
1

Delegate blocking
operations with
ASYNC WORKER

Focus on the File System
use case

© MicroEJ 2023

2

• MicroEJ Async Worker is a C Component that helps to delegate blocking operations from VEE
RTOS context to another RTOS task context.

• This component relies on the SNI mechanism.

• This presentation describes the Async Worker and illustrates its use with in File System
implementation.

• Async Worker is available on MicroEJ Developer Repository.

V1.0 Mar. 2023© MICROEJ 2023

OVERVIEW

https://docs.microej.com/en/latest/VEEPortingGuide/sni.html
https://forge.microej.com/artifactory/webapp/#/artifacts/browse/tree/General/microej-central-repository-release/com/microej/clibrary/platform/bsp-microej-async-worker/0.2.1

3

• Create a file on the filesystem partition (or SD Card):

V1.0 Mar. 2023© MICROEJ 2023

BLOCKING SCENARIO

3

Call
C FS API

(e.g. FatFS
f_open(…))

The MicroEJ VEE RTOS task

T
im

e

LLFS_IMPL_create(…)

status

MicroEJ Core
Engine

public void myFunction() {

 File myFile = new File("path/myfile.txt");

 . . .

T
h

read
 3

2
T

h
read

 2

1
M

a
in

 th
read

 (1)

Calling a C function in the VEE
RTOS context blocks all the Core
Engine threads.

4

• Create a file on the filesystem partition (or SD Card):

• Blocking actions are delegated to a dedicated RTOS task.

• The Async Worker can be used to ease the implementation of this mechanism.

V1.0 Mar. 2023© MICROEJ 2023

NON-BLOCKING SCENARIO

5

Non-Blocking
Scenario Using

Async-Worker

V1.0 Mar. 2023© MICROEJ 2023

6

• Create a file on the filesystem partition (or SD Card):

V1.0 Mar. 2023© MICROEJ 2023

ASYNC-WORKER SCENARIO

3

The MicroEJ VEE RTOS task

T
im

e

LLFS_IMPL_create(…)
• MICROEJ_ASYNC_WORKER_allocate_job
• MICROEJ_ASYNC_WORKER_async_exec

MicroEJ Core
Engine

public void myFunction()

{

 File myFile = new

 File("path/myfile.txt");

T
h

read
 3

2
T

h
read

 2

1
M

a
in

 th
read

 (1)

LLFS_IMPL_create_action
→ Call C FS API

(e.g. FatFS
f_open(…))

callback()

SNI_resumeJavaThreadWithArg(3, status)

LLFS_IMPL_create
_on_done

status

1 2

Native RTOS task (async-
worker)

7V1.0 Mar. 2023© MICROEJ 2023

ASYNC-WORKER SIMPLIFIED FLOW DIAGRAM (1/3)

1. Allocate the job
that will execute the
FS “create” action.

Suspend the calling
Core Engine thread
and return.

8V1.0 Mar. 2023© MICROEJ 2023

ASYNC-WORKER SIMPLIFIED STATE DIAGRAM (2/3)

2. Execute the FS
“create” action in the
Async Worker RTOS
task.

Resume the suspended
Core Engine thread.

9V1.0 Mar. 2023© MICROEJ 2023

ASYNC-WORKER SIMPLIFIED STATE DIAGRAM (2/3)

3. The Core Engine
thread calls the SNI
resume callback to get
the status of the action.

Async Worker job is freed.

10

Implementation Example

Extracted from STM32F7508-DK
VEE PORT 1.5.0

V1.0 Mar. 2023© MICROEJ 2023

11

NATIVE FUNCTION IMPLEMENTATION

Retry function in case the job
cannot be allocated on the

worker.

Set job
parameters.

Function executed
asynchronously in

the worker’s context.

SNI Callback called
once the action is
done and the SNI

thread is resumed.

Return value not used
as the SNI thread is
suspended. It’s real

return value is set by
the SNI callback.

V1.0 Mar. 2023© MICROEJ 2023

Source code available in LLFS_impl.c

https://github.com/MicroEJ/VEEPort-STMicroelectronics-STM32F7508-DK/blob/1.5.0/stm32f7508_freertos-bsp/projects/microej/fs/src/LLFS_impl.c#L194

12

ACTION FUNCTION IMPLEMENTATION

Get job parameters
set by the SNI native

function.

Perform blocking /
long API execution.

Return data / status
in the same job

parameters
structure.

V1.0 Mar. 2023© MICROEJ 2023

Source code available in fs_helper_FatFs.c

https://github.com/MicroEJ/VEEPort-STMicroelectronics-STM32F7508-DK/blob/1.5.0/stm32f7508_freertos-bsp/projects/microej/fs/src/LLFS_File_impl.c

13

SNI CALLBACK IMPLEMENTATION

Return to the Core
Engine thread.

Get job parameters
that contains the

result of the action.

V1.0 Mar. 2023© MICROEJ 2023

Source code available in LLFS_impl.c

https://github.com/MicroEJ/VEEPort-STMicroelectronics-STM32F7508-DK/blob/1.5.0/stm32f7508_freertos-bsp/projects/microej/fs/src/LLFS_impl.c#L194

14

APPENDIX

V1.0 Mar. 2023© MICROEJ 2023

15

Declaration

The worker is declared statically using the MICROEJ_ASYNC_WORKER_worker_declare macro, containing
the following parameters:

• _name: Name of the async-worker variable.

• _job_count: Maximum number of jobs that can be allocated for this worker. Since a job represents an
asynchronous execution requested from an SNI native, and it blocks the caller Java thread, the job
count parameter can be interpreted as “Maximum number of Java threads that can call simultaneously
native functions running on the same async-worker, e.g. filesystem native functions”.

• _param_type: An union type to hold all the parameters structure.

• _waiting_list_size: Waiting list size, holding a number of Java threads that are suspended when no job
is available. This parameter can be interpreted as “If more Java threads than _job_count are calling
native functions running on the same async-worker, e.g. filesystem native functions, they will be
suspended and added to a waiting FIFO of this size, and will be resumed once a free job is available on
the worker.

ASYNC-WORKER SPECIFICATION (1/6)

V1.0 Mar. 2023© MICROEJ 2023

16

Initialization

During a MicroEJ Adaption Layer initialization at BSP side, the async-worker is initialized using the
function MICROEJ_ASYNC_WORKER_initialize. Initialization parameters:

• async_worker: The worker to initialize, declared previously with
MICROEJ_ASYNC_WORKER_worker_declare.

• name: The worker name, will be also the name of all RTOS components created by the worker: task,
queue, mutex.

• stack: The worker’s task stack, declared previously with OSAL_task_stack_declare.

• priority: The worker task priority.

Note

A worker is initialized once, usually during a native initialization function, e.g.
Java_com_is2t_java_io_FileSystem_initializeNative, and active for the whole lifecycle of the application.

ASYNC-WORKER SPECIFICATION (2/6)

V1.0 Mar. 2023© MICROEJ 2023

17

Allocate job

After initialization of the worker, it is ready to receive jobs from any native function implementation of the
respective module, e.g. Java_com_is2t_java_io_FileSystem_createNative.

First, the native function must allocate a job on the worker, used to pass parameters to/from SNI context
and the worker RTOS context. Job allocation is done by MICROEJ_ASYNC_WORKER_allocate_job, and
requires the following parameters:

• async_worker: The worker on which to allocate jobs, declared previously with
MICROEJ_ASYNC_WORKER_worker_declare.

• sni_retry_callback: If there is no job available, the current Java thread is suspended, added to the
waiting list and NULL is returned. Then, when a job is available, the Java thread is resumed and the
function sni_retry_callback is called. Usually the sni_retry_callback function argument is the current
SNI function itself.

ASYNC-WORKER SPECIFICATION (3/6)

V1.0 Mar. 2023© MICROEJ 2023

18

Execute job

After allocating a job on the worker, e.g. Java_com_is2t_java_io_FileSystem_createNative, the job is ready
to be executed asynchronously. There are two APIs that can be used for that, with slightly different
behavior:

• MICROEJ_ASYNC_WORKER_async_exec_no_wait: This function executes the given job asynchronously,
on the worker RTOS task. It does not block and returns immediately. When the job is finished, the job is
automatically released by the async worker RTOS task. This function can be called in the scenario “fire-
and-forget”, when the SNI thread does not need to wait for it to finish its execution and does not need
its returned data.

• MICROEJ_ASYNC_WORKER_async_exec: This function executes the given job asynchronously, on the
worker RTOS task. It does not block and returns immediately but it suspends the execution of the
current Java thread until the job is finished. When the job is finished, the SNI callback
on_done_callback is called before going back to Java. If the job is not used anymore, the callback must
release it explicitly by calling MICROEJ_ASYNC_WORKER_free_job.

ASYNC-WORKER SPECIFICATION (4/6)

V1.0 Mar. 2023© MICROEJ 2023

19

Execute parameters

The job execution needs the following parameters:

• async_worker: The worker used to execute the given job. Must be the same that the one used to
allocate the job.

• job: The job to execute, must have been allocated with MICROEJ_ASYNC_WORKER_allocate_job

• action: The function to execute asynchronously.

• on_done_callback: The SNI_callback called when the job is done.

ASYNC-WORKER SPECIFICATION (5/6)

V1.0 Mar. 2023© MICROEJ 2023

20

Other APIs

• MICROEJ_ASYNC_WORKER_free_job: Frees a job previously allocated with
MICROEJ_ASYNC_WORKER_allocate_job.

• MICROEJ_ASYNC_WORKER_get_job_done: Returns the job that has been executed.

ASYNC-WORKER SPECIFICATION (6/6)

V1.0 Mar. 2023© MICROEJ 2023

21V1.0 Mar. 2023© MICROEJ 2023

ASYNC WORKER STATE DIAGRAM

22

THANK YOU
f o r y o u r a t t e n t i o n !

	Slide 1
	Slide 2: Overview
	Slide 3: Blocking SCENARIO
	Slide 4: NON-Blocking SCENARIO
	Slide 5: Non-Blocking Scenario Using Async-Worker
	Slide 6: ASYNC-WORKER SCENARIO
	Slide 7: ASYNC-WORKER simplified Flow diagram (1/3)
	Slide 8: ASYNC-WORKER simplified state diagram (2/3)
	Slide 9: ASYNC-WORKER simplified state diagram (2/3)
	Slide 10: Implementation Example
	Slide 11: NATIVE FUNCTION implementation
	Slide 12: ACTION FUNCTION implementation
	Slide 13: SNI CALLBACK Implementation
	Slide 14: APPENDIX
	Slide 15: ASYNC-WORKER SPECIFICATION (1/6)
	Slide 16: ASYNC-WORKER SPECIFICATION (2/6)
	Slide 17: ASYNC-WORKER SPECIFICATION (3/6)
	Slide 18: ASYNC-WORKER SPECIFICATION (4/6)
	Slide 19: ASYNC-WORKER SPECIFICATION (5/6)
	Slide 20: ASYNC-WORKER SPECIFICATION (6/6)
	Slide 21: ASYNC Worker state diagram
	Slide 22

