MX RT1170 VEE Port 2.2.0 (or later) in the dependencies section:

V3.0 Aug. 2024© MICROEJ 2024

SETUP A VEE PORT

dependencies {
 implementation("ej.api:edc:1.3.5")
 implementation("ej.library.test:junit:1.10.0")

 //Uncomment the microejVee dependency to set the VEE Port or Kernel to use
 microejVee("com.nxp.vee.mimxrt1170:evk_platform:2.2.0")
}

23

Once the testsuite is configured, it can be run thanks to the test Gradle task.
This task is bound to the check and the build Gradle lifecycle tasks, which means that the tests are also
executed when launching one of these tasks.

To execute the tests, double-click on the test task in the Gradle tasks view:

The Testsuite engine launches the available test cases on Simulator. The status can be checked in the
console view:

V3.0 Aug. 2024

© MICROEJ 2024

EXECUTE THE TESTS

24

By default, each test class is executed in a dedicated instance of the Simulator.

A dedicated testsuite report is generated per test class (XML format):

Those reports are aggregated in a single testsuite report available in XML format in the following folder:

build/testsuite/output/YYYYMMDD-HHMM-SS/testsuite-report.xml

V3.0 Aug. 2024© MICROEJ 2024

TESTSUITE REPORT (1/2)

25

In case a failing test, the exception trace can be seen in the report:

V3.0 Aug. 2024© MICROEJ 2024

TESTSUITE REPORT (2/2)

26

• Add a test that should throw an exception, e.g. a divide by zero:

• Run the test task.

• The test ran successfully:

V3.0 Aug. 2024© MICROEJ 2024

EXCEPTION HANDLING IN A TEST

@Test(expected = ArithmeticException.class)
public void testDivideByZero() {
 assertEquals(new Calculator(1, 0).divide(), 3); // 1/0 is invalid
}

27

Generating the Code Coverage
Report

V3.0 Aug. 2024© MICROEJ 2024

28

The Code Coverage analysis allows to:

• List used and unused source code.

• Find untested or dead code.

• HTML report generation.

To generate the Code Coverage files (.cc) for each test, update the build.gradle.kts file as follows:

V3.0 Aug. 2024© MICROEJ 2024

ENABLE CODE COVERAGE ANALYSIS

testing {
 suites {
 val test by getting(JvmTestSuite::class) {
 microej.useMicroejTestEngine(this)

 targets {
 all {
 testTask.configure {
 doFirst {
 systemProperties["microej.testsuite.properties.s3.cc.activated"] = "true"
 systemProperties["microej.testsuite.properties.s3.cc.thread.period"] = "15"
 }
 }
 }
 }

 dependencies {
 implementation(project())
 implementation("ej.api:edc:1.3.5")
 implementation("ej.library.test:junit:1.10.0")
 implementation("org.junit.platform:junit-platform-launcher:1.8.2")
 }
 }
 }
}

29

1. Run the test task.
The testsuite engine generates
Code Coverage files (.cc) for each
test class:

V3.0 Aug. 2024© MICROEJ 2024

GENERATE THE CODE COVERAGE REPORT (1/2)

NOTE: this process will be automatized in the next
releases of MICROEJ SDK 6.

2. Create a cc/ folder in the MyLibrary/ folder.

3. Copy all the .cc files inside:

4. Open a Command Prompt console in the MyLibrary folder, run
the following command:

.\gradlew.bat execTool ^
 --name=codeCoverageAnalyzer ^
 --toolProperty="cc.dir=C:\PATH_TO_PROJECT\MyLibrary\cc" ^
 --toolProperty="cc.includes=com.microej.example.*" ^
 --toolProperty="cc.excludes=" ^
 --toolProperty="cc.src.folders=C:\PATH_TO_PROJECT\MyLibrary\app\src\main\java" ^
 --toolProperty="cc.html.dir=C:\PATH_TO_PROJECT\MyLibrary\cc\htmlReport"

30

Console output after running the Code Coverage report generation:

The report is generated in the MyLibrary/cc/html/ folder.

V3.0 Aug. 2024© MICROEJ 2024

GENERATE THE CODE COVERAGE REPORT (2/2)

31

RESULTS ANALYSIS

Poor code coverage can be seen in the following
cases:

• Calculator class:

• The divide() method didn’t return properly
during the test (it threw an exception)
Implement an other test to fully cover this
method. See ByteCode view:

• MyClass class: no tests have been implemented
for this class. Either implement the tests or
exclude the class from the report generation.

• Statistics class: private constructors can’t be
excluded from the code coverage analysis.

V3.0 Aug. 2024© MICROEJ 2024

CODE COVERAGE REPORT ANALYSIS

32

Running Tests on Device

V3.0 Aug. 2024© MICROEJ 2024

33

The configuration is similar to the one used to execute a testsuite on the Simulator.
Update the configuration as follows in build.gradle.kts:

• Replace the line:
microej.useMicroejTestEngine(this) by microej.useMicroejTestEngine(this, TestTarget.EMB)

• Add the import statement at the beginning of the file:

• import com.microej.gradle.plugins.TestTarget

V3.0 Aug. 2024© MICROEJ 2024

TESTSUITE CONFIGURATION (1/2)

34

• Add the required properties as follows:

V3.0 Aug. 2024

TESTSUITE CONFIGURATION (2/2)

testing {
 suites {
 val test by getting(JvmTestSuite::class) {
 microej.useMicroejTestEngine(this, TestTarget.EMB)

 targets {
 all {
 testTask.configure {
 doFirst {
 systemProperties["microej.testsuite.properties.s3.cc.activated"] = "true"
 systemProperties["microej.testsuite.properties.s3.cc.thread.period"] = "15"

 systemProperties = mapOf(
 // Enable the build of the Executable
 "microej.testsuite.properties.deploy.bsp.microejscript" to "true",
 "microej.testsuite.properties.microejtool.deploy.name" to "deployToolBSPRun",
 // Tell the testsuite engine that the VEE Port Run script redirects execution traces
 // Configure the TCP/IP address and port if the VEE Port Run script
 does not redirect execution traces
 "microej.testsuite.properties.testsuite.trace.ip" to "localhost",
 "microej.testsuite.properties.testsuite.trace.port" to "5555"
)
 …

© MICROEJ 2024

35

Start the Serial to Socket Transmitter tool to redirect the execution traces:

• Open a Command Prompt in the MyLibrary folder.

• Run the following command, edit the comm.port property according to your VEE Port COM port:

.\gradlew.bat execTool --name=serialToSocketTransmitter ^

--toolProperty="serail.to.socket.comm.port=COM7" ^

--toolProperty="serail.to.socket.comm.baudrate=115200" ^

--toolProperty="serail.to.socket.server.port=5555" ^

--console plain

Run the tests on device:

• Run the test task.

• Tests are executed on the target.
Test results can be checked in testsuite-report.xml:

V3.0 Aug. 2024© MICROEJ 2024

RUN THE TESTS ON DEVICE

36

Advanced
Configurations

V3.0 Aug. 2024© MICROEJ 2024

37

Gradle automatically executes all the tests located in the test source folder. If you want to execute only a
subset of these tests, Gradle provides 2 solutions:

• Filtering configuration in the build script file.

• Filtering option in the command line.

To filter the tests in build.gradle.kts, add the following code

In that case, only the StatisticsTest class will be executed.

Wildcard can be used to select a subset of tests (e.g. com.microej.example.*)
Other methods are available for test filtering, such as excludeTestsMatching to exclude tests.

Refer to the Filter the Tests documentation for more information.

V3.0 Aug. 2024© MICROEJ 2024

FILTER THE TESTS (1/2)

targets {
 all {
 testTask.configure {
 doFirst {
 systemProperties["microej.testsuite.properties.s3.cc.activated"] = "true"
 systemProperties["microej.testsuite.properties.s3.cc.thread.period"] = "15"

 filter {
 includeTestsMatching("StatisticsTest")
 }

https://docs.microej.com/en/latest/SDK6UserGuide/testProject.html#filter-the-tests

38

Gradle allows to filter the tests from the command line directly, thanks to the --tests option.

This can be convenient to quickly execute one test for example, without requiring a change in the build
script file:

• Open a Command Prompt in the MyLibrary folder.

• Run the following command to run the CalculatorTest:

• .\gradlew.bat test --tests CalculatorTest

• The testsuite report is available in the build/ folder, only CalculatorTest has been executed:

Note: the test class must not be excluded in the build script file, otherwise the test will fail.

V3.0 Aug. 2024© MICROEJ 2024

FILTER THE TESTS (2/2)

39

Standalone Application Options can be defined to configure the Application or Library being tested. They can be defined
globally, to be applied on all tests, or specifically to a test.

• Inject Application Options Globally: it must be prefixed by microej.testsuite.properties. and passed as a System
Property, either in the command line or in the build script file.
For example, to inject the property core.memory.immortal.size:

• In the command line with -D:
.\gradlew.bat test -Dmicroej.testsuite.properties.core.memory.immortal.size=8192

• In the build script file:

• Inject Application Options For a Specific Test:

• Add a .properties file in the src/test/resources folder
with the same name as the generated test case file
and within the same package than the test file.

V3.0 Aug. 2024© MICROEJ 2024

INJECT APPLICATION OPTIONS

https://docs.microej.com/en/latest/ApplicationDeveloperGuide/standaloneApplication.html#application-options

40

Visit the Test a Project documentation to learn more about:

• Running tests on a J2SE VM (useful when the usage of mock libraries like Mockito is needed).

• Mixing tests:

o Mixing tests on the Simulator and on a device.

o Mixing tests on the Simulator and on a J2SE VM.

• Advanced Configuration for the Testsuite engine.

V3.0 Aug. 2024© MICROEJ 2024

GOING FURTHER…

https://docs.microej.com/en/latest/SDK6UserGuide/testProject.html

41

THANK YOU
f o r y o u r a t t e n t i o n !

	Slide 1
	Slide 2
	Slide 3: What you will learn
	Slide 4: JUnit Academic
	Slide 5: JUnit definition
	Slide 6: Annotations (1/2)
	Slide 7: Annotations (2/2)
	Slide 8: JUnit Example
	Slide 9: Assertions
	Slide 10: Good practices
	Slide 11: Hand-On
	Slide 12: PREREQUISITES
	Slide 13: Create an Add-on library project (1/2)
	Slide 14: Create an Add-on library project (1/2)
	Slide 15: Add Classes to the project (1/2)
	Slide 16: Add Classes to the project (2/2)
	Slide 17: Running Tests On Simulator
	Slide 18: Test on Simulator
	Slide 19: Testsuite configuration
	Slide 20: Add Calculator Test class
	Slide 21: Add Statistics Test class
	Slide 22: Setup a VEE Port
	Slide 23: Execute the Tests
	Slide 24: Testsuite report (1/2)
	Slide 25: Testsuite report (2/2)
	Slide 26: Exception Handling in a Test
	Slide 27: Generating the Code Coverage Report
	Slide 28: Enable code coverage analysis
	Slide 29: Generate the code coverage report (1/2)
	Slide 30: Generate the code coverage report (2/2)
	Slide 31: Code coverage report analysis
	Slide 32: Running Tests on Device
	Slide 33: Testsuite configuration (1/2)
	Slide 34: Testsuite configuration (2/2)
	Slide 35: Run the tests on device
	Slide 36: Advanced Configurations
	Slide 37: Filter the Tests (1/2)
	Slide 38: Filter the Tests (2/2)
	Slide 39: Inject Application Options
	Slide 40: Going further…
	Slide 41

