Delegate blocking
operations with
ASYNC WORKER

Focus on the File System
use case

© MicrokJ 2023

2\ MICROEJ,

OVE RVI EW S MICROEJ

* MicroEJ Async Worker is a C Component that helps to delegate blocking operations from VEE
RTOS context to another RTOS task context.

* This component relies on the SNI mechanism.

* This presentation describes the Async Worker and illustrates its use with in File System
implementation.

* Async Worker is available on MicroEJ Developer Repository.

© MICROEJ 2023 V1.0 Mar. 2023 2

https://docs.microej.com/en/latest/VEEPortingGuide/sni.html
https://forge.microej.com/artifactory/webapp/#/artifacts/browse/tree/General/microej-central-repository-release/com/microej/clibrary/platform/bsp-microej-async-worker/0.2.1

BLOCKING SCENARIO & MICROEJ.

* Create afile on the filesystem partition (or SD Card):

2* MicroEJ Core
Engine

(T) peaayy ule

LLFS_IMPL_ create(..)

»

Call
CFSAPI
(e.g. FatFS
f_open(...))

Calling a C function in the VEE
RTOS context blocks all the Core
Engine threads.

awil]

status

The MicroEJ VEE RTOS task

© MICROEJ 2023 V1.0 Mar. 2023 3

NON-BLOCKING SCENARIO

* Create afile on the filesystem partition (or SD Card):

=
4]
=3
—
>
=
@
(2]
a
=

The MicroEJVEE RTOS task

N\ MicroEJ Core
IEngine

LLFS_IMPL_create(..)
> Delegate to RTOS task

SNI_getCurrentJavaThreadID() : 3
SNI_suspendCurrentJavaThread(callback)

SNI_resumeJlavaThreadwWithArg(3, status)

f
|
|
|

& MICROEJ.
Call
CFS API
(e.g. FatFS .
f_open(...)) %’

I"cr:lllbalck()

|
| status

* Blocking actions are delegated to a dedicated RTOS task.
* The Async Worker can be used to ease the implementation of this mechanism.

© MICROEJ 2023

Native RTOS task

V1.0 Mar. 2023 4

& MICROEJ.

Non-Blocking
Scenario Using
Async-Worker

ASYN C'WORKER SCENARIO S: MICROE.J

* Create afile on the filesystem partition (or SD Card):

\MicroEJ Core
|Engine

LLFS_IMPL_create(..)
* MICROEJ_ASYNC_WORKER_allocate_job
* MICROEJ_ASYNC_WORKER_async_exec

I

. LLFS_IMPL create action

- Call CFS API
(e.g. FatFS

(T) peaayy ule

f_open(...)

SNI_resumeJavaThreadWithArg(3, status)

callback()

LLFS_IMPL create

_on_done

status

el el B sttt sl et

The MicroEJ VEE RTOS task Native RTOS task (async-
worker)

© MICROEJ 2023 V1.0 Mar. 2023 6

ASYNC-WORKER SIMPLIFIED FLOW DIAGRAM (1/3) ©were=

MicroJvm
(RTOS Task)

: LLFS IMPL create 1 1. Allocate the job
: b J, | that will execute the
: I FS “create” action.
| |MICRDEJ_ASYNC_WDRKER_aIIocate JOD}
1 I Suspend the calling
| I Core Engine thread
= MICROEJ ASYNC WORKER_async exec I
I] and return.
I [SNI_su spendCurrentdavaThreadWithCallback(on_done_callback) J I
I I
l l '
I [OSAL_queue_post(job) | |
} ’ I
I Return to SNI, current Java thread is
I suspended I
MICROEJ_ASYNC_WORKER_loop will |
I resume the Java thread after executing
| the action |

L L S S 5 S e S A) i i -

© MICROEJ 2023 V1.0 Mar. 2023 7

ASYNC-WORKER SIMPLIFIED STATE DIAGRAM (2/3) ©mew=

2. Execute the FS T MICROELASYNG WORKER loop
“create” action in the 4 T e e e e e .
Async Worker RTOS | |\OSAL_queue_fetch(OSAL_INFINITE_TIME) }1— |
task. I :
Resume the suspended | I
Core Engine thread. I | scionn | |
' |
{| I
: [SNI_resumeJavaThread{id)] :
' |
' |
' |
N e e - e e e e e e . L 4

© MICROEJ 2023 V1.0 Mar. 2023 8

ASYNC-WORKER SIMPLIFIED STATE DIAGRAM (2/3) ©mew=

r ————————
| [SNI on done J |
callback I
: ' I 3. TheCoreEngine
| [MICRO EJ_ASYNC_WORKER_free Job]
! T I thread calls the SNI
I | feumioSwhawent | | resume callback to get

———————— 4| the status of'the action.
Async Worker job is freed.

© MICROEJ 2023 V1.0 Mar. 2023 9

& MICROE)J.

Implementation Example

Extracted from STM32F7508-DK
VEE PORT 1.5.0

© MICROEJ 2023 a 23 10

& MICROE)J.

NATIVE FUNCTION IMPLEMENTATION

int32_t LLFS_IMPL_create(uint8 t* path){
MICROEJ_ASYNC_WORKER_job_t* job = MICROE]_ASYNC WORKER allocate_job(&fs_worker, (SNI_callback)LLFS_IMPL_create);

if(job == NULL){ l
// No job available, either:
// - wait for a job to be available and this function to be executed again, Retrnynwctk)nir1ca56?thej()b

// - or an exception is pending

return LLFS_NOK; cannot be allocated on the

\ 4

} worker.
FS_path_operation_t* params = (FS_path_operation_t*)job->params; »> Sethk)
if(LLFS_set_path_param(path, (uint8_t*)¶ms->path) != LLFS_OK){ parameters.
SNI_throwNativeIOException(LLFS_NOK, "Path name too long");
}
else{
MICROE]J_ASYNC_WORKER_status_t status = MICROEJ_ASYNC_WORKER_async_exec(&fs_worker, job, LLFS_IMPL_create_action, (SNI_callback)LLFS_IMPL_create_on_done);
if(status == MICROEJ_ASYNC_WORKER_OK){
// Wait for the action to be done
return SNI_IGNORED_RETURNED_VALUE; Llcetucned value not used
} // else an error occurred and MICROEJ_ASYN(WORKER_async_exec has thrown a SNI exception
i o Return value not u;ed asynchronously in once the action is
MICROEJ_ASYNC_WORKER_free_job(&fs_worker, job); as the SNI thread is the worker's context. done and the SNI
return LLFS_NOK; — suspended. It’s real thread is resumed.

return value is set by
the SNI callback.

Source code available in LLES impl.c

© MICROEJ 2023 V1.0 Mar.2023 11

https://github.com/MicroEJ/VEEPort-STMicroelectronics-STM32F7508-DK/blob/1.5.0/stm32f7508_freertos-bsp/projects/microej/fs/src/LLFS_impl.c#L194

& MICROE)J.

ACTION FUNCTION IMPLEMENTATION

void LLFS_IMPL_create_action(MICROEJ_ASYNC_WORKER job_t* job) { :
Getjob parameters

FS_create_t* param = (FS_create_t*) job->params; ——————p = seof by the SNI| native
FIL fp = {0}; function
FRESULT res = FR_OK; :

uint8 t* path = (uint8_t*)¶m-»path;

res = f_open(&Ffp, (TCHAR*)path, FA CREATE_NEW); Perform blOCkmg/
if (res == FR_OK) { long APl execution.
res = T _close(&fp);
if {r‘es == FH_GK} {
param->result = LLFS_OK;
1 else {
param->result = LLFS_NOK;
param->error_code = res;
param-»error_message = "f_close failed";

} Return data / status
} else if (res == FR_EXIST) { o inthe Samejob
param->result = LLFS_NOT_CREATED;
param->error_code = res; parameters
param-rerror_message = "file exists"; structure.
} else {
param->result = LLFS_NOT_CREATED;
param->error_code = res;

param->error_message = "f_open failed";
} -

LLFS_DEBUG_TRACE("[%s:%u] create file %¥s (err %d)\n", _ fumc__, _ LINE__, path, res);
}

Source code available in fs_helper_FatFs.c

© MICROEJ 2023 V1.0 Mar.2023 12

https://github.com/MicroEJ/VEEPort-STMicroelectronics-STM32F7508-DK/blob/1.5.0/stm32f7508_freertos-bsp/projects/microej/fs/src/LLFS_File_impl.c

& MICROE)J.

SNI CALLBACK IMPLEMENTATION

static int32 t LLFS_IMPL_create_on_done(uint8 t* path){ .
MICROE]_ASYNC_WORKER_job_t* job = MICROE]_ASYNC_WORKER_get job_done(): Get job parameters
FS create t* params = (FS _create t*)job-»params; that contains the

A 4

int32 t result = params->result: result of the action.
if(result == LLFS5_NOK){

// Exception

SNI_throwhativeIOException{params->error_code, params->error_message):

}
MICROE] _ASYNC WORKER free job(&fs worker, job);

return result; — o Retum to the Core
} Engine thread.

Source code available in LLES _impl.c

© MICROEJ 2023 V1.0 Mar.2023 13

https://github.com/MicroEJ/VEEPort-STMicroelectronics-STM32F7508-DK/blob/1.5.0/stm32f7508_freertos-bsp/projects/microej/fs/src/LLFS_impl.c#L194

& MICROEJ.

APPENDIX

© MICROEJ 2023 V1.0 Mar.2023 14

ASYNC-WORKER SPECIFICATION (1/6) @ microes

Declaration

The worker is declared statically using the MICROEJ_ASYNC_WORKER_worker_declare macro, containing
the following parameters:

« _name: Name of the async-worker variable.

* _job_count: Maximum number of jobs that can be allocated for this worker. Since a job represents an
asynchronous execution requested from an SNI native, and it blocks the caller Java thread, the job
count parameter can be interpreted as “Maximum number of Java threads that can call simultaneously
native functions running on the same async-worker, e.g. filesystem native functions”.

« _param_type: An union type to hold all the parameters structure.

« _waiting_list_size: Waiting list size, holding a number of Java threads that are suspended when no job
is available. This parameter can be interpreted as “If more Java threads than _job_count are calling
native functions running on the same async-worker, e.g. filesystem native functions, they will be
suspended and added to a waiting FIFO of this size, and will be resumed once a free job is available on
the worker.

© MICROEJ 2023 V1.0 Mar.2023 15

ASYNC-WORKER SPECIFICATION (2/6) @ microes

Initialization

During a MicroEJ Adaption Layer initialization at BSP side, the async-worker is initialized using the
function MICROEJ_ASYNC_WORKER_initialize. Initialization parameters:

« async_worker: The worker to initialize, declared previously with
MICROEJ_ASYNC_WORKER_worker_declare.

* name: The worker name, will be also the name of all RTOS components created by the worker: task,
queue, mutex.

» stack: The worker’s task stack, declared previously with OSAL_task_stack_declare.
 priority: The worker task priority.

Note

A worker is initialized once, usually during a native initialization function, e.g.
Java_com_is2t_java_io_FileSystem_initializeNative, and active for the whole lifecycle of the application.

© MICROEJ 2023 V1.0 Mar.2023 16

ASYNC-WORKER SPECIFICATION (3/6) @ microes

Allocate job

After initialization of the worker, it is ready to receive jobs from any native function implementation of the
respective module, e.g. Java_com_is2t_java_io_FileSystem_createNative.

First, the native function must allocate a job on the worker, used to pass parameters to/from SNI context
and the worker RTOS context. Job allocation is done by MICROEJ_ASYNC_WORKER_allocate_job, and
requires the following parameters:

« async_worker: The worker on which to allocate jobs, declared previously with
MICROEJ_ASYNC_WORKER_worker_declare.

« sni_retry_callback: If there is no job available, the current Java thread is suspended, added to the
waiting list and NULL is returned. Then, when a job is available, the Java thread is resumed and the
function sni_retry_callback is called. Usually the sni_retry_callback function argument is the current
SNI function itself.

© MICROEJ 2023 V1.0 Mar.2023 17

ASYNC-WORKER SPECIFICATION (4/6) @ wicroe,

Execute job

After allocating a job on the worker, e.g. Java_com_is2t_java_io_FileSystem_createNative, the job is ready
to be executed asynchronously. There are two APIs that can be used for that, with slightly different
behavior:

* MICROEJ_ASYNC_WORKER_async_exec_no_wait: This function executes the given job asynchronously,
on the worker RTOS task. It does not block and returns immediately. When the job is finished, the job is
automatically released by the async worker RTOS task. This function can be called in the scenario “fire-
and-forget”, when the SNI thread does not need to wait for it to finish its execution and does not need
its returned data.

* MICROEJ_ASYNC_WORKER_async_exec: This function executes the given job asynchronously, on the
worker RTOS task. It does not block and returns immediately but it suspends the execution of the
current Java thread until the job is finished. When the job is finished, the SNI callback
on_done_callback is called before going back to Java. If the job is not used anymore, the callback must
release it explicitly by calling MICROEJ_ASYNC_WORKER_free_job.

© MICROEJ 2023 V1.0 Mar.2023 18

ASYNC-WORKER SPECIFICATION (5/6) @ microes

Execute parameters

The job execution needs the following parameters:

» async_worker: The worker used to execute the given job. Must be the same that the one used to
allocate the job.

* job: The job to execute, must have been allocated with MICROEJ_ASYNC_WORKER_allocate_job
« action: The function to execute asynchronously.
* on_done_callback: The SNI_callback called when the job is done.

© MICROEJ 2023 V1.0 Mar.2023 19

ASYNC-WORKER SPECIFICATION (6/6) @ microes

Other APIs

* MICROEJ_ASYNC_WORKER_free_job: Frees a job previously allocated with
MICROEJ_ASYNC_WORKER_allocate_job.

* MICROEJ_ASYNC_WORKER_get_job_done: Returns the job that has been executed.

© MICROEJ 2023 V1.0 Mar.2023 20

ASYNC WORKER STATE DIAGRAM © mickoEs

MicroJvm
(RTOS Task)
Inputs Native function

async_worker: i
- _name
- _job_count MICROEJ_ASYNC_WORKER _initialize
- _param_type
- _waiting_list_size 0S mutex used for internal critical sections
name >

0S queue used for transfer of jobs > MICROEJ_ASYNC_WORKER _loop
stack (RTOS Task)

0OS task used for execution of jobs

priority (
oy ' OSAL_gueue_fetch(OSAL_INFINITE_TIME) ’4—

Return to SNI

‘ Native function }------------------------------_
.
.

- action(job)
.
[MICROEJ_ASYNC_WORKER_a!Iocate Job] i
.
.
.

Free Job N
A\::ileabfe7 ° (>[SN1_ llrrentJavaThreadWlthCalIback(snl_re(ry_callback)] :
g .
l . SNI_resumeJavaThread(id)
Return to SNI, current Java thread is . []
MICROEJ_ASYNC_WORKER_async_exec suspended and added to the worker's .
47 waiting list .
.
MICROEJ_ASYNC_WORKER_free_job b
[SNI_suspendCurrentJavaThreauernCaIlback(cn_done_callback)] will resume mo‘:) Java thread when a free A
jobis

v ——

Resuming the Java

thread viill cause the
SNI on done callback to”
be called ¥

8808 8 8 8 80 Q

’ OSAL_queue_post(job) 1

SNI on done callback LI T T BB

Return to SNI, current Java thread is
suspended

MICROEJ_ASYNC_WORKER_loop will

resume the Java thread after executing [MICROE.ASYNC_WORKER_free_ job]

the action
T R St Java Thiead
Retur to SNI, current Java ‘|<2 1d In Waiting
thread is resumed | No List?

N
Resuming the Java

thread will cause the
Yes SNI retry callback to bg
called

SNI_resumeJavaThread(id)p = = = = = o

© MICROEJ 2023 V1.0 Mar.2023 21

THANK YOU

MICROE)J,

	Slide 1
	Slide 2: Overview
	Slide 3: Blocking SCENARIO
	Slide 4: NON-Blocking SCENARIO
	Slide 5: Non-Blocking Scenario Using Async-Worker
	Slide 6: ASYNC-WORKER SCENARIO
	Slide 7: ASYNC-WORKER simplified Flow diagram (1/3)
	Slide 8: ASYNC-WORKER simplified state diagram (2/3)
	Slide 9: ASYNC-WORKER simplified state diagram (2/3)
	Slide 10: Implementation Example
	Slide 11: NATIVE FUNCTION implementation
	Slide 12: ACTION FUNCTION implementation
	Slide 13: SNI CALLBACK Implementation
	Slide 14: APPENDIX
	Slide 15: ASYNC-WORKER SPECIFICATION (1/6)
	Slide 16: ASYNC-WORKER SPECIFICATION (2/6)
	Slide 17: ASYNC-WORKER SPECIFICATION (3/6)
	Slide 18: ASYNC-WORKER SPECIFICATION (4/6)
	Slide 19: ASYNC-WORKER SPECIFICATION (5/6)
	Slide 20: ASYNC-WORKER SPECIFICATION (6/6)
	Slide 21: ASYNC Worker state diagram
	Slide 22

