
the high-performance real-time implementation

User Guide

Express Logic, Inc.
858.613.6640

Toll Free 888.THREADX
FAX 858.521.4259

http://www.expresslogic.com

of TCP/IP standards

Version 5

Express Logic, Inc.

©2002-2010 by Express Logic, Inc.

All rights reserved. This document and the associated NetX software are the sole property of
Express Logic, Inc. Each contains proprietary information of Express Logic, Inc. Reproduction or
duplication by any means of any portion of this document without the prior written consent of
Express Logic, Inc. is expressly forbidden.

Express Logic, Inc. reserves the right to make changes to the specifications described herein at any
time and without notice in order to improve design or reliability of NetX. The information in this
document has been carefully checked for accuracy; however, Express Logic, Inc. makes no warranty
pertaining to the correctness of this document.

Trademarks

NetX, Piconet, and UDP Fast Path are trademarks of Express Logic, Inc. ThreadX is a registered
trademark of Express Logic, Inc.

All other product and company names are trademarks or registered trademarks of their respective
holders.

Warranty Limitations

Express Logic, Inc. makes no warranty of any kind that the NetX products will meet the USER’s
requirements, or will operate in the manner specified by the USER, or that the operation of the NetX
products will operate uninterrupted or error free, or that any defects that may exist in the NetX products
will be corrected after the warranty period. Express Logic, Inc. makes no warranties of any kind, either
expressed or implied, including but not limited to the implied warranties of merchantability and fitness
for a particular purpose, with respect to the NetX products. No oral or written information or advice
given by Express Logic, Inc., its dealers, distributors, agents, or employees shall create any other
warranty or in any way increase the scope of this warranty, and licensee may not rely on any such
information or advice.

Part Number: 000-1009
Revision 5.3

User Guide

Contents

 About This Guide 9
1 Guide Conventions 10

1 NetX Data Types 11

1 Customer Support Center 12

1 Introduction to NetX 15
1 NetX Unique Features 16

1 RFCs Supported by NetX 18

1 Embedded Network Applications 19

1 NetX Benefits 19

2 Installation and Use of NetX 23
1 Host Considerations 24

1 Target Considerations 24

1 Product Distribution 25

1 NetX Installation 26

1 Using NetX 27

1 Troubleshooting 27

1 Configuration Options 28

1 NetX Version ID 39

4 NetX User Guide

User Guide

3 Functional Components of NetX 41
1 Execution Overview 44

1 Protocol Layering 48

1 Packet Memory Pools 49

1 Internet Protocol (IP) 58

1 Address Resolution Protocol (ARP) 71

1 Reverse Address Resolution Protocol (RARP) 75

1 Internet Control Message Protocol (ICMP) 78

1 Internet Group Management Protocol (IGMP) 81

1 User Datagram Protocol (UDP) 85

1 Transmission Control Protocol (TCP) 91

4 Description of NetX Services 105

5 NetX Network Drivers 343
1 Driver Introduction 344

1 Driver Entry 345

1 Driver Requests 345

1 Driver Output 358

1 Driver Input 359

1 Example RAM Ethernet Network Driver 361

Contents 5

Express Logic, Inc.

A NetX Services 375

B NetX Constants 383

C NetX Data Types 403

D BSD-Compatible Socket API 411

E ASCII Character Codes 415

F Index 417

6 Contents

User Guide

User Guide

Figures
Figure 1 TCP/IP Protocol Layers 49

Figure 2 UDP Data Encapsulation 50

Figure 3 Packet Header and Memory Pool Layout 52

Figure 4 Network Packets and Chaining 56

Figure 5 IP Address Structure 59

Figure 6 IP Header Format 61

Figure 7 ARP Packet Format 76

Figure 8 ICMP Ping Message 79

Figure 9 IGMP Report Message 83

Figure 10 UDP Header 85

Figure 11 TCP Header 92

Figure 12 States of the TCP State Machine 96

Express Logic, Inc.

User Guide

About This Guide
This guide contains comprehensive information
about NetX, the high-performance network stack
from Express Logic, Inc.

It is intended for embedded real-time software
developers familiar with basic networking concepts,
the ThreadX RTOS, and the C programming
language.

Organization Chapter 1 Introduces NetX.

Chapter 2 Gives the basic steps to install
and use NetX with your ThreadX
application.

Chapter 3 Provides a functional overview of
the NetX system and basic
information about the TCP/IP
networking standards.

Chapter 4 Details the application’s
interface to NetX.

Chapter 5 Describes network drivers for
NetX.

Appendix A NetX Services

Appendix B NetX Constants

Appendix C NetX Data Types

Appendix D BSD-Compatible Socket API

10 NetX User Guide

User Guide

Appendix D ASCII Chart

Index Topic cross reference

Guide Conventions
Italics Typeface denotes book titles,

emphasizes important words,
and indicates variables.

Boldface Typeface denotes file names,
key words, and further
emphasizes important words
and variables.

Information symbols draw
attention to important or
additional information that could
affect performance or function.

Warning symbols draw attention
to situations that developers
should avoid because they could
cause fatal errors.

i

!

About This Guide 11

Express Logic, Inc.

NetX Data Types
In addition to the custom NetX control structure data
types, there are several special data types that are
used in NetX service call interfaces. These special
data types map directly to data types of the
underlying C compiler. This is done to ensure
portability between different C compilers. The exact
implementation is inherited from ThreadX and can be
found in the tx_port.h file included in the ThreadX
distribution.

The following is a list of NetX service call data types
and their associated meanings:

UINT Basic unsigned integer. This
type must support 8-bit unsigned
data; however, it is mapped to
the most convenient unsigned
data type.

ULONG Unsigned long type. This type
must support 32-bit unsigned
data.

VOID Almost always equivalent to the
compiler’s void type.

CHAR Most often a standard 8-bit
character type.

Additional data types are used within the NetX
source. They are located in either the tx_port.h or
nx_port.h files.

12 NetX User Guide

User Guide

Customer Support Center

Latest Product
Information

Visit the Express Logic web site and select the
“Support” menu option to find the latest online
support information, including information about the
latest NetX product releases.

What We Need
From You

To more efficiently resolve your support request,
provide us with the following information in your
email request:

1. A detailed description of the problem, including
frequency of occurrence and whether it can be
reliably reproduced.

2. A detailed description of any changes to the
application and/or NetX that preceded the
problem.

3. The contents of the _tx_version_id and
_nx_version_id strings found in the tx_port.h
and nx_port.h files of your distribution. These
strings will provide us valuable information
regarding your run-time environment.

4. The contents in RAM of the following ULONG
variables:

_tx_build_options
_nx_system_build_options1
_nx_system_build_options2

Support
engineers

858.613.6640

Support fax 858.521.4259

Support email support@expresslogic.com

Web page http://www.expresslogic.com

About This Guide 13

Express Logic, Inc.

_nx_system_build_options3
_nx_system_build_options4
_nx_system_build_options5

These variables will give us information on how your
ThreadX and NetX libraries were built.

5. A trace buffer captured immediately after the
problem was detected. This is accomplished by
building the ThreadX and NetX libraries with
TX_ENABLE_EVENT_TRACE and calling
tx_trace_enable with the trace buffer information.
Refer to the TraceX User Guide for details.

Where to Send
Comments About
This Guide

The staff at Express Logic is always striving to
provide you with better products. To help us achieve
this goal, email any comments and suggestions to
the Customer Support Center at

support@expresslogic.com

Please type “NetX User Guide” in the subject line.

14 NetX User Guide

User Guide

User Guide

C H A P T E R 1

Introduction to NetX

NetX is a high-performance real-time implementation
of the TCP/IP standards designed exclusively for
embedded ThreadX-based applications. This chapter
contains an introduction to NetX and a description of
its applications and benefits.

1 NetX Unique Features 16
Piconet™ Architecture 16
Zero-copy Implementation 16
UDP Fast Path™ Technology 17
ANSI C Source Code 17
Not A Black Box 17
BSD-Compatible Socket API 18

1 RFCs Supported by NetX 18

1 Embedded Network Applications 19
Real-time Network Software 19

1 NetX Benefits 19
Improved Responsiveness 19
Software Maintenance 20
Increased Throughput 20
Processor Isolation 20
Ease of Use 20
Improve Time to Market 20
Protecting the Software Investment 21

16 NetX User Guide

User Guide

NetX Unique Features
Unlike other TCP/IP implementations, NetX is
designed to be versatile—easily scaling from small
micro-controller-based applications to those that use
powerful RISC and DSP processors. This is in sharp
contrast to public domain or other commercial
implementations originally intended for workstation
environments but then squeezed into embedded
designs.

Piconet™
Architecture

Underlying the superior scalability and performance
of NetX is Piconet, a software architecture especially
designed for embedded systems. Piconet
architecture maximizes scalability by implementing
NetX services as a C library. In this way, only those
services actually used by the application are brought
into the final runtime image. Hence, the actual size of
NetX is completely determined by the application.
For most applications, the instruction image
requirements of NetX ranges between 5 KBytes and
30 KBytes in size.

NetX achieves superior network performance by
layering internal component function calls only when
it is absolutely necessary. In addition, much of NetX
processing is done directly in-line, resulting in
outstanding performance advantages over the
workstation network software used in embedded
designs in the past.

Zero-copy
Implementation

NetX provides a packet-based, zero-copy
implementation of TCP/IP. Zero copy means that
data in the application’s packet buffer are never
copied inside NetX. This greatly improves
performance and frees up valuable processor cycles

NetX User Guide 17

Express Logic, Inc.

to the application, which is extremely important in
embedded applications.

UDP Fast Path™
Technology

With UDP Fast Path Technology, NetX provides the
fastest possible UDP processing. On the sending
side, UDP processing—including the optional UDP
checksum—is completely contained within the
nx_udp_socket_send service. No additional
function calls are made until the packet is ready to be
sent via the internal NetX IP send routine. This
routine is also flat (i.e., its function call nesting is
minimal) so the packet is quickly dispatched to the
application’s network driver. When the UDP packet is
received, the NetX packet-receive processing places
the packet directly on the appropriate UDP socket’s
receive queue or gives it to the first thread
suspended waiting for a receive packet from the UDP
socket’s receive queue. No additional ThreadX
context switches are necessary. See page 17 for an
example of Fast Path.

ANSI C Source
Code

NetX is written completely in ANSI C and is portable
immediately to virtually any processor architecture
that has an ANSI C compiler and ThreadX support.

Not A Black Box Most distributions of NetX include the complete C
source code. This eliminates the “black-box”
problems that occur with many commercial network
stacks. By using NetX, applications developers can
see exactly what the network stack is doing—there
are no mysteries!

Having the source code also allows for application
specific modifications. Although not recommended, it
is certainly beneficial to have the ability to modify the
network stack if it is required.

18 NetX User Guide

User Guide

These features are especially comforting to
developers accustomed to working with in-house or
public domain network stacks. They expect to have
source code and the ability to modify it. NetX is the
ultimate network software for such developers.

BSD-Compatible
Socket API

For legacy applications, NetX also provides a BSD-
compatible socket interface that makes calls to the
high-performance NetX API underneath. This helps
in migrating existing network application code to
NetX.

RFCs Supported by NetX
NetX support of RFCs describing basic network
protocols includes but is not limited to the following
network protocols. NetX follows all general
recommendations and basic requirements within the
constraints of a real-time operating system with small
memory footprint and efficient execution.

RFC Description Page
RFC 1112 Host Extensions for IP Multicasting

(IGMPv1)
81

RFC 2236 Internet Group Management Protocol,
Version 2

81

RFC 768 User Datagram Protocol (UDP) 85

RFC 791 Internet Protocol (IP) 58

RFC 792 Internet Control Message Protocol(ICMP) 78

RFC 793 Transmission Control Protocol (TCP) 91

RFC 826 Ethernet Address Resolution
Protocol(ARP)

71

RFC 903 Reverse Address Resolution Protocol
(RARP)

75

NetX User Guide 19

Express Logic, Inc.

Embedded Network Applications
Embedded network applications are applications that
need network access and execute on
microprocessors hidden inside products such as
cellular phones, communication equipment,
automotive engines, laser printers, medical devices,
and so forth. Such applications almost always have
some memory and performance constraints. Another
distinction of embedded network applications is that
their software and hardware have a dedicated
purpose.

Real-time Network
Software

Basically, network software that must perform its
processing within an exact period of time is called
real-time network software, and when time
constraints are imposed on network applications,
they are classified as real-time applications.
Embedded network applications are almost always
real-time because of their inherent interaction with
the external world.

NetX Benefits
The primary benefits of using NetX for embedded
applications are high-speed Internet connectivity and
very small memory requirements. NetX is also
completely integrated with the high-performance,
multitasking ThreadX real-time operating system.

Improved
Responsiveness

The high-performance NetX protocol stack enables
embedded network applications to respond faster
than ever before. This is especially important for
embedded applications that either have a significant

20 NetX User Guide

User Guide

volume of network traffic or stringent processing
requirements on a single packet.

Software
Maintenance

Using NetX allows developers to easily partition the
network aspects of their embedded application. This
partitioning makes the entire development process
easy and significantly enhances future software
maintenance.

Increased
Throughput

NetX provides the highest-performance networking
available, which directly transfers to the embedded
application. NetX applications are able to process
many more packets than non-NetX applications!

Processor
Isolation

NetX provides a robust, processor-independent
interface between the application and the underlying
processor and network hardware. This allows
developers to concentrate on the network aspects of
the application rather than spending extra time
dealing with hardware issues directly affecting
networking.

Ease of Use NetX is designed with the application developer in
mind. The NetX architecture and service call
interface are easy to understand. As a result, NetX
developers can quickly use its advanced features.

Improve Time to
Market

The powerful features of NetX accelerate the
software development process. NetX abstracts most
processor and network hardware issues, thereby
removing these concerns from a majority of
application network-specific areas. This, coupled
with the ease-of-use and advanced feature set, result
in a faster time to market!

NetX User Guide 21

Express Logic, Inc.

Protecting the
Software
Investment

NetX is written exclusively in ANSI C and is fully
integrated with the ThreadX real-time operating
system. This means NetX applications are instantly
portable to all ThreadX supported processors. Better
still, a completely new processor architecture can be
supported with ThreadX in a matter of weeks. As a
result, using NetX ensures the application’s migration
path and protects the original development
investment.

22 Introduction to NetX

User Guide

User Guide

C H A P T E R 2

Installation and Use of NetX

This chapter contains a description of various issues
related to installation, setup, and use of the high-
performance network stack NetX, including the
following:

1 Host Considerations 24

1 Target Considerations 24

1 Product Distribution 25

1 NetX Installation 26

1 Using NetX 27

1 Troubleshooting 27

1 Configuration Options 28
System Configuration Options 29
ARP Configuration Options 30
ICMP Configuration Options 31
IGMP Configuration Options 32
IP Configuration Options 32
Packet Configuration Options 34
RARP Configuration Options 34
TCP Configuration Options 34
UDP Configuration Options 38

1 NetX Version ID 39

24 NetX User Guide

User Guide

Host Considerations
Embedded development is usually performed on
Windows or Linux (Unix) host computers. After the
application is compiled, linked, and located on the
host, it is downloaded to the target hardware for
execution.

Usually the target download is done from within the
development tool's debugger. After download, the
debugger is responsible for providing target
execution control (go, halt, breakpoint, etc.) as well
as access to memory and processor registers.

Most development tool debuggers communicate with
the target hardware via on-chip debug (OCD)
connections such as JTAG (IEEE 1149.1) and
Background Debug Mode (BDM). Debuggers also
communicate with target hardware through In-Circuit
Emulation (ICE) connections. Both OCD and ICE
connections provide robust solutions with minimal
intrusion on the target resident software.

As for resources used on the host, the source code
for NetX is delivered in ASCII format and requires
approximately 1 Mbytes of space on the host
computer’s hard disk.

Please review the supplied readme_netx.txt file for
additional host system considerations and options.

Target Considerations
NetX requires between 5 KBytes and 30 KBytes of
Read-Only Memory (ROM) on the target. Another 1
to 2 KBytes of the target’s Random Access Memory

i

Installation and Use of NetX 25

Express Logic, Inc.

(RAM) are required for the NetX thread stack and
other global data structures.

In addition, NetX requires the use of a ThreadX timer
and a ThreadX mutex object. These facilities are
used for periodic processing needs and thread
protection inside the NetX protocol stack.

Product Distribution
Two types of NetX packages are available—
standard and premium. The standard package
includes minimal source code, while the premium
package contains complete NetX source code. Either
package is shipped on a single CD.

The exact contents of the distribution CD depends on
the target processor, development tools, and the
NetX package purchased. Following is a list of the
important files common to most product distributions:

readme_netx.txt
This file contains specific
information about the NetX port,
including information about the
target processor and the
development tools.

nx_api.h This C header file contains all
system equates, data structures,
and service prototypes.

nx_port.h This C header file contains all
development tool specific data
definitions and structures.

demo_netx.c This C file contains a small demo
application.

26 NetX User Guide

User Guide

nx.a (or nx.lib) This is the binary version of the
NetX C library. It is distributed
with the standard package.

All files are in lower-case, making it easy to convert
the commands to Linux (Unix) development
platforms.

NetX Installation
Installation of NetX is straightforward. The following
instructions apply to virtually any installation.
However, examine the readme_netx.txt file for
changes specific to the actual development tool
environment.

Backup the NetX distribution disk and store it in a
safe location.

On the host hard drive, copy all the files of the NetX
distribution into the previously created and installed
ThreadX directory.

If installing the standard package, NetX installation is
now complete. Otherwise, if installing the premium
package, you must build the NetX runtime library.

Application software needs access to the NetX
library file, usually called nx.a (or nx.lib), and the C
include files nx_api.h and nx_port.h. This is
accomplished either by setting the appropriate path
for the development tools or by copying these files
into the application development area.

i

Step 1:

Step 2:

Step 3:

i

Installation and Use of NetX 27

Express Logic, Inc.

Using NetX
Using NetX is easy. Basically, the application code
must include nx_api.h during compilation and link
with the NetX library nx.a (or nx.lib).

There are four easy steps required to build a NetX
application:

Include the nx_api.h file in all application files that
use NetX services or data structures.

Initialize the NetX system by calling
nx_system_initialize from the
tx_application_define function or an application
thread.

Create an IP instance, enable the Address
Resolution Protocol (ARP), if necessary, and any
sockets after nx_system_initialize is called.

Compile application source and link with the NetX
runtime library nx.a (or nx.lib). The resulting image
can be downloaded to the target and executed!

Troubleshooting
Each NetX port is delivered with a demonstration
application that executes with a simulated network
driver. This same demonstration is delivered with all
versions of NetX and provides the ability to run NetX
without any network hardware. It is always a good
idea to get the demonstration system running first.

See the readme_netx.txt file supplied with the
distribution for more specific details regarding the
demonstration system.

Step 1:

Step 2:

Step 3:

Step 4:

i

28 NetX User Guide

User Guide

If the demonstration system does not run properly,
perform the following operations to narrow the
problem:

1. Determine how much of the demonstration is
running.

2. Increase stack sizes in any new application
threads.

3. Recompile the NetX library with the appropriate
debug options listed in the configuration option
section.

4. Examine the NX_IP structure to see if packets are
being sent or received.

5. Examine the default packet pool to see if there are
available packets.

6. Ensure network driver is supplying ARP and IP
packets with their headers on 4-byte boundaries.

7. Temporarily bypass any recent changes to see if
the problem disappears or changes. Such infor-
mation should prove useful to Express Logic sup-
port engineers.

Follow the procedures outlined in the “What We
Need From You” on page 12 to send the information
gathered from the troubleshooting steps.

Configuration Options
There are several configuration options when
building the NetX library and the application using
NetX. The options below can be defined in the
application source, on the command line, or within
the nx_user.h include file.

Options defined in nx_user.h are applied only if the
application and NetX library are built with
NX_INCLUDE_USER_DEFINE_FILE defined.

i

Installation and Use of NetX 29

Express Logic, Inc.

Review the readme_netx.txt file for additional
options for your specific version of NetX. The
following sections describe the configuration options
available in NetX:

System
Configuration
Options

Define Meaning
NX_DEBUG Defined, this option enables the

optional print debug information
available from the RAM Ethernet
network driver.

NX_DEBUG_PACKET Defined, this option enables the
optional debug packet dumping
available in the RAM Ethernet
network driver.

NX_DISABLE_ERROR_CHECKING Defined, this option removes the
basic NetX error checking API and
results in a 15-percent performance
improvement. API return codes not
affected by disabling error checking
are listed in bold typeface in the API
definition. This define is typically used
after the application is debugged
sufficiently and its use improves
performance and decreases code
size.

NX_DRIVER_DEFERRED_PROCESSING Defined, this option enables deferred
network driver packet handling. This
allows the network driver to place a
packet on the IP instance and have
the network’s real processing routine
called from the NetX internal IP
helper thread.

30 NetX User Guide

User Guide

ARP Configuration
Options

NX_LITTLE_ENDIAN Defined, this option performs the
necessary byte swapping on little
endian environments to ensure the
protocol headers are in proper big
endian format. Note that the default is
typically setup in nx_port.h.

NX_MAX_PHYSICAL_INTERFACES Specifies the total number of physical
network interfaces on the host device.
The default value is 1; a host must
have at least one physical interface.
Note this does not include the
loopback interface.

NX_PHYSICAL_HEADER Specifies the size in bytes of the
physical packet header. The default
value is 16 (based on a typical 16-
byte Ethernet frame) and is defined in
nx_api.h. The application can
override the default by defining the
value before nx_api.h is included.

NX_PHYSICAL_TRAILER Specifies the size in bytes of the
physical packet trailer and is typically
used to reserve storage for things like
Ethernet CRCs, etc. The default
value is 4.

Define Meaning

Define Meaning
NX_DISABLE_ARP_INFO Defined, this option disables ARP

information gathering.

NX_ARP_DISABLE_AUTO_ARP_ENTRY Defined, this option disables entering
ARP request information in the ARP
cache.

Installation and Use of NetX 31

Express Logic, Inc.

ICMP
Configuration
Options

NX_ARP_EXPIRATION_RATE This define specifies the number of
seconds ARP entries remain valid.
The default value of zero disables
expiration or aging of ARP entries
and is defined in nx_api.h. The
application can override the default
by defining the value before nx_api.h
is included.

NX_ARP_MAX_QUEUE_DEPTH This defines specifies the maximum
number of packets that can be
queued while waiting for an ARP
response. The default value is 4.

NX_ARP_MAXIMUM_RETRIES This define specifies the maximum
number of ARP retries made without
an ARP response. The default value
is 18 and is defined in nx_api.h. The
application can override the default
by defining the value before nx_api.h
is included.

NX_ARP_UPDATE_RATE This define specifies the number of
seconds between ARP retries. The
default value is 10, which represents
10 seconds, and is defined in
nx_api.h. The application can
override the default by defining the
value before nx_api.h is included.

Define Meaning
NX_DISABLE_ICMP_INFO Defined, this option disables ICMP

information gathering.

NX_ICMP_ENABLE_DEBUG_LOG Defined, this option enables the
optional ICMP debug log.

32 NetX User Guide

User Guide

IGMP
Configuration
Options

IP Configuration
Options

Define Meaning
NX_DISABLE_IGMP_INFO Defined, this option disables IGMP

information gathering.

NX_DISABLE_IGMPV2 Defined, IGMP v2 support is disabled.

NX_IGMP_ENABLE_DEBUG_LOG Defined, this option enables the
optional IGMP debug log.

NX_MAX_MULTICAST_GROUPS This define specifies the maximum
number of multicast groups that can
be joined. The default value is 7 and
is defined in nx_api.h. The
application can override the default
by defining the value before nx_api.h
is included.

Define Meaning
NX_DISABLE_FRAGMENTATION This define disables IP fragmentation

logic.

NX_DISABLE_IP_INFO Defined, this option disables IP
information gathering.

NX_DISABLE_IP_RX_CHECKSUM Defined, this option disables
checksum logic on received IP
packets. This is useful if the link-layer
has reliable checksum or CRC logic.

NX_DISABLE_IP_TX_CHECKSUM Defined, this option disables
checksum logic on IP packets sent.
This is only useful in situations in
which the receiving network node has
received IP checksum logic disabled.

Installation and Use of NetX 33

Express Logic, Inc.

NX_DISABLE_LOOPBACK_INTERFACE Defined, this option disables NetX
support on the 127.0.0.1 loopback
interface. The 127.0.0.1 loopback
interface is enabled by default.

NX_DISABLE_RX_SIZE_CHECKING Defined, this option disables the
addition size checking on received
packets.

NX_ENABLE_IP_STATIC_ROUTING Defined, this enables static routing in
which a destination address can be
assigned a specific next hop address.
The default is that static routing is
disabled.

NX_IP_ENABLE_DEBUG_LOG Defined, this option enables the
optional IP debug log.

NX_IP_PERIODIC_RATE This define specifies the number of
ThreadX timer ticks in one second.
The default value is 100 (based on a
10ms ThreadX timer interrupt) and is
defined in nx_port.h. The application
can override the default by defining
the value before nx_api.h is included.

NX_IP_ROUTING_TABLE_SIZE This defines the maximum number of
entries in the routing table, which is a
list of an outgoing interface and the
next hop addresses for a given
destination address. The default
value is 8.

NX_MAX_IP_INTERFACES The total number of logical network
interfaces on the host device. The
default value depends if the loopback
interface is enabled. If so, the default
value is 2, a physical interface and
the loopback interface. Otherwise the
default value is 1 for the sole physical
interface.

34 NetX User Guide

User Guide

Packet
Configuration
Options

RARP
Configuration
Options

TCP Configuration
Options

Define Meaning
NX_DISABLE_PACKET_INFO Defined, this option disables packet

pool information gathering.

NX_PACKET_ENABLE_DEBUG_LOG Defined, this option enables the
optional packet debug log.

Define Meaning
NX_DISABLE_RARP_INFO Defined, this option disables RARP

information gathering.

NX_RARP_ENABLE_DEBUG_LOG Defined, this option enables the
optional RARP debug log.

Define Meaning
NX_DISABLE_RESET_DISCONNECT Defined, this option disables the reset

processing during disconnect when
the timeout value supplied is
specified as NX_NO_WAIT.

NX_DISABLE_TCP_INFO Defined, this option disables TCP
information gathering.

Installation and Use of NetX 35

Express Logic, Inc.

NX_DISABLE_TCP_RX_CHECKSUM Defined, this option disables
checksum logic on received TCP
packets. This is only useful in
situations in which the link-layer has
reliable checksum or CRC
processing.

NX_DISABLE_TCP_TX_CHECKSUM Defined, this option disables
checksum logic for sending TCP
packets. This is only useful in
situations in which the receiving
network node has received TCP
checksum logic disabled.

NX_MAX_LISTEN_REQUESTS This define specifies the maximum
number of server listen requests. The
default value is 10 and is defined in
nx_api.h. The application can
override the default by defining the
value before nx_api.h is included.

NX_TCP_ACK_EVERY_N_PACKETS This specifies the number of TCP
packets to receive before sending an
ACK. The default value is 2 where an
ACK packet is sent for every 2
packets received. Note if
NX_TCP_IMMEDIATE_ACK is
enabled but
NX_TCP_ACK_EVERY_N_PACKETS
is not, this value is automatically set
to 1 for backward compatibility.

NX_TCP_ACK_TIMER_RATE This define specifies how the number
of system ticks
(NX_IP_PERIODIC_RATE) is divided
to calculate the timer rate for the TCP
delayed ACK processing. The default
value is 5, which represents 200ms,
and is defined in nx_tcp.h. The
application can override the default
by defining the value before nx_api.h
is included.

NX_TCP_ENABLE_DEBUG_LOG Defined, this option enables the
optional TCP debug log.

NX_TCP_ENABLE_KEEPALIVE Defined, this option enables the
optional TCP keepalive timer.

36 NetX User Guide

User Guide

NX_TCP_FAST_TIMER_RATE This define specifies how the number
of system ticks
(NX_IP_PERIODIC_RATE) is divided
to calculate the fast TCP timer rate.
The fast TCP timer is used to drive
the various TCP timers, including the
delayed ACK timer. The default value
is 10, which represents 100ms, and is
defined in nx_tcp.h. The application
can override the default by defining
the value before nx_api.h is included.

NX_TCP_IMMEDIATE_ACK Defined, this option enables the
optional TCP immediate ACK
response processing.

NX_TCP_KEEPALIVE_INITIAL This define specifies how many
seconds of inactivity before the
keepalive timer activates. The default
value is 7200, which represents
2 hours, and is defined in nx_tcp.h.
The application can override the
default by defining the value before
nx_api.h is included.

NX_TCP_KEEPALIVE_RETRY This define specifies how many
seconds between retries of the
keepalive timer assuming the other
side of the connection is not
responding. The default value is 75,
which represents 75 seconds
between retries, and is defined in
nx_tcp.h. The application can
override the default by defining the
value before nx_api.h is included.

NX_TCP_KEEPALIVE_RETRIES This define specifies how many
keepalive retries are allowed before
the connection is deemed broken.
The default value is 10, which
represents 10 retries, and is defined
in nx_tcp.h. The application can
override the default by defining the
value before nx_api.h is included.

Installation and Use of NetX 37

Express Logic, Inc.

NX_TCP_MAXIMUM_RETRIES This define specifies how many
transmit retries are allowed before the
connection is deemed broken. The
default value is 10, which represents
10 retries, and is defined in nx_tcp.h.
The application can override the
default by defining the value before
nx_api.h is included.

NX_TCP_MAXIMUM_TX_QUEUE This define specifies the maximum
depth of the TCP transmit queue
before TCP send requests are
suspended or rejected. The default
value is 20, which means that a
maximum of 20 packets can be in the
transmit queue at any given time.
Note that packets stay in the transmit
queue until an ACK is received from
the other side of the connection. This
constant is defined in nx_tcp.h. The
application can override the default
by defining the value before nx_api.h
is included.

38 NetX User Guide

User Guide

UDP Configuration
Options

Additional development tool options are described in
the readme_netx.txt file supplied on the distribution
disk.

NX_TCP_RETRY_SHIFT This define specifies how the
retransmit timeout period changes
between retries. If this value is 0, the
initial retransmit timeout is the same
as subsequent retransmit timeouts. If
this value is 1, each successive
retransmit is twice as long. If this
value is 2, each subsequent
retransmit timeout is four times as
long. The default value is 0 and is
defined in nx_tcp.h. The application
can override the default by defining
the value before nx_api.h is included.

NX_TCP_TRANSMIT_TIMER_RATE This define specifies how the number
of system ticks
(NX_IP_PERIODIC_RATE) is divided
to calculate the timer rate for the TCP
transmit retry processing. The default
value is 1, which represents
1 second, and is defined in nx_tcp.h.
The application can override the
default by defining the value before
nx_api.h is included.

Define Meaning
NX_DISABLE_UDP_INFO Defined, this option disables UDP

information gathering.

NX_UDP_ENABLE_DEBUG_LOG Defined, this option enables the
optional UDP debug log.

i

Installation and Use of NetX 39

Express Logic, Inc.

NetX Version ID
The current version of NetX is available to both the
user and the application software during runtime. The
programmer can find the NetX version in the
readme_netx.txt file. This file also contains a version
history of the corresponding port. Application
software can obtain the NetX version by examining
the global string _nx_version_id.

40 NetX User Guide

User Guide

User Guide

3C H A P T E R 3

Functional Components of NetX

This chapter contains a description of the high-
performance NetX TCP/IP stack from a functional
perspective.

1 Execution Overview 44
Initialization 44
Application Interface Calls 45
Internal IP Thread 45
IP Periodic Timers 47
Network Driver 47

1 Protocol Layering 48

1 Packet Memory Pools 49
Creating Packet Pools 51
Packet Header NX_PACKET 51
Pool Capacity 55
Packet Pool Memory Area 57
Thread Suspension 57
Pool Statistics and Errors 57
Packet Pool Control Block NX_PACKET_POOL 58

1 Internet Protocol (IP) 58
IP Addresses 58
Gateway IP Address 60
IP Header 60
IP Fragmentation 63
IP Send 64
IP Receive 65
Raw IP Send 65
Raw IP Receive 66
Creating IP Instances 66
Default Packet Pool 67
IP Helper Thread 67
Thread Suspension 67
IP Statistics and Errors 68
IP Control Block NX_IP 68

42 NetX User Guide

User Guide

Multiple Network Interface (Multihome) Support 69
Static IP Routing 70

1 Address Resolution Protocol (ARP) 71
ARP Enable 72
ARP Cache 72
ARP Dynamic Entries 72
ARP Static Entries 72
ARP Messages 73
ARP Aging 74
ARP Statistics and Errors 75

1 Reverse Address Resolution Protocol (RARP) 75
RARP Enable 76
RARP Request 76
RARP Reply 77
RARP Statistics and Errors 78

1 Internet Control Message Protocol (ICMP) 78
ICMP Enable 78
Ping Request 78
Ping Response 80
Thread Suspension 80
ICMP Statistics and Errors 80

1 Internet Group Management Protocol (IGMP) 81
IGMP Enable 81
Multicast IP Addresses 81
Physical Address Mapping 82
Multicast Group Join 82
Multicast Group Leave 82
IGMP Report Message 83
IGMP Statistics and Errors 84

1 User Datagram Protocol (UDP) 85
UDP Enable 85
UDP Header 85
UDP Checksum 86
UDP Ports and Binding 87
UDP Fast Path™ 87
UDP Packet Send 87
UDP Packet Receive 88
UDP Receive Notify 89
UDP Socket Create 89

Functional Components of NetX 43

Express Logic, Inc.

Thread Suspension 89
UDP Socket Statistics and Errors 89
UDP Socket Control Block TX_UDP_SOCKET 90

1 Transmission Control Protocol (TCP) 91
TCP Enable 91
TCP Header 91
TCP Checksum 93
TCP Ports 94
Client Server Model 94
TCP Socket State Machine 94
TCP Client Connection 95
TCP Client Disconnection 95
TCP Server Connection 97
TCP Server Disconnection 99
Stop Listening on a Server Port 100
TCP Window Size 100
TCP Packet Send 100
TCP Packet Retransmit 101
TCP Packet Receive 101
TCP Receive Notify 101
TCP Socket Create 102
Thread Suspension 102
TCP Socket Statistics and Errors 102
TCP Socket Control Block NX_TCP_SOCKET 103

44 NetX User Guide

User Guide

Execution Overview
There are five types of program execution within a
NetX application: initialization, application interface
calls, internal IP thread, IP periodic timers, and the
network driver.

NetX assumes the existence of ThreadX and
depends on its thread execution, suspension,
periodic timers, and mutual exclusion facilities.

Initialization The service nx_system_initialize must be called
before any other NetX service is called. System
initialization can be called either from the ThreadX
tx_application_define routine or from application
threads.

After nx_system_initialize returns, the system is
ready to create packet pools and IP instances.
Because creating an IP instance requires a default
packet pool, at least one NetX packet pool must exist
prior to creating an IP instance. Creating packet
pools and IP instances is allowed from the ThreadX
initialization function tx_application_define and
from application threads.

Internally, creating an IP instance is accomplished in
two parts: The first part is done within the context of
the caller, either from tx_application_define or from
an application thread’s context. This includes setting
up the IP data structure and creating various IP
resources, including the internal IP thread. The
second part is performed during the initial execution
from the internal IP thread. This is where the
application’s network driver, supplied during the first
part of IP creation, is first called. Calling the network
driver from the internal IP thread enables the network
driver to perform I/O and suspend during its

i

Functional Components of NetX 45

Express Logic, Inc.

initialization processing. When the network driver
returns from its initialization processing, the IP
creation is complete.

The NetX service nx_ip_status_check is available
to obtain information on the IP instance (primary
interface) status such as if the link is initialized,
enabled and IP address is resolved. This information
is used to synchronize application threads needing to
use a newly created IP instance. For multihome
hosts, nx_ip_interface_status_check is available to
obtain information on the specified interface status..

Application
Interface Calls

Calls from the application are largely made from
application threads running under the ThreadX
RTOS. However, some initialization, create, and
enable services may be called from
tx_application_define. The “Allowed From” sections
in Chapter 4 (page 89) indicate from which each
NetX service can be called from.

For the most part, processing intensive activities
such as computing checksums is done within the
calling thread’s context—without blocking access of
other threads to the IP instance. For example, UDP
checksum calculation is performed inside the
nx_udp_socket_send service, prior to calling the
underlying IP send function. On a received packet,
the UDP checksum is calculated in the
nx_udp_socket_receive service. This helps prevent
stalling network requests of higher-priority threads
because of processing intensive checksum
processing in lower-priority threads.

Internal IP Thread As mentioned, each IP instance in NetX has its own
thread. The priority and stack size of the internal IP
thread is defined in the nx_ip_create service. The
internal IP thread is created in a ready-to-execute

i

46 NetX User Guide

User Guide

mode. If the IP thread has a higher priority than the
calling thread, preemption may occur inside the IP
create call.

The entry point of the internal IP thread is at the
function _nx_ip_thread_entry. When started, the
internal IP thread first completes network driver
initialization, which consists of making two calls to
the application-specific network driver. The first call is
made to initialize the network driver. After the
network driver returns from initialization (it may
suspend while waiting for the hardware to be
properly set up), the internal IP thread calls the
network driver again to enable the link. After the
network driver returns from the link enable call, the
internal IP thread enters a while-forever loop
checking for various events that need processing for
this IP instance. Events processed in this loop
include deferred IP packet reception, ARP packet
processing, IP packet fragment assembly, ICMP ping
processing, IGMP processing, TCP packet queue
processing, TCP periodic processing, ARP periodic
processing, IP fragment assembly timeouts, and
IGMP periodic processing.

For multihome hosts, _nx_ip_thread_entry loops
through each physical interface attached to the IP
instance to initialize and enable the driver. The
internal IP thread checks for events on each interface
while processing in its while-forever loop. For certain
events, IP thread performs the same action for each
interface. These include deferred processing
requests and IGMP enable events.

The NetX callback functions, including listen and
disconnect callbacks, are called from the internal IP
thread—not the original calling thread. The
application must take care not to suspend inside any
NetX callback function.

!

Functional Components of NetX 47

Express Logic, Inc.

IP Periodic Timers There is one ThreadX periodic timer used for each IP
instance. This first one-second periodic timer
performs ARP, IGMP, TCP timeout, and IP fragment
timeout processing.

Network Driver Each IP instance in NetX has a primary interface
network driver specified by the application in the
nx_ip_create service. The network driver is
responsible for handling various NetX requests,
including packet transmission, packet reception, and
various requests for status and control. On
transmission, the network driver is also responsible
for buffering packets that cannot be immediately sent
through the physical hardware.

For multihome hosts, each additional interface
associated with the IP instance has an associated
network driver that performs these tasks for the
respective interface. Some drivers are written to
handle two or more physical interfaces.

Single interface host applications need not make any
changes to their existing drivers.

The network driver must also handle asynchronous
events occurring on the media. Asynchronous events
from the media include packet reception, packet
transmission completion, and status changes. NetX
provides the network driver with several access
functions to handle various received packets. These
functions are designed to be called from the interrupt
service routine portion of the network driver. The
network driver should forward all ARP packets
received to the _nx_arp_packet_deferred_receive
function. All RARP packets should be forwarded to
_nx_rarp_packet_deferred_receive. There are two
options for IP packets. If fast dispatch of IP packets is
required, incoming IP packets should be forwarded to
_nx_ip_packet_receive for immediate processing.

i

48 NetX User Guide

User Guide

This greatly improves NetX performance in handling
IP packets and UDP packets. Otherwise, forwarding
IP packets to _nx_ip_packet_deferred_receive
should be done. This service places the IP packet in
the deferred processing queue where it is then
handled by the internal IP thread, which results in the
least amount of ISR processing time.

The network driver can also defer interrupt
processing to run out of the context of the IP thread.
This is accomplished by calling the
_nx_ip_driver_deferred_processing function from
the network driver's interrupt routine.

See Chapter 5, “NetX Network Drivers” on page 343
for more detailed information on writing NetX network
drivers.

Protocol Layering
The TCP/IP implemented by NetX is a layered
protocol, which means more complex protocols are
built on top of simpler underlying protocols. In TCP/
IP, the lowest layer protocol is at the link level and is
handled by the network driver. This level is typically
targeted towards Ethernet, but it could also be fiber,
serial, or virtually any physical media.

On top of the link layer is the network layer. In TCP/
IP, this is the IP, which is basically responsible for
sending and receiving simple packets—in a best-
effort manner—across the network. Management-
type protocols like ICMP and IGMP are typically also
categorized as network layers, even though they rely
on IP for sending and receiving.

The transport layer rests on top of the network layer.
This layer is responsible for managing the flow of

Functional Components of NetX 49

Express Logic, Inc.

data between hosts on the network. There are two
types of transport services in TCP/IP: UDP and TCP.
UDP services provide best-effort sending and
receiving of data between two hosts in a
connectionless manner, while TCP provides
connection management between two host entities
with a reliable data path between them.

This layering is reflected in the actual network data
packets. Each layer in TCP/IP contains a block of
information called a header. This technique of
surrounding data (and possibly protocol information)
with a header is typically called data encapsulation.
Figure 1 shows an example of NetX layering and
Figure 2 shows the resulting data encapsulation for
UDP data being sent.

Packet Memory Pools
Allocating memory packets in a fast and deterministic
manner is always a challenge in real-time networking
applications. With this in mind, NetX provides the

UDP TCP

IP IGMPICMP

Network Driver

Application Requests Application Layer

Transport Layer

Network Layer

Link Layer

(uses IP) (uses IP)

FIGURE 1. TCP/IP Protocol Layers

50 NetX User Guide

User Guide

ability to create and manage multiple pools of fixed-
size network packets.

Because NetX packet pools consist of fixed-size
memory blocks, there are never any fragmentation
problems. Of course, fragmentation causes behavior
that is inherently indeterministic. In addition, the time
required to allocate and free a NetX packet amounts
to simple linked-list manipulation. Furthermore,
packet allocation and deallocation is done at the
head of the available list. This provides the fastest
possible linked list processing.

Lack of flexibility is typically the main drawback of
fixed-size packet pools. Determining the optimal
packet payload size that also handles the worst-case
incoming packet is a difficult task. NetX packets
address this problem with packet chaining. An actual
network packet can be made of one or more NetX

Ethernet header

IP header

UDP header

Added by network driver

Added by the IP layer

Added by the UDP send service

Original application data

Application
data on
the
Ethernet

FIGURE 2. UDP Data Encapsulation

Functional Components of NetX 51

Express Logic, Inc.

packets linked together. In addition, the packet
header maintains a pointer to the top of the packet.
As additional protocols are added, this pointer is
simply moved backwards and the new header is
written directly in front of the data. Without the flexible
packet technology, the stack would have to allocate
another buffer and copy the data into a new buffer
with the new header, which is processing intensive.

Each NetX packet memory pool is a public resource.
NetX places no constraints on how packet pools are
used.

Creating Packet
Pools

Packet memory pools are created either during
initialization or during runtime by application threads.
There are no limits on the number of packet memory
pools in a NetX application.

Packet Header
NX_PACKET

By default, NetX places the packet header
immediately before the packet payload area. The
packet memory pool is basically a series of
packets—headers followed immediately by the
packet payload. The packet header (NX_PACKET)

52 NetX User Guide

User Guide

and the layout of the packet pool are pictured in
Figure 3.

Pool Start Address

Pool End Address

Packet 0

Packet 1

Packet 2

Packet 3

Packet “n”

FIGURE 3. Packet Header and Memory Pool Layout

Packet Description
nx_packet_pool_owner
nx_packet_queue_next
nx_packet_tcp_queue_next
nx_packet_next
nx_packet_fragment_next
nx_packet_last
nx_packet_length
nx_packet_ip_interface
nx_packet_next_hop_address
nx_packet_data_start
nx_packet_data_end
nx_packet_prepend_ptr
nx_packet_append_ptr

Actual Data

Packet
Header
NX_PACKET

Packet
Payload
Area

Functional Components of NetX 53

Express Logic, Inc.

The fields of the packet header are defined as
follows:

It is important for the network driver to use the
nx_packet_transmit_release function when transmission of a
packet is complete. This function checks to make sure the packet is
not part of a TCP output queue before it is actually placed back in
the available pool.

Packet header Purpose
nx_packet_pool_owner This field points to the owner of this particular

packet. When the packet is released, it is
released to this particular pool. With the pool
ownership inside each packet, it is possible for
a datagram to span multiple packets from
multiple packet pools.

nx_packet_queue_next This field points to the first packet of the next
separate network packet. If NULL, there is no
next network packet. This field is used by NetX
to queue network packets, and it is also
available to the network driver to queue
packets for transmission.

nx_packet_tcp_queue_next This field points to the first packet of the next
separate TCP network packet on a specific
socket’s output queue. This requires a
separate pointer because TCP packets are
retransmitted if an ACK is not received from
the connection prior to a specific timeout. If this
field contains the constant
NX_PACKET_FREE or
NX_PACKET_ALLOCATED, then the network
packet is not part of a TCP queue.

nx_packet_next This field points to the next packet within the
same network packet. If NULL, there are no
additional packets that are part of the network
packet. This field is also used to hold
fragmented packets until the entire packet can
be re-assembled.

nx_packet_last This field points to the last packet within the
same network packet. If NULL, this packet
represents the entire network packet.

!

54 NetX User Guide

User Guide

nx_packet_fragment_next This field is used to hold different incoming IP
packets in the process of being unfragmented.

nx_packet_length This field contains the total number of bytes in
the entire network packet, including the total of
all bytes in all packets chained together by the
nx_packet_next member.

nx_ip_interface This field is the interface control block which is
assigned to the packet when it is received by
the interface driver, and by NetX for outgoing
packets.

nx_next_hop_address This field is used by the transmission logic. The
next hop address determines how NetX
forwards the packet to the final destination. If
the destination address is on the local network,
the next hop address is the same as the
destination address. Otherwise the next hop
address would be the router that knows how to
forward the packet to the destination.

nx_packet_data_start This pointer field points to the start of the
physical payload area of this packet. It does
not have to be immediately following the
NX_PACKET header, but that is the default for
the nx_packet_pool_create service.

nx_packet_data_end This pointer field points to the end of the
physical payload area of this packet. The
difference between this field and the
nx_packet_data_start field represents the
payload size.

Packet header Purpose

Functional Components of NetX 55

Express Logic, Inc.

Figure 4 shows three network packets in a queue, in
which the middle network packet is composed of two
packet structures. This illustrates how NetX achieves
zero-copy performance by chaining together fixed-
size packet structures. It also shows how NetX
packet queues are independent from individual
packet chains.

Pool Capacity The number of packets in a packet pool is a function
of the payload size and the total number of bytes in
the memory area supplied to the packet pool create
service. The capacity of the pool is calculated by
dividing the packet size (including the size of the
NX_PACKET header, the payload size, and any
necessary padding to keep long-word alignment) into
the total number of bytes in the supplied memory
area.

nx_packet_prepend_ptr This pointer field points to the location of where
packet data—either protocol header or actual
data—is added in front of the existing packet
data (if any) in the packet payload area. It
must be greater than the nx_packet_data_start
pointer location and less than or equal to the
nx_packet_append_ptr pointer.

For performance reasons, NetX
assumes
nx_packet_prepend_ptr always
points to a long-word boundary.
Hence, any manipulation of this

field must maintain this long-word alignment.

nx_packet_append_ptr This pointer field points to the end of the data
currently in the packet payload area. It must be
less than or equal to the nx_packet_data_end
pointer. The difference between this field and
the nx_packet_data_start field represents the
amount of data in this packet.

Packet header Purpose

!

56 NetX User Guide

User Guide

Although NetX packet pool create function allocates
the payload area immediately following the packet
header, it is possible for the application to create
packet pools where the payload is in a separate
memory area from the packet headers. The only
complication with this technique is calculating the
header pointer again given just the starting address
of the payload. This situation typically occurs inside
the receive packet interrupt processing of the

Packet Queue
Head Pointer

nx_packet_queue_next
nx_packet_next

nx_packet_queue_next
nx_packet_next

nx_packet_queue_next
nx_packet_next

NX_NULL

NX_NULL

NX_NULL

nx_packet_queue_next
nx_packet_next NX_NULL

NX_PACKET

NX_PACKET

NX_PACKET

NX_PACKET

FIGURE 4. Network Packets and Chaining

Functional Components of NetX 57

Express Logic, Inc.

network driver. If the packet payload immediately
follows the header, the packet header is easily
calculated by just moving backwards the size of the
packet header. However, if the payload is in a
different memory space from its header, the header
would need to be calculated by examination of the
relative offset of the payload and then applying that
same offset to the start of the pool’s packet header
area.

Packet Pool
Memory Area

The memory area for the packet pool is specified
during creation. Like other memory areas for
ThreadX and NetX objects, it can be located
anywhere in the target’s address space.

This is an important feature because of the
considerable flexibility it gives the application. For
example, suppose that a communication product has
a high-speed memory area for network buffers. This
memory area is easily managed by making it into a
NetX packet memory pool.

Thread
Suspension

Application threads can suspend while waiting for a
packet from an empty pool. When a packet is
returned to the pool, the suspended thread is given
this packet and resumed.

If multiple threads are suspended on the same
packet pool, they are resumed in the order they were
suspended (FIFO).

Pool Statistics and
Errors

If enabled, the NetX packet management software
keeps track of several statistics and errors that may
be useful to the application. The following statistics
and error reports are maintained for packet pools:

Total Packets in Pool
Free Packets in Pool

58 NetX User Guide

User Guide

Total Packet Allocations
Pool Empty Allocation Requests
Pool Empty Allocation Suspensions
Invalid Packet Releases

All of these statistics and error reports are available
to the application with the
nx_packet_pool_info_get service.

Packet Pool
Control Block
NX_PACKET_POOL

The characteristics of each packet memory pool are
found in its control block. It contains useful
information such as the linked list of free packets, the
number of free packets, and the payload size for
packets in this pool. This structure is defined in the
nx_api.h file.

Packet pool control blocks can be located anywhere
in memory, but it is most common to make the control
block a global structure by defining it outside the
scope of any function.

Internet Protocol (IP)
The Internet Protocol (IP) component of NetX is
responsible for sending and receiving packets on the
Internet (RFC 791). In NetX, it is the component
ultimately responsible for sending and receiving TCP,
UDP, ICMP, and IGMP messages, utilizing the
underlying network driver.

IP Addresses Each computer on the Internet has a unique 32-bit
identifier called an IP address. There are five classes

Functional Components of NetX 59

Express Logic, Inc.

of IP addresses as described in Figure 5. The ranges
of the five IP address classes are as follows:

Class Range
A 0.0.0.0 to 127.255.255.255

B 128.0.0.0 to 191.255.255.255

C 192.0.0.0 to 223.255.255.255

D 224.0.0.0 to 239.255.255.255

E 240.0.0.0 to 247.255.255.255

class A

class B

class C

class D

class E

7 bits

0 network

24 bits

host

hostnetwork1 0

14 bits 16 bits

hostnetwork1 1 0

8 bits21 bits

1 1 1 0 multicast group

28 bits

1 1 1 1 0 reserved for future

27 bits

FIGURE 5. IP Address Structure

60 NetX User Guide

User Guide

There are also three types of address specifications:
unicast, broadcast, and multicast. Unicast addresses
are those IP addresses that identify a specific host
on the Internet. Unicast addresses can be either a
source or a destination IP address. A broadcast
address identifies all hosts on a specific network or
sub-network and can only be used as destination
addresses. Broadcast addresses are specified by
having the host ID portion of the address set to ones.
Multicast addresses (Class D) specify a dynamic
group of hosts on the Internet. Members of the
multicast group may join and leave whenever they
wish.

Only connectionless protocols like IP and UDP can
utilize broadcast and the limited broadcast capability
of the multicast group.

The macro IP_ADDRESS is defined in nx_api.h. It
allows easy specification of IP addresses using
commas instead of a periods. For example,
IP_ADDRESS(128,0,0,0) specifies the first class B
address shown in Figure 5.

Gateway IP
Address

In addition to the different types of network,
loopback, and broadcast addresses, it is possible to
set the IP instance gateway IP address using the
nx_ip_gateway_address_set service. A gateway
resides on the local network, and its purpose is to
provide a place (“next hop”) to transmit packets
whose destination lies outside the local network.
Once set, all out-of network requests are routed by
NetX to the gateway. Note that the default gateway
must be directly accessible through one of the
physical interfaces.

IP Header For any packet to be sent on the Internet, it must
have an IP header. When higher-level protocols

i

i

Functional Components of NetX 61

Express Logic, Inc.

(UDP, TCP, ICMP, or IGMP) call the IP component to
send a packet, an IP header is placed in front of the
beginning of the packet. Conversely, when IP packets
are received from the network, the IP component
removes the IP header from the packet before
delivery to the higher-level protocols. Figure 6 shows
the format of the IP header.

All headers in the TCP/IP implementation are
expected to be in big endian format. In this format,
the most significant byte of the word resides at the
lowest byte address. For example, the 4-bit version
and the 4-bit header length of the IP header must be
located on the first byte of the header.

31 27 23 15 0

word
offset

0

4

8

12

16

4-bit
version

4-bit
header
length

8-bit
type of service

(TOS)
16-bit total length in bytes

16-bit identification
3-bit
flags 13-bit fragment offset

8-bit time to live
(TTL)

8-bit protocol 16-bit IP header checksum

32-bit source IP address

32-bit destination IP address

20

FIGURE 6. IP Header Format

i

62 NetX User Guide

User Guide

The fields of the IP header are defined as follows:

IP Header Field Purpose
4-bit version This field contains the version of IP this header

represents. For IP version 4, which is what NetX
supports, the value of this field is 4.

4-bit header length This field specifies the number of 32-bit words in
the IP header. If no option words are present, the
value for this field is 5.

8-bit type of service (TOS) This field specifies the type of service requested
for this IP packet. Valid requests are as follows:

16-bit total length This field contains the total length of the IP
datagram in bytes–including the IP header. An IP
datagram is the basic unit of information found on
a TCP/IP Internet. It contains a destination and
source address in addition to data. Because it is a
16-bit field, the maximum size of an IP datagram
is 65,535 bytes.

16-bit identification The field is a number used to uniquely identify
each IP datagram sent from a host. This number
is typically incremented after an IP datagram is
sent. It is especially useful in un-fragmenting
received IP packets.

3-bit flags This field contains IP fragmentation information.
Bit 14 is the “don’t fragment” bit. If this bit is set,
the outgoing IP datagram will not be fragmented.
Bit 13 is the “more fragments” bit, which is used
to fragment or un-fragment IP datagrams. If this
bit is set, there are more fragments. If this bit is
clear, this is the last fragment of the IP packet.

TOS Request Value

Normal 0x00

Minimum Delay 0x10

Maximum Data 0x08

Maximum Reliability 0x04

Minimum Cost 0x02

Functional Components of NetX 63

Express Logic, Inc.

IP Fragmentation The network driver may have limits on the size of outgoing
packets. This physical limit is called the maximum
transmission unit (MTU). The nx_interface_ip_mtu_size
member for the interface control block contains the MTU,
which is initially set up by the application’s network driver
during initialization.

13-bit fragment offset This field contains the upper 13-bits of the
fragment offset. Because of this, fragment offsets
are only allowed on 8-byte boundaries. The first
fragment of a fragmented IP datagram will have
the “more fragments” bit set and have an offset
of 0.

8-bit time to live (TTL) This field contains the number of routers this
datagram can pass, which basically limits the
lifetime of the datagram.

8-bit protocol This field specifies which protocol is using the IP
datagram. The following is a list of valid protocols
and their values:

16-bit checksum This field contains the 16-bit checksum that
covers the IP header only. There are additional
checksums in the higher level protocols that
cover the IP payload.

32-bit source IP address This field contains the IP address of the sender
and is always a host address.

32-bit destination IP address This field contains the IP address of the receiver
or receivers if the address is a broadcast or
multicast address.

IP Header Field Purpose

Protocol Value

ICMP 0x01

IGMP 0x02

TCP 0X06

UDP 0X11

64 NetX User Guide

User Guide

Although not recommended, the application may
generate datagrams larger than the underlying
network driver’s MTU size. Before transmitting such
IP datagram, the IP layer must fragment such
packets. At the IP receiving end, the IP layer must
collect and reassemble all the fragments before
sending the packet to upper layer applications. In
order to support IP fragmentation and reassembly
operation, the system designer must enable the IP
fragmentation feature in NetX. If this feature is not
enabled, incoming fragmented IP packets are
discarded, as well as packets that exceed the
network driver’s MTU.

IP Fragmentation can be disabled completely by
defining NX_DISABLE_FRAGMENTATION when
building the NetX library. Doing so helps reduce the
code size of NetX.

IP Send The IP send processing in NetX is very streamlined.
The prepend pointer in the packet is moved
backwards to accommodate the IP header. The IP
header is completed (with all the TOS, TTL, protocol,
and other options specified by the calling protocol
layer), the IP checksum is computed in-line, and the
packet is dispatched to the associated network
driver.

The IP send processing also handles initiating ARP
requests if physical mapping is needed for the
destination IP address. In addition, outgoing
fragmentation is also coordinated from within the IP
send processing.

Packets that require IP address resolution (i.e.,
physical mapping) are enqueued on the ARP queue
until the number of packets queued exceeds the ARP
queue depth (NX_ARP_MAX_QUEUE_DEPTH). If
the queue depth is reached, NetX will remove the
oldest packet on the queue and continue waiting for

i

i

Functional Components of NetX 65

Express Logic, Inc.

address resolution for the remaining packets
enqueued.

For hosts with multiple interfaces, NetX determines
which interface the packet should be transmitted
based on the packet interface specified. If the packet
interface is not specified, the packet is dropped.

IP Receive The IP receive processing is either called from the
network driver or the internal IP thread (for
processing the deferred queue). The IP receive
processing examines the protocol field and attempts
to dispatch the packet to the proper protocol
component. Before the packet is actually dispatched,
the IP header is removed by advancing the prepend
pointer past the IP header.

IP receive processing also detects fragmented IP
packets and performs the necessary steps to re-
assemble them if fragmentation is enabled.

NetX determines the appropriate interface based on
the interface specified in the packet. If the packet
interface is NULL, NetX defaults the interface to the
primary interface. This is done to guarantee
compatibility with legacy NetX Ethernet drivers.

Raw IP Send The application may send raw IP packets (packets
with only an IP header and payload) directly using the
nx_ip_raw_packet_send service if raw IP packet
processing has been enabled with the
nx_ip_raw_packet_enabled service. When
transmitting a unicast packet on a multihome device,
NetX will automatically determine the correct physical
interface to send the packets out on based on the
destination address. However, for broadcast or
multicast destination addresses, the host application
must use the nx_ip_raw_packet_interface_send

66 NetX User Guide

User Guide

service to explicitly set the network interface to send
the packet out on.

Raw IP Receive If raw IP packet processing is enabled, the
application may receive raw IP packets through the
nx_ip_raw_packet_receive service. All incoming
packets are processed according to the protocol
specified in the IP header. If the protocol specifies
UDP, TCP, IGMP or ICMP, NetX will process the
packet using the appropriate handler for the packet
protocol type. If the protocol is not one of these
protocols, and raw IP receive is enabled, the packet
will be processed by nx_ip_raw_packet_receive. In
addition, application threads may suspend with an
optional timeout while waiting for a raw IP packet.

Creating IP
Instances

IP instances are created either during initialization or
during runtime by application threads. The initial IP
address, network mask, default packet pool, media
driver, and memory and priority of the internal IP
thread are defined by the nx_ip_create service.
NetX also supports multiple interfaces within one IP
instance. Therefore, it is not necessary to create an
IP instance for each interface unless special
circumstances arise.

A multihome host application wishing to associate all
network interfaces with the IP instance does so by
attaching secondary interfaces to the IP instance
using the nx_ip_interface_attach service. This
services stores information about the network
interface (IP address, network mask) in the interface
control block. This information enables NetX to
determine which interface a packet has been
received on and which interface a packet should be
sent out. Note an IP instance must already be
created before attaching any interfaces.

Functional Components of NetX 67

Express Logic, Inc.

More details on the NetX multihome support are
available in “Multiple Network Interface (Multihome)
Support ” on page 69.

Default Packet
Pool

Each IP instance is given a default packet pool during
creation. This packet pool is used to allocate packets
for ARP, RARP, ICMP, IGMP, and various TCP ACK
and state changes. If the default packet pool is
empty, the underlying NetX activity aborts the packet
pool entirely, and returns an error message if
possible.

IP Helper Thread Each IP instance has a helper thread. This thread is
responsible for handling all deferred packet
processing and all periodic processing. The IP helper
thread is created in nx_ip_create. This is where the
thread is given its stack and priority. Note that the first
processing in the IP helper thread is to finish the
network driver initialization associated with the IP
create service. After the network driver initialization is
complete, the helper thread starts an endless loop to
process packet and periodic requests.

If unexplained behavior is seen within the IP helper
thread, increasing its stack size during the IP create
service is the first debugging step. If the stack is too
small, the IP helper thread could possibly be
overwriting memory, which may cause unusual
problems.

Thread
Suspension

Application threads can suspend while attempting to
receive raw IP packets. After a raw packet is
received, the new packet is given to the first thread
suspended and that thread is resumed. NetX
services for receiving packets all have an optional
suspension timeout. When a packet is received or the

i

68 NetX User Guide

User Guide

timeout expires, the application thread is resumed
with the appropriate completion status.

IP Statistics and
Errors

If enabled, the NetX IP software keeps track of
several statistics and errors that may be useful to the
application. The following statistics and error reports
are maintained for each IP instance:

Total IP Packets Sent
Total IP Bytes Sent
Total IP Packets Received
Total IP Bytes Received
Total IP Invalid Packets
Total IP Receive Packets Dropped
Total IP Receive Checksum Errors
Total IP Send Packets Dropped
Total IP Fragments Sent
Total IP Fragments Received

All of these statistics and error reports are available
to the application with the nx_ip_info_get service.

IP Control Block
NX_IP

The characteristics of each IP instance are found in
its control block. It contains useful information such
as the IP address, network mask, and the linked list
of destination IP and physical hardware address
mapping. This structure is defined in the nx_api.h
file. It also contains an array of network interfaces,
the number of which is specified by the user
configurable option
NX_MAX_PHYSICAL_INTERFACES. The default
value is 1 indicating a single interface device.

IP instance control blocks can be located anywhere
in memory, but it is most common to make the control
block a global structure by defining it outside the
scope of any function.

Functional Components of NetX 69

Express Logic, Inc.

Multiple Network
Interface
(Multihome)
Support

NetX supports hosts connected to multiple physical
network interfaces using a single IP instance. To
utilize multihome support, set the user configurable
option NX_MAX_PHYSICAL_INTERFACES to the
number of physical interfaces needed.

To utilize a logical loopback interface, ensure the
configurable option
NX_DISABLE_LOOPBACK_INTERFACE is not set.
When the loopback interface is enabled (the default),
the total number of interfaces defined by
NX_MAX_IP_INTERFACES is automatically updated to
NX_MAX_PHYSICAL_INTERFACES + 1.

The host application creates a single IP instance for
the primary interface using the nx_ip_create service.
For each additional interface, the host application
attaches the interface to the IP instance using the
nx_ip_interface_attach service.

Each interface structure contains a subset of network
information about the network interface that is
contained in the IP control block, including network
address, host IP address, network mask, MTU size,
and Ethernet driver association. This is necessary for
compatibility with legacy NetX applications.

Existing single interface NetX applications and
network drivers do not require any changes when
using NetX with multihomed support.

The primary interface has index zero in the IP
instance list (array). Each subsequent interface
attached to the IP instance is assigned the next
index.

All upper layer protocol services for which the IP
instance is enabled, including TCP, UDP and IGMP,
are available to all the attached interfaces. These
upper layer protocols are for the most part not directly

i

70 NetX User Guide

User Guide

involved with choosing or determining the packet
interface when sending or receiving packets.

In most cases, NetX can determine the correct
interface to send the packet out on from the packet
destination IP address or associated socket
interface. When multiple interfaces are used, the
host application must use interface-specific NetX
services to explicitly set which interface broadcast
and multicast packets are sent out on.

Services specifically for developing multihome
applications include the following:

nx_igmp_multicast_interface_join
nx_ip_interface_address_get
nx_ip_interface_address_set
nx_ip_interface_attach
nx_ip_interface_info_get
nx_ip_interface_status_check
nx_ip_raw_packet_interface_send
nx_udp_socket_interface_send

These services are explained in greater detail in
“Description of NetX Services” on page 105.

For multicast or broadcast packets, NetX has no way
of knowing which interface to choose in a multihome
host. If the sending component does not specify an
interface, NetX defaults to the primary interface. To
send a loopback packet out the logical interface,
NetX library must be built without
NX_DISABLE_LOOPBACK_INTERFACE being set.
Nearly all NetX components (raw IP, ICMP, TCP, and
UDP) follow this process.

Static IP Routing The static routing feature supported in NetX allows a
host application to specify an interface and next hop
address for specific out of network destination IP
addresses. If static routing is enabled, NetX

Functional Components of NetX 71

Express Logic, Inc.

searches through the static routing table for an entry
matching the destination address of the packet to
send. If no match is found, NetX searches through
the list of physical interfaces and chooses an
interface and next hop based on the destination IP
address and network mask. If the destination does
not match any of the network interfaces attached to
the IP instance, NetX chooses the IP instance default
gateway.

Entries can be added and removed from the static
routing table using the nx_ip_static_route_add and
nx_ip_static_route_delete services, respectively.
To use static routing, the host application must
enable this feature by defining
NX_ENABLE_IP_STATIC_ROUTING.

When adding an entry to the static routing table, NetX
checks for a matching entry for the specified
destination address already in the table. If one exists,
it gives preference to the entry with the smaller
network (larger number of most significant bits) in the
network mask.

Address Resolution Protocol (ARP)
The Address Resolution Protocol (ARP) is
responsible for dynamically mapping 32-bit IP
addresses to those of the underlying physical media
(RFC 826). Ethernet is the most typical physical
media, and it supports 48-bit addresses. The need for
ARP is determined by the IP network driver supplied
to the nx_ip_create service. If physical mapping is
required, the network driver must set the
nx_interface_address_mapping_needed member
of the associated NX_INTERFACE structure.

i

72 NetX User Guide

User Guide

ARP Enable For ARP to function properly, it must first be enabled
by the application with the nx_arp_enable service.
This service sets up various data structures for ARP
processing, including the creation of an ARP cache
area from the memory supplied to the ARP enable
service.

ARP Cache The ARP cache can be viewed as an array of internal
ARP mapping data structures. Each internal
structure is capable of maintaining the relationship
between an IP address and a physical hardware
address. In addition, each data structure has link
pointers so it can be part of multiple linked lists.

ARP Dynamic
Entries

By default, the ARP enable service places all entries
in the ARP cache on the list of available dynamic
ARP entries. A dynamic ARP entry is allocated from
this list by the IP software when a send request to an
unmapped IP address is detected. After allocation,
the ARP entry is set up and an ARP request is sent
to the physical media.

If all dynamic ARP entries are in service, the ARP
entry in service the least is used for the latest
mapping request.

ARP Static Entries The application can also set up static ARP mapping
by using the nx_arp_static_entry_create service.
This service allocates an ARP entry from the
dynamic ARP entry list and places it on the static list
with the mapping information supplied by the
application. Static ARP entries are not subject to
reuse or aging.

i

Functional Components of NetX 73

Express Logic, Inc.

ARP Messages As mentioned previously, an ARP request message
is sent when the IP software detects that mapping is
needed for an IP address. ARP requests are sent
periodically (every NX_ARP_UPDATE_RATE
seconds) until a corresponding ARP response is
received. A total of NX_ARP_MAXIMUM_RETRIES
ARP requests are made before the ARP attempt is
abandoned. When an ARP response is received, the
associated physical address information is stored in
the ARP entry that is in the cache.

For multihome applications, NetX determines which
interface to send the ARP requests and responses
based on the specified packet interface.

Outgoing IP packets are queued while NetX waits for
the ARP response. The number of outgoing IP
packets queued is defined by the constant
NX_ARP_MAX_QUEUE_DEPTH.

NetX also responds to ARP requests from other
nodes on the local network. When an external ARP
request is made that matches the current IP address,
NetX builds an ARP response message that contains
the current physical address.

The formats of Ethernet ARP requests and
responses are shown in Figure 7 on page 76 and are
described below.

i

Request/Response Field Purpose
Ethernet Destination Address This 6-byte field contains the destination address

for the ARP response and is a broadcast (all
ones) for ARP requests. This field is setup by the
network driver.

Ethernet Source Address This 6-byte field contains the address of the
sender of the ARP request or response and is set
up by the network driver.

74 NetX User Guide

User Guide

ARP requests and responses are Ethernet-level
packets. All other TCP/IP packets are encapsulated
by an IP packet header.

All ARP messages in the TCP/IP implementation are
expected to be in big endian format. In this format,
the most significant byte of the word resides at the
lowest byte address.

ARP Aging Automatic invalidation of dynamic ARP entries is
supported. The constant

Frame Type This 2-byte field contains the type of Ethernet
frame present and, for ARP requests and
responses, this is equal to 0x0806. This is the last
field the network driver is responsible for setting
up.

Hardware Type This 2-byte field contains the hardware type,
which is 0x0001 for Ethernet.

Protocol Type This 2-byte field contains the protocol type, which
is 0x0800 for IP addresses.

Hardware Size This 1-byte field contains the hardware address
size, which is 6 for Ethernet addresses.

Protocol Size This 1-byte field contains the IP address size,
which is 4 for IP addresses.

Operation Code This 2-byte field contains the operation for this
ARP packet. An ARP request is specified with the
value of 0x0001, while an ARP response is
represented by a value of 0x0002.

Sender Ethernet Address This 6-byte field contains the sender’s Ethernet
address.

Sender IP Address This 4-byte field contains the sender’s IP
address.

Target Ethernet Address This 6-byte field contains the target’s Ethernet
address.

Target IP Address This 4-byte field contains the target’s IP address.

Request/Response Field Purpose

i

i

Functional Components of NetX 75

Express Logic, Inc.

NX_ARP_EXPIRATION_RATE specifies the number
of seconds an established IP address to physical
mapping stays valid. After expiration, the ARP entry
is removed from the ARP cache. The next attempt to
send to the corresponding IP address will result in a
new ARP request. ARP aging is disabled by default.
The default value is zero for the
NX_ARP_EXPIRATION_RATE constant.

ARP Statistics and
Errors

If enabled, the NetX ARP software keeps track of
several statistics and errors that may be useful to the
application. The following statistics and error reports
are maintained for each IP’s ARP processing:

Total ARP Requests Sent
Total ARP Requests Received
Total ARP Responses Sent
Total ARP Responses Received
Total ARP Dynamic Entries
Total ARP Static Entries
Total ARP Aged Entries
Total ARP Invalid Messages

All these statistics and error reports are available to
the application with the nx_arp_info_get service.

Reverse Address Resolution Protocol
(RARP)

The Reverse Address Resolution Protocol (RARP) is
the protocol for requesting network assignment of the
host’s 32-bit IP addresses (RFC 903). This is done
through an RARP request and continues periodically
until a network member assigns an IP address to the
host network interface in an RARP response. The IP
create service nx_ip_create service (and
nx_ip_interface_attach service for multihome hosts)

76 NetX User Guide

User Guide

create a need for RARP by supplying a zero IP
address. If RARP is enabled by the host application,
it can use the RARP protocol to request an IP
address from the network server for each network
interface with a zero IP address.

RARP Enable To use RARP, the application must create the IP
instance with an IP address of zero, then enable
RARP. For multihome hosts, at least one interface
associated with the IP instance must have an IP
address of zero. The RARP processing periodically
sends RARP request messages for each network
interface requiring an IP address until a valid RARP
reply with the network designated IP address for that
interface is received. At this point, RARP processing
is complete.

RARP Request The format of an RARP request packet is almost
identical to the ARP packet shown in Figure 7. The

offset

0

6

12

18

22

28

32

38

Ethernet Destination Address (6-bytes)

Ethernet Source Address (6-bytes)

Frame Type
0x0806

Hardware Type
0x0001

Protocol Type
0x0800

H Size P Size
6 4

Operation

Sender’s Ethernet Address (6-bytes)

Sender’s IP Address (4-bytes)

Target’s Ethernet Address (6-bytes)

Target’s IP Address (4-bytes)

(2-bytes)

FIGURE 7. ARP Packet Format

Functional Components of NetX 77

Express Logic, Inc.

only difference is the frame type field is 0x8035 and
the Operation Code field is 3, designating an RARP
request. As mentioned previously, RARP requests
will be sent periodically (every
NX_RARP_UPDATE_RATE seconds) until a RARP
reply with the network assigned IP address is
received.

All RARP messages in the TCP/IP implementation
are expected to be in big endian format. In this
format, the most significant byte of the word resides
at the lowest byte address.

RARP Reply RARP reply messages are received from the network
and contain the network assigned IP address for this
host. The format of an RARP reply packet is almost
identical to the ARP packet shown in Figure 7. The
only difference is the frame type field is 0x8035 and
the Operation Code field is 4, which designates an
RARP reply. After received, the IP address is setup in
the IP instance, the periodic RARP request is
disabled, and the IP instance is now ready for normal
network operation.

For multihome hosts, the IP address is applied to the
requesting network interface. If there are other
network interfaces still requesting an IP address
assignment, the periodic RARP service continues
until all interface IP address requests are resolved.

The application should not use the IP instance until
the RARP processing is complete. The
nx_ip_status_check may be used by threads to wait
for the RARP completion. For multihome hosts, the
application should not use the requesting interface
until the RARP processing is complete on that
interface. Secondary interface IP address status can
be checked with the nx_ip_interface_status_check
service.

i

i

78 NetX User Guide

User Guide

RARP Statistics
and Errors

If enabled, the NetX RARP software keeps track of
several statistics and errors that may be useful to the
application. The following statistics and error reports
are maintained for each IP’s RARP processing:

Total RARP Requests Sent
Total RARP Responses Received
Total RARP Invalid Messages

All these statistics and error reports are available to
the application with the nx_rarp_info_get service.

Internet Control Message Protocol (ICMP)
The Internet Control Message Protocol (ICMP) is
responsible for passing error and control information
between IP network members (RFC 792). Like most
other TCP/IP messages, ICMP messages are
encapsulated by an IP header with the ICMP protocol
designation.

ICMP Enable Before ICMP messages can be processed by NetX,
the application must call the nx_icmp_enable
service to enable ICMP processing. After this is
done, the application can issue ping requests and
field ping responses.

Ping Request A ping request is one type of ICMP message that is
typically used to check for the existence of a specific
member on the network, as identified by a host IP
address. If the specific host is present, its ICMP
component processes the ping request by issuing a

Functional Components of NetX 79

Express Logic, Inc.

ping response. Figure 8 details the ICMP ping
message format.

All ICMP messages in the TCP/IP implementation
are expected to be in big endian format. In this
format, the most significant byte of the word resides
at the lowest byte address.

The following describes the ICMP header format:

(note IP header is prepended)

Type
8 -> Request
0 -> Reply

Code

0
Checksum

Identifier Sequence Number

Optional Data

31 24 23 16 15 0
Offset

0

4

8

FIGURE 8. ICMP Ping Message

i

Header Field Purpose
Type This field specifies the ICMP message (bits 31-

28). The most common are:
0 Echo Reply
3 Destination Unreachable
8 Echo Request

Code This field is context specific on the type field (bits
27-24). For an echo request or reply the code is
set to zero

Checksum This field contains the 16-bit checksum of the
one's complement sum of the ICMP message
including the entire the ICMP header

80 NetX User Guide

User Guide

Ping Response A ping response is another type of ICMP message
that is generated internally by the ICMP component
in response to an external ping request. In addition to
acknowledgement, the ping response also contains a
copy of the user data supplied in the ping request.

Thread
Suspension

Application threads can suspend while attempting to
ping another network member. After a ping response
is received, the ping response message is given to
the first thread suspended and that thread is
resumed. Like all NetX services, suspending on a
ping request has an optional timeout.

ICMP Statistics
and Errors

If enabled, the NetX ICMP software keeps track of
several statistics and errors that may be useful to the
application. The following statistics and error reports
are maintained for each IP’s ICMP processing:

Total ICMP Pings Sent
Total ICMP Ping Timeouts
Total ICMP Ping Threads Suspended
Total ICMP Ping Responses Received
Total ICMP Checksum Errors
Total ICMP Unhandled Messages
Total ICMP Pings Received
Total ICMP Pings Responsed To

Identification This field contains an ID value identifying the
host; a host should use the ID extracted from an
ECHO request in the ECHO REPLY (bits 31-16)

Sequence This field contains an ID value; a host should use
the ID extracted from an ECHO request in the
ECHO REPLY (bits 31-16). Unlike the identifier
field, this value will change in a subsequent Echo
request from the same host (bits 15-0)

Functional Components of NetX 81

Express Logic, Inc.

All these statistics and error reports are available to
the application with the nx_icmp_info_get service.

Internet Group Management Protocol
(IGMP)

The Internet Group Management Protocol (IGMP)
provides UDP packet delivery to multiple network
members that belong to the same multicast group
(RFC 1112 and RFC 2236). A multicast group is
basically a dynamic collection of network members
and is represented by a Class D IP address.
Members of the multicast group may leave at any
time, and new members may join at any time. The
coordination involved in joining and leaving the group
is the responsibility of IGMP.

IGMP Enable Before any multicasting activity can take place in
NetX, the application must call the nx_igmp_enable
service. This service performs basic IGMP
initialization in preparation for multicast requests.

Multicast IP
Addresses

As mentioned previously, multicast addresses are
actually Class D IP addresses as shown in Figure 5
on page 59. The lower 28-bits of the Class D address
correspond to the multicast group ID. There are a
series of pre-defined multicast addresses; however,
the all hosts address (244.0.0.1) is particularly
important to IGMP processing. The all hosts address
is used by routers to query all multicast members to
report on which multicast groups they belong to.

82 NetX User Guide

User Guide

Physical Address
Mapping

Class D multicast addresses map directly to physical
Ethernet addresses ranging from 01.00.5e.00.00.00
through 01.00.5e.7f.ff.ff. The lower 23 bits of the IP
multicast address map directly to the lower 23 bits of
the Ethernet address.

Multicast Group
Join

Applications that need to join a particular multicast
group may do so by calling the
nx_igmp_multicast_join service. This service
keeps track of the number of requests to join this
multicast group. If this is the first application request
to join the multicast group, an IGMP report is sent out
on the network indicating this host’s intention to join
the group. Next, the network driver is called to set up
for listening for packets with the Ethernet address for
this multicast group.

For multihome hosts, the
nx_igmp_multicast_interface_join service should
be used instead of nx_igmp_multicast_join, if the
multicast group destination address is on a
secondary network interface. The original service
nx_igmp_multicast_join service is limited to multicast
groups on the primary network and is included for
backward compatibility.

Multicast Group
Leave

Applications that need to leave a previously joined
multicast group may do so by calling the
nx_igmp_multicast_leave service. This service
reduces the internal count associated with how many
times the group was joined. If there are no
outstanding join requests for a group, the network
driver is called to disable listening for packets with
this multicast group’s Ethernet address.

Functional Components of NetX 83

Express Logic, Inc.

IGMP Report
Message

When the application joins a multicast group, an
IGMP report message is sent via the network to
indicate the host’s intention to join a particular
multicast group. The format of the IGMP report
message is shown in Figure 9. The multicast group
address is used for both the group message in the
IGMP report message and the destination IP
address.

In the figure above, the IGMP header contains a
version field, a type field, a checksum field, and a
multicast group address field. For IGMPv1
messages, the Maximum Response Time field is
always set to zero, as this is not part of the IGMPv1
protocol. The Maximum Response Time field is set
when the host receives a Query type IGMP message
and cleared when a host receives another hosts
Report type message as defined by the IGMPv2
protocol.

The following describes the IGMP header format:

(note IP header is prepended)

Maximum
16-bit Checksum

31 24 23 16 15 0
Offset

0

4

Version

1

32-bit Class D Group Address

IGMP
Type

2

IGMP

FIGURE 9. IGMP Report Message

Respons
Time

Header Field Purpose
Version This field specifies the IGMP version (bits 31- 28)

Type This field specifies the type of IGMP message
(bits 27 -24)

Identifier Not used in IGMP v1. In IGMP v2 this field serves
as the maximum response time.

84 NetX User Guide

User Guide

IGMP report messages are also sent in response to
IGMP query messages sent by a multicast router.
Multicast routers periodically send query messages
out to see which hosts still require group
membership. Query messages have the same format
as the IGMP report message shown in Figure 9. The
only differences are the IGMP type is equal to 1 and
the group address field is set to 0. IGMP Query
messages are sent to the all hosts IP address by the
multicast router. A host that still wishes to maintain
group membership responds by sending another
IGMP report message.

All messages in the TCP/IP implementation are
expected to be in big endian format. In this format,
the most significant byte of the word resides at the
lowest byte address.

IGMP Statistics
and Errors

If enabled, the NetX IGMP software keeps track of
several statistics and errors that may be useful to the
application. The following statistics and error reports
are maintained for each IP’s IGMP processing:

Total IGMP Reports Sent
Total IGMP Queries Received
Total IGMP Checksum Errors
Total IGMP Current Groups Joined

All these statistics and error reports are available to
the application with the nx_igmp_info_get service.

Checksum This field contains the 16-bit checksum of
the one's complement sum of the IGMP
message starting with the IGMP version (bits
0-15)

Group Address 32-bit class D group IP address

i

Functional Components of NetX 85

Express Logic, Inc.

User Datagram Protocol (UDP)
The User Datagram Protocol (UDP) provides the
simplest form of data transfer between network
members (RFC 768). UDP data packets are sent
from one network member to another in a best effort
fashion; i.e., there is no built-in mechanism for
acknowledgement by the packet recipient. In
addition, sending a UDP packet does not require any
connection to be established in advance. Because of
this, UDP packet transmission is very efficient.

UDP Enable Before UDP packet transmission is possible, the
application must first enable UDP by calling the
nx_udp_enable service. After enabled, the
application is free to send and receive UDP packets.

UDP Header UDP places a simple packet header in front of the
application’s data when sending application data and
removes a similar UDP header from the packet
before delivering a received UDP packet to the
application. UDP utilizes the IP protocol for sending
and receiving packets, which means there is an IP
header in front of the UDP header when the packet is
on the network. Figure 10 shows the format of the
UDP header.

All headers in the TCP/IP implementation are
expected to be in big endian format. In this format,

(note IP header is prepended)

16-bit Destination Port

31 16 15 0
Offset

0

4

16-bit Source Port

16-bit UDP Length 16-bit UDP Checksum

FIGURE 10. UDP Header

i

86 NetX User Guide

User Guide

the most significant byte of the word resides at the
lowest byte address.

The following describes the UDP header format:

UDP Checksum UDP specifies a one’s complement 16-bit checksum
that covers the IP pseudo header (consisting of the
32-bit source IP address, 32-bit destination IP
address, and the protocol/length IP word), the UDP
header, and the UDP packet data. If the calculated
UPD checksum is 0, it is stored as all ones (0xFFFF).
If the sending socket has the UDP checksum logic
disabled, a zero is placed in the UDP checksum field
to indicate the checksum was not calculated.

If the UDP checksum does not match the computed
checksum by the receiver, the UDP packet is simply
discarded.

NetX allows the application to enable or disable UDP
checksum calculation on a per-socket basis. By

Header Field Purpose
16-bit source port number This field contains the port on which

the UDP packet is being sent. Valid
UDP ports range from 1 through
0xFFFF.

16-bit destination port number This field contains the UDP port to
which the packet is being sent. Valid
UDP ports range from 1 through
0xFFFF.

16-bit UDP length This field contains the number of
bytes in the UDP packet, including
the size of the UDP header.

16-bit UDP checksum This field contains the 16-bit
checksum for the packet, including
the UDP header, the packet data
area, and the pseudo IP header.

Functional Components of NetX 87

Express Logic, Inc.

default, the UDP socket checksum logic is enabled.
The application can disable checksum logic for a
particular UDP socket by calling the
nx_udp_socket_checksum_disable.

Disabling the UDP checksum logic is appropriate if
the application is performing its own checksum logic
on the data packet or the local network driver has
sufficient error detection logic.

UDP Ports and
Binding

A UDP port is a logical end point in the UDP protocol.
There are 65,535 valid ports in the UDP component
of NetX, ranging from 1 through 0xFFFF. To send or
receive UDP data, the application must first create a
UDP socket, then bind it to a desired port. After
bound to a port, the application may send and
receive data on that socket.

UDP Fast Path™ The UDP Fast Path™ is the name for a low packet
overhead path through the NetX UDP
implementation. Sending a UDP packet requires just
three function calls: nx_udp_socket_send,
nx_ip_socket_send, and the eventual call to the
network driver. On UDP packet reception, the UDP
packet is either placed on the appropriate UDP
socket receive queue or delivered to a suspended
application thread in a single function call from the
network driver’s receive interrupt processing. This
highly optimized logic for sending and receiving UDP
packets is the essence of UDP Fast Path technology.

UDP Packet Send Sending UDP data is easily accomplished by calling
the nx_udp_socket_send function. This service
places a UDP header in front of the packet and sends
it on the Internet using the internal IP send routine.
There is no thread suspension on sending UDP

i

88 NetX User Guide

User Guide

packets because all UDP packet transmissions are
processed immediately.

For multihome devices, nx_udp_socket_send will
work with packets whose destination address is on
either the primary or secondary network interface.
NetX can figure out from the destination IP address
the correct interface and next hop. However, for
broadcast packets that must go out a secondary
interface, the host application must explicitly set
which interface to use by calling
nx_udp_socket_interface_send.

If UDP checksum logic is enabled for this socket, the
checksum operation is performed in the context of
the calling thread, without blocking access to the
UDP or IP data structures.

The UDP data residing in the NX_PACKET structure
should reside on a long-word boundary. There also
needs to be sufficient space between the prepend
pointer and the data start pointer to place the UDP,
IP, and physical media headers.

UDP Packet
Receive

Application threads may receive UDP packets from a
particular socket by calling
nx_udp_socket_receive. The socket receive
function delivers the oldest packet on the socket’s
receive queue. If there are no packets on the receive
queue, the calling thread can suspend (with an
optional timeout) until a packet arrives.

The UDP receive packet processing (usually called
from the network driver’s receive interrupt handler) is
responsible for either placing the packet on the UDP
socket’s receive queue or delivering it to the first
suspended thread waiting for a packet. If the packet
is queued, the receive processing also checks the
maximum receive queue depth associated with the

i

!

Functional Components of NetX 89

Express Logic, Inc.

socket. If this newly queued packet exceeds the
queue depth, the oldest packet in the queue is
discarded.

UDP Receive
Notify

If the application thread needs to process received
data from more than one socket, the
nx_udp_socket_receive_notify function should be
used. This function registers a receive packet
callback function for the socket. Whenever a packet
is received on the socket, the callback function is
executed.

The contents of the callback function is application-
specific; however, it would most likely contain logic to
inform the processing thread that a packet is now
available on the corresponding socket.

UDP Socket Create UDP sockets are created either during initialization or
during runtime by application threads. The initial type
of service, time to live, and receive queue depth are
defined by the nx_udp_socket_create service.
There are no limits on the number of UDP sockets in
an application.

Thread
Suspension

As mentioned previously, application threads can
suspend while attempting to receive a UDP packet on
a particular UDP port. After a packet is received on
that port, it is given to the first thread suspended and
that thread is then resumed. An optional timeout is
available when suspending on a UDP receive packet,
a feature available for most NetX services.

UDP Socket
Statistics and
Errors

If enabled, the NetX UDP socket software keeps
track of several statistics and errors that may be
useful to the application. The following statistics and

90 NetX User Guide

User Guide

error reports are maintained for each IP/UDP
instance:

Total UDP Packets Sent
Total UDP Bytes Sent
Total UDP Packets Received
Total UDP Bytes Received
Total UDP Invalid Packets
Total UDP Receive Packets Dropped
Total UDP Receive Checksum Errors
UDP Socket Packets Sent
UDP Socket Bytes Sent
UDP Socket Packets Received
UDP Socket Bytes Received
UDP Socket Packets Queued
UDP Socket Receive Packets Dropped
UDP Socket Checksum Errors

All these statistics and error reports are available to
the application with the nx_udp_info_get and
nx_udp_socket_info_get services.

UDP Socket
Control Block
TX_UDP_SOCKET

The characteristics of each UDP socket are found in
the associated NX_UDP_SOCKET control block. It
contains useful information such as the link to the IP
data structure, the network interface for the sending
and receiving paths, the bound port, and the receive
packet queue. This structure is defined in the
nx_api.h file.

Functional Components of NetX 91

Express Logic, Inc.

Transmission Control Protocol (TCP)
The Transmission Control Protocol (TCP) provides
reliable stream data transfer between two network
members (RFC 793). All data sent from one network
member are verified and acknowledged by the
receiving member. In addition, the two members
must have established a connection prior to any data
transfer. All this results in reliable data transfer;
however, it does require substantially more overhead
than the previously described UDP data transfer.

TCP Enable Before TCP connections and packet transmissions
are possible, the application must first enable TCP by
calling the nx_tcp_enable service. After enabled, the
application is free to access all TCP services.

TCP Header TCP places a somewhat complex packet header in
front of the application’s data when sending data and
removes a similar TCP header from the packet
before delivering a received TCP packet to the
application. TCP utilizes the IP protocol to send and
receive packets, which means there is an IP header
in front of the TCP header when the packet is on the
network. Figure 11 shows the format of the TCP
header.

The following describes the TCP header format:

Header Field Purpose
16-bit source port number This field contains the port the TCP packet is being

sent out on. Valid TCP ports range from 1 through
0xFFFF.

16-bit destination port number This field contains the TCP port the packet is being
sent to. Valid TCP ports range from 1 through
0xFFFF.

92 NetX User Guide

User Guide

32-bit sequence number This field contains the sequence number for data
sent from this end of the connection. The original
sequence is established during the initial
connection sequence between two TCP nodes.
Every data transfer from that point results in an
increment of the sequence number by the amount
bytes sent.

32-bit acknowledgement
number

This field contains the sequence number
corresponding to the last byte received by this side
of the connection. This is used to determine
whether or not data previously sent has
successfully been received by the other end of the
connection.

4-bit header length This field contains the number of 32-bit words in the
TCP header. If no options are present in the TCP
header, this field is 5.

Header Field Purpose

31 15 0

word
offset

0

4

8

12

16

16-bit destination port

20

16-bit source port

32-bit sequence number

32-bit acknowledgement number

16-bit window size

16-bit urgent pointer16-bit TCP checksum

4-bit
header
length

16

F
I
N

S
Y
N

R
S
T

P
S
H

A
C
K

U
R
G

TCP Header Options and/or Data (if any)

(note IP header is prepended)

FIGURE 11. TCP Header

Functional Components of NetX 93

Express Logic, Inc.

All headers in the TCP/IP implementation are
expected to be in big endian format. In this format,
the most significant byte of the word resides at the
lowest byte address.

TCP Checksum TCP specifies a one’s complement 16-bit checksum
that covers the IP pseudo header (consisting of the
32-bit source IP address, 32-bit destination IP
address, and the protocol/length IP word), the TCP
header, and the TCP packet data.

6-bit code bits This field contains the six different code bits used to
indicate various control information associated with
the connection. The control bits are defined as
follows:

16-bit window This field contains the amount of bytes the sender
can currently receive. This basically is used for flow
control. The sender is responsible for making sure
the data to send will fit into the receiver’s advertised
window.

16-bit TCP checksum This field contains the 16-bit checksum for the
packet including the TCP header, the packet data
area, and the pseudo IP header.

16-bit urgent pointer This field contains the positive offset of the last byte
of the urgent data. This field is only valid if the URG
code bit is set in the header.

Header Field Purpose

Name Bit Meaning

URG 21 Urgent data present

ACK 20 Acknowledgement number is valid

PSH 19 Handle this data immediately

RST 18 Reset the connection

SYN 17 Synchronize sequence numbers
(used to establish connection)

FIN 16 Sender is finished with transmit (used
to close connection)

i

94 NetX User Guide

User Guide

TCP Ports A TCP port is a logical connection point in the TCP
protocol. There are 65,535 valid ports in the TCP
component of NetX, ranging from 1 through 0xFFFF.
Unlike UDP in which data from one port can be sent
to any other destination port, a TCP port is
connected to another specific TCP port, and only
when this connection is established can any data
transfer take place—and only between the two ports
making up the connection.

TCP ports are completely separate from UDP ports;
e.g., UDP port number 1 has no relation to TCP port
number 1.

Client Server
Model

To use TCP for data transfer, a connection must first
be established between the two TCP sockets. The
establishment of the connection is done in a client-
server fashion. The client side of the connection is
the side that initiates the connection, while the server
side simply waits for client connection requests
before any processing is done.

For multihome devices, NetX automatically
determines the interface and next hop address on
the client side for transmitting packets based on the
packet destination IP address. Because TCP does
not operate on broadcast addresses, there is no
need to pass in a "hint" for the outgoing interface.

TCP Socket State
Machine

The connection between two TCP sockets (one client
and one server) is complex and is managed in a
state machine manner. Each TCP socket starts in a
CLOSED state. Through connection events each
socket’s state machine migrates into the
ESTABLISHED state, which is where the bulk of the
data transfer in TCP takes place. When one side of
the connection no longer wishes to send data, it
disconnects, and this action eventually causes both

i

i

Functional Components of NetX 95

Express Logic, Inc.

TCP sockets to return to the CLOSED state. This
process repeats each time a TCP client and server
establish and close a connection. Figure 12 on
page 96 shows the various states of the TCP state
machine.

TCP Client
Connection

As mentioned previously, the client side of the TCP
connection initiates a connection request to a TCP
server. Before a connection request can be made,
TCP must be enabled on the client IP instance. In
addition, the client TCP socket must next be created
with nx_tcp_socket_create service and bound to a
port via the nx_tcp_client_socket_bind service.

After the client socket is bound, the
nx_tcp_client_socket_connect service is used to
establish a connection with a TCP server. Note the
socket must be in a CLOSED state to initiate a
connection attempt. Establishing the connection
starts with NetX issuing a SYN packet and then
waiting for a SYN ACK packet back from the server,
which signifies acceptance of the connection request.
After the SYN ACK is received, NetX responds with
an ACK packet and promotes the client socket to the
ESTABLISHED state.

For multihome hosts, NetX automatically determines
which network interface the client connects to the
server based on the server IP address. It saves that
interface in the client TCP socket control block for
subsequent packet transmissions on the same
connection.

TCP Client
Disconnection

Closing the connection is accomplished by calling
nx_tcp_socket_disconnect. If no suspension is
specified, the client socket sends a RST packet to the
server socket and places the socket in the CLOSED

i

96 NetX User Guide

User Guide

CLOSED

LISTEN

ESTABLISHED

SYN
RECEIVED

SYN
SENT

FIN
WAIT-1 CLOSING

FIN
WAIT-2

CLOSE
WAIT

TIMED
WAIT

LAST
ACK

nx_tcp_socket_disconnect

nx_tcp_client_socket_connect

nx_tcp_server_socket_listen

reset

timeout,
reset

nx_tcp_socket_disconnect

nx_tcp_server_socket_accept

send(SYN)

received(SYN)

send(SYN+ACK)

received(SYN)send(SYN+ACK)

received(SYN+ACK)
send(ACK)

received(ACK)

send(FIN)

send(FIN)

received(ACK)

send(ACK)
received(FIN)

send(ACK)
received(FIN)

received(FIN+ACK)
send(ACK) received(ACK)

received(ACK)

send(FIN)

received(FIN)
send(ACK)

close close

close

nx_tcp_socket_disconnect

nx_tcp_socket_disconnect

nx_tcp_socket_disconnect

nx_tcp_socket_create

FIGURE 12. States of the TCP State Machine

1

2

34

5

7 9 6

8 10 11

nx_tcp_server_socket_relisten

Functional Components of NetX 97

Express Logic, Inc.

state. Otherwise, if a suspension is requested, the full
TCP disconnect protocol is performed, as follows:

• If the server previously initiated a disconnect
request (the client socket has already received a
FIN packet, responded with an ACK, and is in the
CLOSE WAIT state), NetX promotes the TCP
socket state to the LAST ACK state and sends a
FIN packet. It then waits for an ACK from the
server before completing the disconnect and
entering the CLOSED state.

• If on the other hand, the client is the first to initiate
a disconnect request (the server has not discon-
nected and the socket is still in the ESTABLISHED
state), NetX sends a FIN packet to initiate the dis-
connect and waits to receive a FIN and an ACK
from the server before completing the disconnect
and placing the socket in a CLOSED state.

If there are still packets on the socket transmit queue,
NetX suspends for the specified timeout to allow the
packets to be acknowledged. If the timeout expires,
NetX empties the transmit queue of the client socket.

To unbind the port and client socket, the application
calls nx_tcp_client_socket_unbind. The socket
must be in a CLOSED state or in the process of
disconnecting (i.e., CLOSE WAIT state) before the
port is released; otherwise, an error is returned.

Finally, if the application no longer needs the client
socket, it calls nx_tcp_socket_delete to delete the
socket.

TCP Server
Connection

The server side of a TCP connection is passive; i.e.,
the server waits for a client connection request. To
accept a client connection, TCP must first be enabled
on the IP instance. Next, the application must create
a TCP socket using the nx_tcp_socket_create
service.

98 NetX User Guide

User Guide

The server socket must also be setup for listening for
connection requests using the
nx_tcp_server_socket_listen service. This service
places the server socket in the LISTEN state and
binds the specified server port to the server socket. If
the socket connection has already been established,
the function simply returns a successful status.

To set a socket listen callback routine the application
specifies the appropriate callback function for the
tcp_listen_callback argument of the
nx_tcp_server_socket_listen service. This
application callback function is then executed by
NetX whenever a new connection is requested on
this server port. The processing in the callback is
under application control.

To accept client connection requests, the application
calls the nx_tcp_server_socket_accept service.
The server socket must either be in a LISTEN state
or a SYN RECEIVED state (i.e., the server has
received a SYN packet from a client requesting a
connection) to call the accept service. A successful
return status from from
nx_tcp_server_socket_accept indicates the
connection has been established and the server
socket is in the ESTABLISHED state.

After the server socket has a valid connection,
additional client connection requests are queued up
to the depth specified by the
nx_tcp_server_socket_listen service. In order to
process subsequent connections on a server port,
the application must call
nx_tcp_server_socket_relisten with an available
socket (i.e., a socket in a CLOSED state). Note that
the same server socket could be used if the previous
connection associated with the socket is now
finished and the socket is in the CLOSED state.

i

Functional Components of NetX 99

Express Logic, Inc.

TCP Server
Disconnection

Closing the connection is accomplished by calling
nx_tcp_socket_disconnect. If no suspension is
specified, the server socket sends a RST packet to
the client socket and places the socket in the
CLOSED state. Otherwise, if a suspension is
requested, the full TCP disconnect protocol is
performed, as follows:

• If the client previously initiated a disconnect
request (the server socket has already received a
FIN packet, responded with an ACK, and is in the
CLOSE WAIT state), NetX promotes the TCP
socket state to the LAST ACK state and sends a
FIN packet. It then waits for an ACK from the
client before completing the disconnect and
entering the CLOSED state.

• If on the other hand, the server is the first to
initiate a disconnect request (the client has not
disconnected and the socket is still in the
ESTABLISHED state), NetX sends a FIN packet
to initiate the disconnect and waits to receive a
FIN and an ACK from the client before completing
the disconnect and placing the socket in a
CLOSED state.

If there are still packets on the socket transmit queue,
NetX suspends for the specified timeout to allow the
packets to be acknowledged. If the timeout expires,
NetX empties the transmit queue of the server
socket.

After the disconnect processing is complete and the
server socket is in the CLOSED state, the application
must call the nx_tcp_server_socket_unaccept
service to end the association of this socket with the
server port. Note this service must be called by the
application even if nx_tcp_socket_disconnect or
nx_tcp_server_socket_accept return an error
status. After the nx_tcp_server_socket_unaccept
returns, the socket can be used as a client or server
socket, or even deleted if it is no longer needed. If

100 NetX User Guide

User Guide

accepting another client connection on the same
server port is desired, the
nx_tcp_server_socket_relisten service should be
called with this socket.

Stop Listening on
a Server Port

If the application no longer wishes to listen for client
connection requests on a server port that was
previously specified by a call to the
nx_tcp_server_socket_listen service, the
application simply calls the
nx_tcp_server_socket_unlisten service. This
service places any socket waiting for a connection
back in the CLOSED state and releases any queued
client connection request packets.

TCP Window Size During both the setup and data transfer phases of
the connection, each port reports the amount of data
it can handle, which is called its window size. As data
are received and processed, this window size is
adjusted dynamically. In TCP, a sender can only
send an amount of data that is less than or equal to
the amount of data specified by the receiver’s
window size. In essence, the window size provides
flow control for data transfer in each direction of the
connection.

TCP Packet Send Sending TCP data is easily accomplished by calling
the nx_tcp_socket_send function. This service first
builds a TCP header in front of the packet (including
the checksum calculation). If the receiver’s window
size is larger than the data in this packet, the packet
is sent on the Internet using the internal IP send
routine. Otherwise, the caller may suspend and wait
for the receiver’s window size to increase enough for
this packet to be sent. At any given time, only one
sender may suspend while trying to send TCP data.

Functional Components of NetX 101

Express Logic, Inc.

The TCP data residing in the NX_PACKET structure
should reside on a long-word boundary. In addition,
there needs to be sufficient space between the
prepend pointer and the data start pointer to place
the TCP, IP, and physical media headers.

TCP Packet
Retransmit

TCP packets sent are actually stored internally until
an ACK is returned from the other side of the
connection. If an ACK is not received within the
timeout period, the transmit packet is re-sent and the
next timeout period is increased. When an ACK is
received, all packets covered by the
acknowledgement number in the internal transmit
sent queue are finally released.

TCP Packet
Receive

The TCP receive packet processing (called from the
IP helper thread) is responsible for handling various
connection and disconnection actions as well as
transmit acknowledge processing. In addition, the
TCP receive packet processing is responsible for
placing packets with receive data on the appropriate
TCP socket’s receive queue or delivering the packet
to the first suspended thread waiting for a packet.

TCP Receive
Notify

If the application thread needs to process received
data from more than one socket, the
nx_tcp_socket_receive_notify function should be
used. This function registers a receive packet
callback function for the socket. Whenever a packet
is received on the socket, the callback function is
executed.

The contents of the callback function are application-
specific; however, the function would most likely
contain logic to inform the processing thread that a
packet is available on the corresponding socket.

!

102 NetX User Guide

User Guide

TCP Socket Create TCP sockets are created either during initialization or
during runtime by application threads. The initial type
of service, time to live, and window size are defined
by the nx_tcp_socket_create service. There are no
limits on the number of TCP sockets in an
application.

Thread
Suspension

As mentioned previously, application threads can
suspend while attempting to receive data from a
particular TCP port. After a packet is received on that
port, it is given to the first thread suspended and that
thread is then resumed. An optional timeout is
available when suspending on a UDP receive
packet, a feature available for most NetX services.

Thread suspension is also available for connection
(both client and server), client binding, and
disconnection services.

TCP Socket
Statistics and
Errors

If enabled, the NetX TCP socket software keeps
track of several statistics and errors that may be
useful to the application. The following statistics and
error reports are maintained for each IP/TCP
instance:

Total TCP Packets Sent
Total TCP Bytes Sent
Total TCP Packets Received
Total TCP Bytes Received
Total TCP Invalid Packets
Total TCP Receive Packets Dropped
Total TCP Receive Checksum Errors
Total TCP Connections
Total TCP Disconnections
Total TCP Connections Dropped
Total TCP Packet Retransmits
TCP Socket Packets Sent
TCP Socket Bytes Sent
TCP Socket Packets Received
TCP Socket Bytes Received

Functional Components of NetX 103

Express Logic, Inc.

TCP Socket Packet Retransmits
TCP Socket Packets Queued
TCP Socket Checksum Errors
TCP Socket State
TCP Socket Transmit Queue Depth
TCP Socket Transmit Window Size
TCP Socket Receive Window Size

All these statistics and error reports are available to
the application with the nx_tcp_info_get and
nx_tcp_socket_info_get services.

TCP Socket
Control Block
NX_TCP_SOCKET

The characteristics of each TCP socket are found in
the associated NX_TCP_SOCKET control block,
which contains useful information such as the link to
the IP data structure, the network connection
interface, the bound port, and the receive packet
queue. This structure is defined in the nx_api.h file.

104 Functional Components of NetX

User Guide

User Guide

4C H A P T E R 4

Description of NetX Services

This chapter contains a description of all NetX services in
alphabetic order. Service names are designed so all similar
services are grouped together. For example, all ARP services are
found at the beginning of this chapter.

Note that a BSD-Compatible Socket API is available for legacy
application code that cannot take full advantage of the high-
performance NetX API. Refer to Appendix D for more information
on the BSD-Compatible Socket API.

In the “Return Values” section of each description, values in BOLD
are not affected by the NX_DISABLE_ERROR_CHECKING
define used to disable the API error checking, while values in non-
bold are completely disabled. The “Allowed From” sections
indicate from which each NetX service can be called from.

nx_arp_dynamic_entries_invalidate
Invalidate all dynamic entries in the ARP cache 112

nx_arp_dynamic_entry_set
Set dynamic ARP entry 114

nx_arp_enable
Enable Address Resolution Protocol (ARP) 116

nx_arp_gratuitous_send
Send gratuitous ARP request 118

nx_arp_hardware_address_find
Locate physical hardware address given an IP address 120

nx_arp_info_get
Retrieve information about ARP activities 122

nx_arp_ip_address_find
Locate IP address given a physical address 124

nx_arp_static_entries_delete
Delete all static ARP entries 126

nx_arp_static_entry_create
Create static IP to hardware mapping in ARP cache 128

i

106 NetX User Guide

User Guide

nx_arp_static_entry_delete
Delete static IP to hardware mapping in ARP cache 130

nx_icmp_enable
Enable Internet Control Message Protocol (ICMP) 132

nx_icmp_info_get
Retrieve information about ICMP activities 134

nx_icmp_ping
Send ping request to specified IP address 136

nx_igmp_enable
Enable Internet Group Management Protocol (IGMP) 138

nx_igmp_info_get
Retrieve information about IGMP activities 140

nx_igmp_loopback_disable
Disable IGMP loopback 142

nx_igmp_loopback_enable
Enable IGMP loopback 144

nx_igmp_multicast_interface_join
Join IP interface to specified multicast group 146

nx_igmp_multicast_join
Join IP instance to specified multicast group 148

nx_igmp_multicast_leave
Cause IP instance to leave specified multicast group 150

nx_ip_address_change_notifiy
Notify application if IP address changes 152

nx_ip_address_get
Retrieve IP address and network mask 154

nx_ip_address_set
Set IP address and network mask 156

nx_ip_create
Create an IP instance 158

nx_ip_delete
Delete previously created IP instance 160

nx_ip_driver_direct_command
Issue command to network driver 162

nx_ip_forwarding_disable
Disable IP packet forwarding 164

nx_ip_forwarding_enable
Enable IP packet forwarding 166

107

Express Logic, Inc.

nx_ip_fragment_disable
Disable IP packet fragmenting 168

nx_ip_fragment_enable
Enable IP packet fragmenting 170

nx_ip_gateway_address_set
Set Gateway IP address 172

nx_ip_info_get
Retrieve information about IP activities 174

nx_ip_interface_address_get
Retrieve interface IP address 178

nx_ip_interface_address_set
Set interface IP address and network mask 180

nx_ip_interface_attach
Attach network interface to IP instance 182

nx_ip_interface_info_get
Retrieve network interface parameters 184

nx_ip_interface_status_check
Check status of attached IP interface 186

nx_ip_raw_packet_disable
Disable raw packet sending/receiving 188

nx_ip_raw_packet_enable
Enable raw packet sending/receiving 190

nx_ip_raw_packet_interface_send
Send raw IP packet out specified network interface 192

nx_ip_raw_packet_receive
Receive raw IP packet 194

nx_ip_raw_packet_send
Send raw IP packet 196

nx_ip_static_route_add
Add static route 198

nx_ip_static_route_delete
Delete static route 200

nx_ip_status_check
Check status of an IP instance 202

nx_packet_allocate
Allocate packet from specified pool 204

nx_packet_copy
Copy packet 206

nx_packet_data_append
Append data to end of packet 208

108 NetX User Guide

User Guide

nx_packet_data_extract_offset
Extract data from packet via an offset 210

nx_packet_data_retrieve
Retrieve data from packet 212

nx_packet_length_get
Get length of packet data 214

nx_packet_pool_create
Create packet pool in specified memory area 216

nx_packet_pool_delete
Delete previously created packet pool 218

nx_packet_pool_info_get
Retrieve information about a packet pool 220

nx_packet_release
Release previously allocated packet 222

nx_packet_transmit_release
Release a transmitted packet 224

nx_rarp_disable
Disable Reverse Address Resolution Protocol (RARP) 226

nx_rarp_enable
Enable Reverse Address Resolution Protocol (RARP) 228

nx_rarp_info_get
Retrieve information about RARP activities 230

nx_system_initialize
Initialize NetX System 232

nx_tcp_client_socket_bind
Bind client TCP socket to TCP port 234

nx_tcp_client_socket_connect
Connect client TCP socket 236

nx_tcp_client_socket_port_get
Get port number bound to client TCP socket 238

 nx_tcp_client_socket_unbind
Unbind TCP client socket from TCP port 240

nx_tcp_enable
Enable TCP component of NetX 242

nx_tcp_free_port_find
Find next available TCP port 244

nx_tcp_info_get
Retrieve information about TCP activities 246

nx_tcp_server_socket_accept
Accept TCP server connection 250

109

Express Logic, Inc.

nx_tcp_server_socket_listen
Enable listening for client connection on TCP port 254

nx_tcp_server_socket_relisten
Re-listen for client connection on TCP port 258

nx_tcp_server_socket_unaccept
Unaccept previous server socket connection 262

nx_tcp_server_socket_unlisten
Disable listening for client connection on TCP port 266

nx_tcp_socket_bytes_available
Retrieves number of bytes available for retrieval 270

nx_tcp_socket_create
Create TCP client or server socket 272

nx_tcp_socket_delete
Delete TCP socket 276

nx_tcp_socket_disconnect
Disconnect client and server socket connections 278

nx_tcp_socket_info_get
Retrieve information about TCP socket activities 280

nx_tcp_socket_mss_get
Get MSS of socket 284

nx_tcp_socket_mss_peer_get
Get MSS of socket peer 286

nx_tcp_socket_mss_set
Set MSS of socket 288

nx_tcp_socket_peer_info_get
Retrieve information about peer TCP socket 290

nx_tcp_socket_receive
Receive data from TCP socket 292

nx_tcp_socket_receive_notify
Notify application of received packets 294

nx_tcp_socket_send
Send data through a TCP socket 296

nx_tcp_socket_state_wait
Wait for TCP socket to enter specific state 300

nx_tcp_socket_transmit_configure
Configure socket’s transmit parameters 302

nx_tcp_socket_window_update_notify_set
Notify application of window size updates 304

nx_udp_enable
Enable UDP component of NetX 306

110 NetX User Guide

User Guide

nx_udp_free_port_find
Find next available UDP port 308

nx_udp_info_get
Retrieve information about UDP activities 310

nx_udp_packet_info_extract
Extract network parameters from UDP packet 312

nx_udp_socket_bind
Bind UDP socket to UDP port 314

nx_udp_socket_bytes_available
Retrieves number of bytes available for retrieval 316

nx_udp_socket_checksum_disable
Disable checksum for UDP socket 318

nx_udp_socket_checksum_enable
Enable checksum for UDP socket 320

nx_udp_socket_create
Create UDP socket 322

nx_udp_socket_delete
Delete UDP socket 324

nx_udp_socket_info_get
Retrieve information about UDP socket activities 326

nx_udp_socket_interface_send
Send datagram through UDP socket 328

nx_udp_socket_port_get
Pick up port number bound to UDP socket 330

nx_udp_socket_receive
Receive datagram from UDP socket 332

nx_udp_socket_receive_notify
Notify application of each received packet 334

nx_udp_socket_send
Send datagram through UDP socket 336

nx_udp_socket_unbind
Unbind UDP socket from UDP port 338

nx_udp_source_extract
Extract IP and sending port from UDP datagram 340

111

Express Logic, Inc.

112 NetX User Guide

User Guide

nx_arp_dynamic_entries_invalidate
Invalidate all dynamic entries in the ARP cache

Address Resolution Protocol (ARP)Address Resolution Protocol (ARP)

Prototype
UINT nx_arp_dynamic_entries_invalidate(NX_IP *ip_ptr);

Description
This service invalidates all dynamic ARP entries currently in the ARP
cache.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful ARP cache

invalidate.

NX_NOT_ENABLED (0x14) ARP is not enabled.

NX_PTR_ERROR (0x07) Invalid IP address.

NX_CALLER_ERROR (0x11) Caller is not a thread.

Address Resolution Protocol (ARP) 113

Express Logic, Inc.

Allowed From
Threads

Preemption Possible
No

Example
/* Invalidate all dynamic entries in the ARP cache. */
status = nx_arp_dynamic_entries_invalidate(&ip_0);

/* If status is NX_SUCCESS the dynamic ARP entries were successfully
invalidated. */

See Also
nx_arp_dynamic_entry_set, nx_arp_enable, nx_arp_gratuitous_send,
nx_arp_hardware_address_find, nx_arp_info_get,
nx_arp_ip_address_find, nx_arp_static_entries_delete,
nx_arp_static_entry_create, nx_arp_static_entry_delete

114 NetX User Guide

User Guide

nx_arp_dynamic_entry_set
Set dynamic ARP entry

Address Resolution Protocol (ARP)

Prototype
UINT nx_arp_dynamic_entry_set(NX_IP *ip_ptr, ULONG ip_address,

ULONG physical_msw, ULONG physical_lsw);

Description
This service allocates a dynamic entry from the ARP cache and sets up
the specified IP to physical address mapping. If a zero physical address is
specified, an actual ARP request will be broadcast on the network. Also
note that this entry will be removed if ARP aging is active or if the ARP
cache is exhausted and this is the oldest ARP entry.

If the specified physical address is all zeros, an actual ARP request will
be sent for the supplied IP address.

Parameters
ip_ptr Pointer to previously created IP instance.
ip_address IP address to map.
physical_msw Most significant word of the physical

address.
physical_lsw Least significant word of the physical

address.

Return Values
NX_SUCCESS (0x00) Successful ARP dynamic entry

set.

NX_NO_MORE_ENTRIES (0x17) No more ARP entries are
available in the ARP cache.

NX_PTR_ERROR (0x07) Invalid IP instance pointer.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

NX_IP_ADDRESS_ERROR (0x21) Invalid IP address.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

i

Address Resolution Protocol (ARP) 115

Express Logic, Inc.

Allowed From
Initialization, threads

Preemption Possible
No

Example
/* Setup a dynamic ARP entry on the previously created IP Instance

0. */
status = nx_arp_dynamic_entry_set(&ip_0, IP_ADDRESS(1,2,3,4),

0x0, 0x1234);

/* If status is NX_SUCCESS, there is now a dynamic mapping between
the IP address of 1.2.3.4 and the physical hardware address of
0x0:0x1234. */

See Also
nx_arp_dynamic_entries_invalidate, nx_arp_enable,
nx_arp_gratuitous_send, nx_arp_hardware_address_find,
nx_arp_info_get, nx_arp_ip_address_find, nx_arp_static_entries_delete,
nx_arp_static_entry_create, nx_arp_static_entry_delete

116 NetX User Guide

User Guide

nx_arp_enable
Enable Address Resolution Protocol (ARP)

Address Resolution Protocol (ARP)

Prototype
UINT nx_arp_enable(NX_IP *ip_ptr, VOID *arp_cache_memory,

ULONG arp_cache_size);

Description
This service initializes the ARP component of NetX for the specific IP
instance. ARP initialization includes setting up the ARP cache and various
ARP processing routines necessary for sending and receiving ARP
requests.

Parameters
ip_ptr Pointer to previously created IP instance.
arp_cache_memory Pointer to memory area to place ARP cache.
arp_cache_size Each ARP entry is approximately 52 bytes,

the total number of ARP entries is, therefore,
the size divided by 52.

Return Values
NX_SUCCESS (0x00) Successful ARP enable.

NX_PTR_ERROR (0x07) Invalid IP or cache memory
pointer.

NX_SIZE_ERROR (0x09) Invalid size of ARP cache
memory.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_ALREADY_ENABLED (0x15) This component has already
been enabled.

Address Resolution Protocol (ARP) 117

Express Logic, Inc.

Allowed From
Initialization, threads

Preemption Possible
No

Example
/* Enable ARP and supply 1024 bytes of ARP cache memory for

previously created IP Instance 0. */
status = nx_arp_enable(&ip_0, (void *) pointer, 1024);

/* If status is NX_SUCCESS, ARP was successfully enabled for this IP
instance. */

See Also
nx_arp_dynamic_entries_invalidate, nx_arp_dynamic_entry_set,
nx_arp_gratuitous_send, nx_arp_hardware_address_find,
nx_arp_info_get, nx_arp_ip_address_find, nx_arp_static_entries_delete,
nx_arp_static_entry_create, nx_arp_static_entry_delete

118 NetX User Guide

User Guide

nx_arp_gratuitous_send
Send gratuitous ARP request

Address Resolution Protocol (ARP)

Prototype
UINT nx_arp_gratuitous_send(NX_IP *ip_ptr,

VOID (*response_handler)(NX_IP *ip_ptr, NX_PACKET *packet_ptr)));

Description
This service sends a gratuitous ARP request. If an ARP response is
subsequently received, the supplied response handler is called to process
the error.

Parameters
ip_ptr Pointer to previously created IP instance.
response_handler Pointer to response handling function. If

NX_NULL is supplied, responses are
ignored.

Return Values
NX_SUCCESS (0x00) Successful gratuitous ARP send.

NX_NO_PACKET (0x01) No packet available.

NX_NOT_ENABLED (0X14) ARP is not enabled.

NX_IP_ADDRESS_ERROR (0x14) Current IP address is invalid.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Caller is not a thread.

Address Resolution Protocol (ARP) 119

Express Logic, Inc.

Allowed From
Threads

Example
/* Send gratuitous ARP without any response handler. */
status = nx_arp_gratuitous_send(&ip_0, NX_NULL);

/* If status is NX_SUCCESS the gratuitous ARP was successfully
sent. */

See Also
nx_arp_dynamic_entries_invalidate, nx_arp_dynamic_entry_set,
nx_arp_enable, nx_arp_hardware_address_find, nx_arp_info_get,
nx_arp_ip_address_find, nx_arp_static_entries_delete,
nx_arp_static_entry_create, nx_arp_static_entry_delete

120 NetX User Guide

User Guide

nx_arp_hardware_address_find
Locate physical hardware address given an IP address

Address Resolution Protocol (ARP)

Prototype
UINT nx_arp_hardware_address_find(NX_IP *ip_ptr,

ULONG ip_address, ULONG *physical_msw,
ULONG *physical_lsw);

Description
This service attempts to find a physical hardware address in the ARP
cache that is associated with the supplied IP address.

Parameters
ip_ptr Pointer to previously created IP instance.
ip_address IP address to search for.
physical_msw Pointer to the variable for returning the most

significant word of the physical address.
physical_lsw Pointer to the variable for returning the least

significant word of the physical address.

Return Values
NX_SUCCESS (0x00) Successful ARP hardware

address find.

NX_ENTRY_NOT_FOUND (0x16) Mapping was not found in the
ARP cache.

NX_IP_ADDRESS_ERROR (0x21) Invalid IP address.

NX_PTR_ERROR (0x07) Invalid IP or memory pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Address Resolution Protocol (ARP) 121

Express Logic, Inc.

Allowed From
Threads

Preemption Possible
No

Example
/* Search for the hardware address associated with the IP address of

1.2.3.4 in the ARP cache of the previously created IP Instance 0.
*/

status = nx_arp_hardware_address_find(&ip_0, IP_ADDRESS(1,2,3,4),
&physical_msw, &physical_lsw);

/* If status is NX_SUCCESS, the variables physical_msw and
physical_lsw contain the hardware address. */

See Also
nx_arp_dynamic_entries_invalidate, nx_arp_dynamic_entry_set,
nx_arp_enable, nx_arp_gratuitous_send, nx_arp_info_get,
nx_arp_ip_address_find, nx_arp_static_entries_delete,
nx_arp_static_entry_create, nx_arp_static_entry_delete

122 NetX User Guide

User Guide

nx_arp_info_get
Retrieve information about ARP activities
Address Resolution Protocol (ARP)

Prototype
UINT nx_arp_info_get(NX_IP *ip_ptr, ULONG *arp_requests_sent,ULONG

*arp_requests_received,ULONG
*arp_responses_sent,ULONG
*arp_responses_received,ULONG
*arp_dynamic_entries,ULONG
*arp_static_entries,ULONG
*arp_aged_entries,ULONG
*arp_invalid_messages);

Description
This service retrieves information about ARP activities for the associated
IP instance.

If a destination pointer is NX_NULL, that particular information is not
returned to the caller.

Parameters
ip_ptr Pointer to previously created IP instance.
arp_requests_sent Pointer to destination for the total ARP

requests sent from this IP instance.
arp_requests_received Pointer to destination for the total ARP

requests received from the network.
arp_responses_sent Pointer to destination for the total ARP

responses sent from this IP instance.
arp_responses_received Pointer to the destination for the total ARP

responses received from the network.
arp_dynamic_entries Pointer to the destination for the current

number of dynamic ARP entries.
arp_static_entries Pointer to the destination for the current

number of static ARP entries.

i

Address Resolution Protocol (ARP) 123

Express Logic, Inc.

arp_aged_entries Pointer to the destination of the total number
of ARP entries that have aged and became
invalid.

arp_invalid_messages Pointer to the destination of the total invalid
ARP messages received.

Return Values
NX_SUCCESS (0x00) Successful ARP information

retrieval.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Initialization, threads, timers

Preemption Possible
No

Example
/* Pickup ARP information for ip_0. */
status = nx_arp_info_get(&ip_0, &arp_requests_sent,

&arp_requests_received,
&arp_responses_sent,
&arp_responses_received,
&arp_dynamic_entries,
&arp_static_entries,
&arp_aged_entries,
&arp_invalid_messages);

/* If status is NX_SUCCESS, the ARP information has been stored in
the supplied variables. */

See Also
nx_arp_dynamic_entries_invalidate, nx_arp_dynamic_entry_set,
nx_arp_enable, nx_arp_gratuitous_send,
nx_arp_hardware_address_find, nx_arp_ip_address_find,
nx_arp_static_entries_delete, nx_arp_static_entry_create,
nx_arp_static_entry_delete

124 NetX User Guide

User Guide

nx_arp_ip_address_find
Locate IP address given a physical address

Address Resolution Protocol (ARP)

Prototype
UINT nx_arp_ip_address_find(NX_IP *ip_ptr, ULONG *ip_address,

ULONG physical_msw, ULONG physical_lsw);

Description
This service attempts to find an IP address in the ARP cache that is
associated with the supplied physical address.

Parameters
ip_ptr Pointer to previously created IP instance.
ip_address Pointer to return IP address, if one is found

that has been mapped.
physical_msw Most significant word of the physical address

to search for.
physical_lsw Least significant word of the physical

address to search for.

Return Values
NX_SUCCESS (0x00) Successful ARP IP address find

NX_ENTRY_NOT_FOUND (0x16) Mapping was not found in the
ARP cache.

NX_PTR_ERROR (0x07) Invalid IP or memory pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Address Resolution Protocol (ARP) 125

Express Logic, Inc.

Allowed From
Threads

Preemption Possible
No

Example
/* Search for the IP address associated with the hardware address of

0x0:0x01234 in the ARP cache of the previously created IP
Instance 0. */

status = nx_arp_ip_address_find(&ip_0, &ip_address,
0x0, 0x1234);

/* If status is NX_SUCCESS, the variables ip_address contains the
associated IP address. */

See Also
nx_arp_dynamic_entries_invalidate, nx_arp_dynamic_entry_set,
nx_arp_enable, nx_arp_gratuitous_send,
nx_arp_hardware_address_find, nx_arp_info_get,
nx_arp_static_entries_delete, nx_arp_static_entry_create,
nx_arp_static_entry_delete

126 NetX User Guide

User Guide

nx_arp_static_entries_delete
Delete all static ARP entries

Address Resolution Protocol (ARP)

Prototype
UINT nx_arp_static_entries_delete(NX_IP *ip_ptr);

Description
This function deletes all static entries in the ARP cache.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Static entries are deleted.

NX_PTR_ERROR (0x07) Invalid ip_ptr pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Address Resolution Protocol (ARP) 127

Express Logic, Inc.

Allowed From
Initialization, threads

Preemption Possible
No

Example
/* Delete all the static ARP entries for IP Instance 0, assuming

"ip_0" is the NX_IP structure for IP Instance 0. */
status = nx_arp_static_entries_delete(&ip_0);

/* If status is NX_SUCCESS all static ARP entries in the ARP cache
have been

 deleted. */

See Also
nx_arp_dynamic_entries_invalidate, nx_arp_dynamic_entry_set,
nx_arp_enable, nx_arp_gratuitous_send,
nx_arp_hardware_address_find, nx_arp_info_get,
nx_arp_ip_address_find, nx_arp_static_entry_create,
nx_arp_static_entry_delete

128 NetX User Guide

User Guide

nx_arp_static_entry_create
Create static IP to hardware mapping in ARP cache

Address Resolution Protocol (ARP)

Prototype
UINT nx_arp_static_entry_create(NX_IP *ip_ptr, ULONG ip_address,

ULONG physical_msw, ULONG physical_lsw);

Description
This service creates a static IP-to-physical address mapping in the ARP
cache for the specified IP instance. Static ARP entries are not subject to
ARP periodic updates.

Parameters
ip_ptr Pointer to previously created IP instance.
ip_address IP address to map.
physical_msw Most significant word of the physical address

to map.
physical_lsw Least significant word of the physical

address to map.

Return Values
NX_SUCCESS (0x00) Successful ARP static entry

create.

NX_NO_MORE_ENTRIES (0x17) No more ARP entries are
available in the ARP cache.

NX_IP_ADDRESS_ERROR (0x21) Invalid IP address.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Address Resolution Protocol (ARP) 129

Express Logic, Inc.

Allowed From
Initialization, threads

Preemption Possible
No

Example
/* Create a static ARP entry on the previously created IP Instance

0. */
status = nx_arp_static_entry_create(&ip_0, IP_ADDRESS(1,2,3,4),

0x0, 0x1234);

/* If status is NX_SUCCESS, there is now a static mapping between
the IP address of 1.2.3.4 and the physical hardware address of
0x0:0x1234. */

See Also
nx_arp_dynamic_entries_invalidate, nx_arp_dynamic_entry_set,
nx_arp_enable, nx_arp_gratuitous_send,
nx_arp_hardware_address_find, nx_arp_info_get,
nx_arp_ip_address_find, nx_arp_static_entries_delete,
nx_arp_static_entry_delete

130 NetX User Guide

User Guide

nx_arp_static_entry_delete
Delete static IP to hardware mapping in ARP cache

Address Resolution Protocol (ARP)

Prototype
UINT nx_arp_static_entry_delete(NX_IP *ip_ptr, ULONG ip_address,

ULONG physical_msw, ULONG physical_lsw);

Description
This service finds and deletes a previously created static IP-to-physical
address mapping in the ARP cache for the specified IP instance.

Parameters
ip_ptr Pointer to previously created IP instance.
ip_address IP address that was mapped statically.
physical_msw Most significant word of the physical address

that was mapped statically.
physical_lsw Least significant word of the physical

address that was mapped statically.

Return Values
NX_SUCCESS (0x00) Successful ARP static entry

delete.

NX_ENTRY_NOT_FOUND (0x16) Static ARP entry was not found
in the ARP cache.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Address Resolution Protocol (ARP) 131

Express Logic, Inc.

Allowed From
Threads

Preemption Possible
No

Example
/* Delete a static ARP entry on the previously created IP Instance

0. */
status = nx_arp_static_entry_delete(&ip_0, IP_ADDRESS(1,2,3,4),

0x0, 0x1234);

/* If status is NX_SUCCESS, the previously created static ARP entry
was successfully deleted. */

See Also
nx_arp_dynamic_entries_invalidate, nx_arp_dynamic_entry_set,
nx_arp_enable, nx_arp_gratuitous_send,
nx_arp_hardware_address_find, nx_arp_info_get,
nx_arp_ip_address_find, nx_arp_static_entries_delete,
nx_arp_static_entry_create

132 NetX User Guide

User Guide

nx_icmp_enable
Enable Internet Control Message Protocol (ICMP)

Internet Control Message Protocol (ICMP)

Prototype
UINT nx_icmp_enable(NX_IP *ip_ptr);

Description
This service enables the ICMP component for the specified IP instance.
The ICMP component is responsible for handling Internet error messages
and ping requests and replies.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful ICMP enable.

NX_ALREADY_ENABLED (0x15) ICMP is already enabled.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Initialization, threads

Preemption Possible
No

Internet Control Message Protocol (ICMP) 133

Express Logic, Inc.

Example
/* Enable ICMP on the previously created IP Instance 0. */
status = nx_icmp_enable(&ip_0);

/* If status is NX_SUCCESS, ICMP is enabled. */

See Also
nx_icmp_info_get, nx_igmp_loopback_disable,
nx_igmp_loopback_enable, nx_icmp_ping

134 NetX User Guide

User Guide

nx_icmp_info_get
Retrieve information about ICMP activities

Internet Control Message Protocol (ICMP)

Prototype
UINT nx_icmp_info_get(NX_IP *ip_ptr,

ULONG *pings_sent,
ULONG *ping_timeouts,
ULONG *ping_threads_suspended,
ULONG *ping_responses_received,
ULONG *icmp_checksum_errors,
ULONG *icmp_unhandled_messages);

Description
This service retrieves information about ICMP activities for the specified
IP instance.

If a destination pointer is NX_NULL, that particular information is not
returned to the caller.

Parameters
ip_ptr Pointer to previously created IP instance.
pings_sent Pointer to destination for the total number of

pings sent.
ping_timeouts Pointer to destination for the total number of

ping timeouts.
ping_threads_suspended Pointer to destination of the total number of

threads suspended on ping requests.
ping_responses_received Pointer to destination of the total number of

ping responses received.
icmp_checksum_errors Pointer to destination of the total number of

ICMP checksum errors.
icmp_unhandled_messages Pointer to destination of the total number of

un-handled ICMP messages.

i

Internet Control Message Protocol (ICMP) 135

Express Logic, Inc.

Return Values
NX_SUCCESS (0x00) Successful ICMP information

retrieval.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Initialization, threads, and timers

Preemption Possible
No

Example
/* Retrieve ICMP information from previously created IP Instance 0.

*/
status = nx_icmp_info_get(&ip_0, &pings_sent, &ping_timeouts,

&ping_threads_suspended, &ping_responses_received,
&icmp_checksum_errors, &icmp_unhandled_messages);

/* If status is NX_SUCCESS, ICMP information was retrieved. */

See Also
nx_icmp_enable, nx_igmp_loopback_disable,
nx_igmp_loopback_enable, nx_icmp_ping

136 NetX User Guide

User Guide

nx_icmp_ping
Send ping request to specified IP address

Internet Control Message Protocol (ICMP)

Prototype
UINT nx_icmp_ping(NX_IP *ip_ptr, ULONG ip_address,

CHAR *data, ULONG data_size,
NX_PACKET **response_ptr, ULONG wait_option);

Description
This service sends a ping request to the specified IP address and waits
for the specified amount of time for a ping response message. If no
response is received, an error is returned. Otherwise, the entire response
message, including the ICMP header, is returned in the variable pointed to
by response_ptr.

If NX_SUCCESS is returned, the application is responsible for releasing
the received packet after it is no longer needed.

Parameters
ip_ptr Pointer to previously created IP instance.
ip_address IP address to ping.
data Pointer to data area for ping message.
data_size Number of bytes in the ping data
response_ptr Pointer to packet pointer to return the ping

response message in.
wait_option Defines how long to wait for a ping response.

Legal values are: 1 through 0xFFFFFFFE.

Return Values
NX_SUCCESS (0x00) Successful ping. Response

message pointer was placed in
the variable pointed to by
response_ptr.

NX_NO_PACKET (0x01) Unable to allocate a ping request
packet.

!

Internet Control Message Protocol (ICMP) 137

Express Logic, Inc.

NX_OVERFLOW (0x03) Specified data area exceeds the
default packet size for this IP
instance.

NX_NO_RESPONSE (0x29) Requested IP did not respond.

NX_WAIT_ABORTED (0x1A) Requested suspension was
aborted by a call to
tx_thread_wait_abort.

NX_IP_ADDRESS_ERROR (0x21) Invalid IP address.

NX_PTR_ERROR (0x07) Invalid IP or response pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
Yes

Example
/* Issue a ping to IP address 1.2.3.5 from the previously created IP

Instance 0. */
status = nx_icmp_ping(&ip_0, IP_ADDRESS(1,2,3,5), "abcd", 4,

 &response_ptr, 10);

/* If status is NX_SUCCESS, a ping response was received from IP
address 1.2.3.5 and the response packet is contained in the
packet pointed to by response_ptr. It should have the same "abcd"
four bytes of data. */

See Also
nx_icmp_enable, nx_icmp_info_get

138 NetX User Guide

User Guide

nx_igmp_enable
Enable Internet Group Management Protocol (IGMP)

Internet Group Management Protocol (IGMP)

Prototype
UINT nx_igmp_enable(NX_IP *ip_ptr);

Description
This service enables the IGMP component on the specified IP instance.
The IGMP component is responsible for providing support for IP multicast
operations.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful IGMP enable.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_ALREADY_ENABLED (0x15) This component has already
been enabled.

Allowed From
Initialization, threads

Preemption Possible
No

Internet Group Management Protocol (IGMP) 139

Express Logic, Inc.

Example
/* Enable IGMP on the previously created IP Instance 0. */
status = nx_igmp_enable(&ip_0);

/* If status is NX_SUCCESS, IGMP is enabled. */

See Also
nx_igmp_info_get,nx_igmp_loopback_disable,
nx_igmp_loopback_enable, nx_igmp_multicast_interface_join,
nx_igmp_multicast_join, nx_igmp_multicast_leave

140 NetX User Guide

User Guide

nx_igmp_info_get
Retrieve information about IGMP activities

Internet Group Management Protocol (IGMP)

Prototype
UINT nx_igmp_info_get(NX_IP *ip_ptr,

ULONG *igmp_reports_sent,
ULONG *igmp_queries_received,
ULONG *igmp_checksum_errors,
ULONG *current_groups_joined);

Description
This service retrieves information about IGMP activities for the specified
IP instance.

If a destination pointer is NX_NULL, that particular information is not
returned to the caller.

Parameters
ip_ptr Pointer to previously created IP instance.
igmp_reports_sent Pointer to destination for the total number of

ICMP reports sent.
igmp_queries_received Pointer to destination for the total number of

queries received by multicast router.
igmp_checksum_errors Pointer to destination of the total number of

IGMP checksum errors on receive packets.
current_groups_joined Pointer to destination of the current number

of groups joined through this IP instance.

Return Values
NX_SUCCESS (0x00) Successful IGMP information

retrieval.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

i

Internet Group Management Protocol (IGMP) 141

Express Logic, Inc.

Allowed From
Initialization, threads, and timers

Preemption Possible
No

Example
/* Retrieve IGMP information from previously created IP Instance 0. */
status = nx_igmp_info_get(&ip_0, &igmp_reports_sent,

&igmp_queries_received,
&igmp_checksum_errors, ¤t_groups_joined);

/* If status is NX_SUCCESS, IGMP information was retrieved. */

See Also
nx_igmp_enable, nx_igmp_loopback_disable, nx_igmp_loopback_enable,
nx_igmp_multicast_interface_join, nx_igmp_multicast_join,
nx_igmp_multicast_leave

142 NetX User Guide

User Guide

nx_igmp_loopback_disable
Disable IGMP loopback

Internet Group Management Protocol (IGMP)

Prototype
UINT nx_igmp_loopback_disable(NX_IP *ip_ptr);

Description
This service disables IGMP loopback for all subsequent multicast groups
joined.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful IGMP loopback

disable.

NX_NOT_ENABLED (0x14) IGMP is not enabled.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Caller is not a thread or
initialization.

Allowed From
Initialization, threads

Internet Group Management Protocol (IGMP) 143

Express Logic, Inc.

Example
/* Disable IGMP loopback for all subsequent multicast groups joined. */
status = nx_igmp_loopback_disable(&ip_0);

/* If status is NX_SUCCESS IGMP loopback is disabled. */

See Also
nx_igmp_enable, nx_igmp_info_get, nx_igmp_loopback_enable,
nx_igmp_multicast_interface_join, nx_igmp_multicast_join,
nx_igmp_multicast_leave

144 NetX User Guide

User Guide

nx_igmp_loopback_enable
Enable IGMP loopback

Internet Group Management Protocol (IGMP)

Prototype
UINT nx_igmp_loopback_enable(NX_IP *ip_ptr);

Description
This service enables IGMP loopback for all subsequent multicast groups
joined.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful IGMP loopback

disable.

NX_NOT_ENABLED (0x14) IGMP is not enabled.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Caller is not a thread or
initialization.

Allowed From
Initialization, threads

Internet Group Management Protocol (IGMP) 145

Express Logic, Inc.

Example
/* Enable IGMP loopback for all subsequent multicast

groups joined. */
status = nx_igmp_loopback_enable(&ip_0);

/* If status is NX_SUCCESS IGMP loopback is enabled. */

See Also
nx_igmp_enable, nx_igmp_info_get, nx_igmp_loopback_disable,
nx_igmp_multicast_interface_join, nx_igmp_multicast_join,
nx_igmp_multicast_leave

146 NetX User Guide

User Guide

nx_igmp_multicast_interface_join
Join IP interface to specified multicast group

Internet Group Management Protocol (IGMP)

Prototype
UINT nx_igmp_multicast_interface_join(NX_IP *ip_ptr, ULONG group_address,

UINT interface_index)

Description
This service joins an IP instance to the specified multicast group via a
specified network interface. An internal counter is maintained to keep
track of the number of times the same group has been joined. After joined,
the IGMP component will allow reception of IP packets with this group
address via the specified network interface and also report to routers that
this IP is a member of this multicast group. The IGMP membership join,
report, and leave messages are also sent via the specified network
interface.

Parameters
ip_ptr Pointer to previously created IP instance.
group_address Class D IP multicast group address to join in

host byte order.
interface_index Interface attached to NetX instance.

Return Values
NX_SUCCESS (0x00) Successful multicast group join.

NX_NO_MORE_ENTRIES (0x17) No more multicast groups can
be joined, maximum exceeded.

NX_INVALID_INTERFACE (0X4c0 Interface index points to an
invalid network interface.

NX_IP_ADDRESS_ERROR (0x21) Multicast group address
provided is not a valid class D
address.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) IP multicast support is not
enabled.

Internet Group Management Protocol (IGMP) 147

Express Logic, Inc.

Allowed From
Threads

Preemption Possible
No

Example
/* Previously created IP Instance joins the multicast group 244.0.0.200, via

the interface at index 1 in the IP task interface list. */
status = nx_igmp_multicast_join_interface(&ip, IP_ADDRESS(244,0,0,200), 1);

/* If status is NX_SUCCESS, the IP instance has successfully joined the
multicast group. */

See Also
nx_igmp_enable, nx_igmp_info_get, nx_igmp_loopback_disable,
nx_igmp_loopback_enable, nx_igmp_multicast_join,
nx_igmp_multicast_leave

148 NetX User Guide

User Guide

nx_igmp_multicast_join
Join IP instance to specified multicast group

Internet Group Management Protocol (IGMP)

Prototype
UINT nx_igmp_multicast_join(NX_IP *ip_ptr, ULONG group_address);

Description
This service joins an IP instance to the specified multicast group. An
internal counter is maintained to keep track of the number of times the
same group has been joined. After joined, the IGMP component will allow
reception of IP packets with this group address and report to routers that
this IP is a member of this multicast group.

Parameters
ip_ptr Pointer to previously created IP instance.
group_address Class D IP multicast group address to join.

Return Values
NX_SUCCESS (0x00) Successful multicast group join.

NX_NO_MORE_ENTRIES (0x17) No more multicast groups can
be joined, maximum exceeded.

NX_IP_ADDRESS_ERROR (0x21) Invalid IP group address.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Initialization, threads

Preemption Possible
No

Internet Group Management Protocol (IGMP) 149

Express Logic, Inc.

Example
/* Previously created IP Instance 0 joins the multicast group

224.0.0.200. */
status = nx_igmp_multicast_join(&ip_0, IP_ADDRESS(224,0,0,200);

/* If status is NX_SUCCESS, this IP instance has successfully joined
the multicast group 224.0.0.200. */

See Also
nx_igmp_enable, nx_igmp_info_get, nx_igmp_loopback_disable,
nx_igmp_loopback_enable, nx_igmp_multicast_interface_join,
nx_igmp_multicast_leave

150 NetX User Guide

User Guide

nx_igmp_multicast_leave
Cause IP instance to leave specified multicast group

Internet Group Management Protocol (IGMP)

Prototype
UINT nx_igmp_multicast_leave(NX_IP *ip_ptr,

ULONG group_address);

Description
This service causes an IP instance to leave the specified multicast group,
if the number of leave requests matches the number of join requests.
Otherwise, the internal join count is simply decremented.

Parameters
ip_ptr Pointer to previously created IP instance.
group_address Multicast group to leave.

Return Values
NX_SUCCESS (0x00) Successful multicast group join.

NX_ENTRY_NOT_FOUND (0x16) Previous join request was not
found.

NX_IP_ADDRESS_ERROR (0x21) Invalid IP group address.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
No

Internet Group Management Protocol (IGMP) 151

Express Logic, Inc.

Example
/* Cause IP instance to leave the multicast group 224.0.0.200. */
status = nx_igmp_multicast_leave(&ip_0, IP_ADDRESS(224,0,0,200);

/* If status is NX_SUCCESS, this IP instance has successfully left
the multicast group 224.0.0.200. */

See Also
nx_igmp_enable, nx_igmp_info_get, nx_igmp_loopback_disable,
nx_igmp_loopback_enable, nx_igmp_multicast_interface_join,,
nx_igmp_multicast_join

152 NetX User Guide

User Guide

nx_ip_address_change_notifiy
Notify application if IP address changes

Internet Protocol (IP)

Prototype
UINT nx_ip_address_change_notify(NX_IP *ip_ptr,

VOID (*change_notify)(NX_IP *, VOID *),
VOID *additional_info);

Description
This service registers an application notification function that is called
whenever the IP address is changed.

Parameters
ip_ptr Pointer to previously created IP instance.
change_notify Pointer to IP change notification function. If

this parameter is NX_NULL, IP address
change notification is disabled.

additional_info Pointer to optional additional information that
is also supplied to the notification function
when the IPaddress is changed.

Return Values
NX_SUCCESS (0x00) Successful IP address change

notification.

NX_PTR_ERROR (0x07) Invalid IP pointer.

Allowed From
Initialization, threads, timers

Internet Protocol (IP) 153

Express Logic, Inc.

Example
/* Register the function "my_ip_changed" to be called whenever the

IP address is changed. */
status = nx_ip_address_change_notify(&ip_0, my_ip_changed,

NX_NULL);

/* If status is NX_SUCCESS, the "my_ip_changed" function will be
called whenever the IP address changes. */

See Also
nx_ip_address_get, nx_ip_address_set, nx_ip_create, nx_ip_delete,
nx_ip_driver_direct_command, nx_ip_forwarding_disable,
nx_ip_forwarding_enable, nx_ip_fragment_disable,
nx_ip_fragment_enable, nx_ip_gateway_address_set, nx_ip_info_get,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_raw_packet_disable,
nx_ip_raw_packet_enable, nx_ip_raw_packet_interface_send,
nx_ip_raw_packet_receive, nx_ip_raw_packet_send,
nx_ip_static_route_add, nx_ip_static_route_delete, nx_ip_status_check

154 NetX User Guide

User Guide

nx_ip_address_get
Retrieve IP address and network mask

Internet Protocol (IP)

Prototype
UINT nx_ip_address_get(NX_IP *ip_ptr, ULONG *ip_address,

ULONG *network_mask);

Description
This service retrieves the IP and network mask for the specified IP
instance.

Parameters
ip_ptr Pointer to previously created IP instance.
ip_address Pointer to destination for IP address.
network_mask Pointer to destination for network mask.

Return Values
NX_SUCCESS (0x00) Successful IP address get.

NX_PTR_ERROR (0x07) Invalid IP or return variable
pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Initialization, threads, timers

Preemption Possible
No

Internet Protocol (IP) 155

Express Logic, Inc.

Example
/* Get the IP address and network mask from the previously created

IP instance 0. */
status = nx_ip_address_get(&ip_0, &ip_address, &network_mask);

/* If status is NX_SUCCESS, the variables ip_address and
network_mask contain the IP and network mask respectively. */

See Also
nx_ip_address_change_notify, nx_ip_address_set, nx_ip_create,
nx_ip_delete, nx_ip_driver_direct_command, nx_ip_forwarding_disable,
nx_ip_forwarding_enable, nx_ip_fragment_disable,
nx_ip_fragment_enable, nx_ip_gateway_address_set,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_info_get,
nx_ip_raw_packet_disable, nx_ip_raw_packet_enable,
nx_ip_raw_packet_interface_send, nx_ip_raw_packet_receive,
nx_ip_raw_packet_send, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

156 NetX User Guide

User Guide

nx_ip_address_set
Set IP address and network mask

Internet Protocol (IP)

Prototype
UINT nx_ip_address_set(NX_IP *ip_ptr, ULONG ip_address,

ULONG network_mask);

Description
This service sets the IP address and network mask for the specified IP
instance.

Parameters
ip_ptr Pointer to previously created IP instance.
ip_address New IP address.
network_mask New network mask.

Return Values
NX_SUCCESS (0x00) Successful IP address set.

NX_IP_ADDRESS_ERROR (0x21) Invalid IP address.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Initialization, threads

Preemption Possible
No

Internet Protocol (IP) 157

Express Logic, Inc.

Example
/* Set the IP address and network mask to 1.2.3.4 and 0xFF for the

previously created IP instance 0. */
status = nx_ip_address_set(&ip_0, IP_ADDRESS(1,2,3,4),

0xFFFFFF00UL);

/* If status is NX_SUCCESS, the IP instance now has an IP address of
1.2.3.4 and a network mask of 0xFF. */

See Also
nx_ip_address_change_notify, nx_ip_address_get, nx_ip_create,
nx_ip_delete, nx_ip_driver_direct_command, nx_ip_forwarding_disable,
nx_ip_forwarding_enable, nx_ip_fragment_disable,
nx_ip_fragment_enable, nx_ip_gateway_address_set,
nx_ip_interface_address_get, nx_ip_info_get,
nx_ip_interface_address_set, nx_ip_interface_attach,
nx_ip_interface_info_get, nx_ip_interface_status_check,
nx_ip_raw_packet_disable, nx_ip_raw_packet_enable,
nx_ip_raw_packet_receive, nx_ip_raw_packet_interface_send,
nx_ip_raw_packet_send, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

158 NetX User Guide

User Guide

nx_ip_create
Create an IP instance

Internet Protocol (IP)

Prototype
UINT nx_ip_create(NX_IP *ip_ptr, CHAR *name, ULONG ip_address,

ULONG network_mask, NX_PACKET_POOL *default_pool,
VOID (*ip_network_driver)(NX_IP_DRIVER *),
VOID *memory_ptr, ULONG memory_size,
UINT priority);

Description
This service creates an IP instance with the user supplied IP address and
network driver. In addition, the application must supply a previously
created packet pool for the IP instance to use for internal packet
allocation. Note that the supplied application network driver is not called
until this IP’s thread executes.

Parameters
ip_ptr Pointer to control block to create a new IP

instance.
name Name of this new IP instance.
ip_address IP address for this new IP instance.
network_mask Mask to delineate the network portion of the

IP address for sub-netting and super-netting
uses.

default_pool Pointer to control block of previously created
NetX packet pool.

ip_network_driver User-supplied network driver used to send
and receive IP packets.

memory_ptr Pointer to memory area for the IP helper
thread’s stack area.

memory_size Number of bytes in the memory area for the
IP helper thread’s stack.

priority Priority of IP helper thread.

Return Values
NX_SUCCESS (0x00) Successful IP instance creation.

NX_IP_INTERNAL_ERROR (0x20) An internal IP system resource
was not able to be created

Internet Protocol (IP) 159

Express Logic, Inc.

causing the IP create service to
fail.

NX_PTR_ERROR (0x07) Invalid IP, network driver
address, packet pool, or memory
pointer.

NX_SIZE_ERROR (0x09) The supplied stack size is too
small.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_IP_ADDRESS_ERROR (0x21) The supplied IP address is
invalid.

Allowed From
Initialization, threads

Preemption Possible
Yes

Example
/* Create an IP instance with an IP address of 1.2.3.4 and a network

mask of 0xFFFFFF00UL. The "ethernet_driver" specifies the entry
point of the application specific network driver and the
"stack_memory_ptr" specifies the start of a 1024 byte memory area
that is used for this IP instance’s helper thread. */

status = nx_ip_create(&ip_0, "NetX IP Instance 0",
IP_ADDRESS(1, 2, 3, 4),
0xFFFFFF00UL, &pool_0, ethernet_driver,
stack_memory_ptr, 1024, 1);

/* If status is NX_SUCCESS, the IP instance has been created. */

See Also
nx_ip_address_change_notify, nx_ip_address_get, nx_ip_address_set,
nx_ip_delete, nx_ip_driver_direct_command, nx_ip_forwarding_disable,
nx_ip_forwarding_enable, nx_ip_fragment_disable,
nx_ip_fragment_enable, nx_ip_gateway_address_set,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_raw_packet_interface_send, nx_ip_interface_status_check,
nx_ip_info_get, nx_ip_raw_packet_disable, nx_ip_raw_packet_enable,
nx_ip_raw_packet_interface_send, nx_ip_raw_packet_receive,
nx_ip_raw_packet_send, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

160 NetX User Guide

User Guide

nx_ip_delete
Delete previously created IP instance

Internet Protocol (IP)

Prototype
UINT nx_ip_delete(NX_IP *ip_ptr);

Description
This service deletes a previously created IP instance and in the process
releases all of the system resources owned by the IP instance.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful IP deletion.

NX_SOCKETS_BOUND (0x28) This IP instance still has UDP or
TCP sockets bound to it. All
sockets must be unbound and
deleted prior to deleting the IP
instance.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

Internet Protocol (IP) 161

Express Logic, Inc.

Example
/* Delete a previously created IP instance. */
status = nx_ip_delete(&ip_0);

/* If status is NX_SUCCESS, the IP instance has been deleted. */

See Also
nx_ip_address_change_notify, nx_ip_address_get, nx_ip_address_set,
nx_ip_create, nx_ip_driver_direct_command, nx_ip_forwarding_disable,
nx_ip_forwarding_enable, nx_ip_fragment_disable,
nx_ip_fragment_enable, nx_ip_gateway_address_set,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_info_get,
nx_ip_raw_packet_disable, nx_ip_raw_packet_enable,
nx_ip_raw_packet_interface_send, nx_ip_raw_packet_receive,
nx_ip_raw_packet_send, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

162 NetX User Guide

User Guide

nx_ip_driver_direct_command
Issue command to network driver

Internet Protocol (IP)

Prototype
UINT nx_ip_driver_direct_command(NX_IP *ip_ptr, UINT command,

ULONG *return_value_ptr);

Description
This service provides a direct interface to the application’s network driver
specified during the nx_ip_create call. Application-specific commands
can be used providing their numeric value is greater than or equal to
NX_LINK_USER_COMMAND.

Parameters
ip_ptr Pointer to previously created IP instance.
command Numeric command code. Standard

commands are defined as follows:
NX_LINK_GET_STATUS (10)
NX_LINK_GET_SPEED (11)
NX_LINK_GET_DUPLEX_TYPE (12)
NX_LINK_GET_ERROR_COUNT (13)
NX_LINK_GET_RX_COUNT (14)
NX_LINK_GET_TX_COUNT (15)
NX_LINK_GET_ALLOC_ERRORS (16)

return_value_ptr Pointer to return variable in the caller.

Return Values
NX_SUCCESS (0x00) Successful network driver

direct command.

NX_UNHANDLED_COMMAND (0x44) Unhandled or unimplemented
network driver command.

NX_PTR_ERROR (0x07) Invalid IP or return value
pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Internet Protocol (IP) 163

Express Logic, Inc.

Allowed From
Initialization, threads, timers

Preemption Possible
No

Example
/* Make a direct call to the application-specific network driver for

the previously created IP instance. For this example, the network
driver is interrogated for the link status. */

status = nx_ip_driver_direct_command(&ip_0, NX_LINK_GET_STATUS,
&link_status);

/* If status is NX_SUCCESS, the link_status variable contains a
NX_TRUE or NX_FALSE value representing the status of the physical
link. */

See Also
nx_ip_address_change_notify, nx_ip_address_get, nx_ip_address_set,
nx_ip_create, nx_ip_delete, nx_ip_forwarding_disable,
nx_ip_forwarding_enable, nx_ip_fragment_disable,
nx_ip_fragment_enable, nx_ip_gateway_address_set, nx_ip_info_get,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_raw_packet_disable,
nx_ip_raw_packet_enable, nx_ip_raw_packet_interface_send,
nx_ip_raw_packet_receive, nx_ip_raw_packet_send,
nx_ip_static_route_add, nx_ip_static_route_delete, nx_ip_status_check

164 NetX User Guide

User Guide

nx_ip_forwarding_disable
Disable IP packet forwarding

Internet Protocol (IP)

Prototype
UINT nx_ip_forwarding_disable(NX_IP *ip_ptr);

Description
This service disables forwarding IP packets inside the NetX IP
component.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful IP forwarding

disable.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Initialization, threads, timers

Preemption Possible
No

Internet Protocol (IP) 165

Express Logic, Inc.

Example
/* Disable IP forwarding on this IP instance. */
status = nx_ip_forwarding_disable(&ip_0);

/* If status is NX_SUCCESS, IP forwarding has been disabled on the
previously created IP instance. */

See Also
nx_ip_address_change_notify, nx_ip_address_get, nx_ip_address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_enable, nx_ip_fragment_disable,
nx_ip_fragment_enable, nx_ip_gateway_address_set, nx_ip_info_get,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_raw_packet_disable,
nx_ip_raw_packet_enable, nx_ip_raw_packet_interface_send,
nx_ip_raw_packet_receive, nx_ip_raw_packet_send,
nx_ip_static_route_add, nx_ip_static_route_delete, nx_ip_status_check

166 NetX User Guide

User Guide

nx_ip_forwarding_enable
Enable IP packet forwarding

Internet Protocol (IP)

Prototype
UINT nx_ip_forwarding_enable(NX_IP *ip_ptr);

Description
This service enables forwarding IP packets inside the NetX IP component.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful IP forwarding enable.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Initialization, threads, timers

Preemption Possible
No

Internet Protocol (IP) 167

Express Logic, Inc.

Example
/* Enable IP forwarding on this IP instance. */
status = nx_ip_forwarding_enable(&ip_0);

/* If status is NX_SUCCESS, IP forwarding has been enabled on the
previously created IP instance. */

See Also
nx_ip_address_change_notify, nx_ip_address_get, nx_ip_address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_fragment_disable,
nx_ip_fragment_enable, nx_ip_gateway_address_set, nx_ip_info_get,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_raw_packet_disable,
nx_ip_raw_packet_enable, nx_ip_raw_packet_interface_send,
nx_ip_raw_packet_receive, nx_ip_raw_packet_send,
nx_ip_static_route_add, nx_ip_static_route_delete, nx_ip_status_check

168 NetX User Guide

User Guide

nx_ip_fragment_disable
Disable IP packet fragmenting

Internet Protocol (IP)

Prototype
UINT nx_ip_fragment_disable(NX_IP *ip_ptr);

Description
This service disables IP packet fragmenting and un-fragmenting.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful IP fragment disable.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Initialization, threads, timers

Preemption Possible
No

Internet Protocol (IP) 169

Express Logic, Inc.

Example
/* Disable IP fragmenting on this IP instance. */
status = nx_ip_fragment_disable(&ip_0);

/* If status is NX_SUCCESS, disables IP fragmenting on the
previously created IP instance. */

See Also
nx_ip_address_change_notify, nx_ip_address_get, nx_ip_address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_enable, nx_ip_gateway_address_set,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_info_get,
nx_ip_raw_packet_disable, nx_ip_raw_packet_enable,
nx_ip_raw_packet_interface_send, nx_ip_raw_packet_receive,
nx_ip_raw_packet_send, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

170 NetX User Guide

User Guide

nx_ip_fragment_enable
Enable IP packet fragmenting

Internet Protocol (IP)

Prototype
UINT nx_ip_fragment_enable(NX_IP *ip_ptr);

Description
This service enables IP packet fragmenting and un-fragmenting.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful IP fragment enable.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Initialization, threads, timers

Preemption Possible
No

Internet Protocol (IP) 171

Express Logic, Inc.

Example
/* Enable IP fragmenting on this IP instance. */
status = nx_ip_fragment_enable(&ip_0);

/* If status is NX_SUCCESS, IP fragmenting has been enabled on the
previously created IP instance. */

See Also
nx_ip_address_change_notify, nx_ip_address_get, nx_ip_address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_disable, nx_ip_gateway_address_set,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_info_get,
nx_ip_raw_packet_disable, nx_ip_raw_packet_enable,
nx_ip_raw_packet_interface_send, nx_ip_raw_packet_receive,
nx_ip_raw_packet_send, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

172 NetX User Guide

User Guide

nx_ip_gateway_address_set
Set Gateway IP address

Internet Protocol (IP)

Prototype
UINT nx_ip_gateway_address_set(NX_IP *ip_ptr, ULONG ip_address);

Description
This service sets the Gateway IP address to the specified IP address. All
out-of-network IP addresses are routed to this IP address for
transmission.

Parameters
ip_ptr Pointer to previously created IP instance.
ip_address IP address of the Gateway.

Return Values
NX_SUCCESS (0x00) Successful Gateway IP address

set.

NX_PTR_ERROR (0x07) Invalid IP instance pointer.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

NX_IP_ADDRESS_ERROR (0x21) Invalid IP address.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
No

Internet Protocol (IP) 173

Express Logic, Inc.

Example
/* Setup the Gateway address for previously created IP

Instance 0. */
status = nx_ip_gateway_address_set(&ip_0, IP_ADDRESS(1,2,3,99);

/* If status is NX_SUCCESS, all out-of-network send requests are
routed to 1.2.3.99. */

See Also
nx_ip_address_change_notify, nx_ip_address_get, nx_ip_address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_disable, nx_ip_fragment_enable,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_info_get,
nx_ip_raw_packet_disable, nx_ip_raw_packet_enable,
nx_ip_raw_packet_interface_send, nx_ip_raw_packet_receive,
nx_ip_raw_packet_send, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

174 NetX User Guide

User Guide

nx_ip_info_get
Retrieve information about IP activities

Internet Protocol (IP)

Prototype
UINT nx_ip_info_get(NX_IP *ip_ptr,

ULONG *ip_total_packets_sent,
ULONG *ip_total_bytes_sent,
ULONG *ip_total_packets_received,
ULONG *ip_total_bytes_received,
ULONG *ip_invalid_packets,
ULONG *ip_receive_packets_dropped,
ULONG *ip_receive_checksum_errors,
ULONG *ip_send_packets_dropped,
ULONG *ip_total_fragments_sent,
ULONG *ip_total_fragments_received);

Description
This service retrieves information about IP activities for the specified IP
instance.

If a destination pointer is NX_NULL, that particular information is not
returned to the caller.

Parameters
ip_ptr Pointer to previously created IP instance.
ip_total_packets_sent Pointer to destination for the total number

of IP packets sent.
ip_total_bytes_sent Pointer to destination for the total number

of bytes sent.
ip_total_packets_received Pointer to destination of the total number

of IP receive packets.
ip_total_bytes_received Pointer to destination of the total number

of IP bytes received.
ip_invalid_packets Pointer to destination of the total number

of invalid IP packets.
ip_receive_packets_dropped Pointer to destination of the total number

of receive packets dropped.
ip_receive_checksum_errors Pointer to destination of the total number

of checksum errors in receive packets.
ip_send_packets_dropped Pointer to destination of the total number

of send packets dropped.

i

Internet Protocol (IP) 175

Express Logic, Inc.

ip_total_fragments_sent Pointer to destination of the total number
of fragments sent.

ip_total_fragments_received Pointer to destination of the total number
of fragments received.

Return Values
NX_SUCCESS (0x00) Successful IP information

retrieval.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_PTR_ERROR (0x07) Invalid IP pointer.

Allowed From
Initialization, threads, and timers

Preemption Possible
No

Example
/* Retrieve IP information from previously created IP Instance 0.

*/
status = nx_ip_info_get(&ip_0,

&ip_total_packets_sent,
&ip_total_bytes_sent,
&ip_total_packets_received,
&ip_total_bytes_received,
&ip_invalid_packets,
&ip_receive_packets_dropped,
&ip_receive_checksum_errors,
&ip_send_packets_dropped,
&ip_total_fragments_sent,
&ip_total_fragments_received);

/* If status is NX_SUCCESS, IP information was retrieved. */

See Also
nx_ip_address_change_notify, nx_ip_address_get, nx_ip_address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_disable, nx_ip_fragment_enable,
nx_ip_gateway_address_set, nx_ip_interface_address_get,
nx_ip_interface_address_set, nx_ip_interface_attach,
nx_ip_interface_info_get, nx_ip_interface_status_check,
nx_ip_raw_packet_disable, nx_ip_raw_packet_enable,
nx_ip_raw_packet_interface_send, nx_ip_raw_packet_receive,

176 NetX User Guide

User Guide

nx_ip_raw_packet_send, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

Internet Protocol (IP) 177

Express Logic, Inc.

178 NetX User Guide

User Guide

nx_ip_interface_address_get
Retrieve interface IP address

Internet Protocol (IP)

Prototype
UINT nx_ip_interface_address_get NX_IP *ip_ptr, ULONG interface_id,

ULONG *ip_address, ULONG *network_mask)

Description
This service retrieves the IP address of a specified network interface.

The specified interface, if not the primary interface, must be previously
attached to the IP instance.

Parameters
ip_ptr Pointer to previously created IP instance.
interface_id Interface index attached to NetX instance.
ip_address Pointer to destination for the device interface

IP address.
network_mask Pointer to destination for the device interface

network mask.

Return Values
NX_SUCCESS (0x00) Successful IP address get.

NX_INVALID_INTERFACE (0X4c) Specified network interface is
invalid.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_PTR_ERROR (0x07) Invalid IP pointer.

Allowed From
Initialization, threads, timers

Preemption Possible
No

!

Internet Protocol (IP) 179

Express Logic, Inc.

Example
/* Get device IP address and network mask for the specified interface

(index 1 in IP instance list of interfaces). */
status = nx_ip_interface_address_get(ip_ptr,1, &ip_address,

&network_mask);

/* If status is NX_SUCCESS the interface address was successfully
retrieved. */

See Also
nx_ip_address_change_notify, nx_ip_ address_get, nx_ip_ address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_disable, nx_ip_fragment_enable,
nx_ip_gateway_address_set, nx_ip_info_get,
nx_ip_interface_address_set, nx_ip_interface_attach,
nx_ip_interface_info_get, nx_ip_interface_status_check,
nx_ip_raw_packet_disable, nx_ip_raw_packet_enable,
nx_ip_raw_packet_interface_send, nx_ip_raw_packet_receive,
nx_ip_raw_packet_send, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

180 NetX User Guide

User Guide

nx_ip_interface_address_set
Set interface IP address and network mask

Internet Protocol (IP)

Prototype
UINT nx_ip_interface_address_set NX_IP *ip_ptr, ULONG interface_id,

ULONG ip_address, ULONG network_mask)

Description
This service sets the IP address and network mask for the specified IP
interface.

The specified interface must be previously attached to the IP instance.

Parameters
ip_ptr Pointer to previously created IP instance.
interface_id Interface index attached to NetX instance.
ip_address New network interface IP address.
network_mask New interface network mask.

Return Values
NX_SUCCESS (0x00) Successful IP address set.

NX_INVALID_INTERFACE (0X4C) Specified network interface is
invalid.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_PTR_ERROR (0x07) Invalid pointers.

Allowed From
Initialization, threads

Preemption Possible
No

!

Internet Protocol (IP) 181

Express Logic, Inc.

Example
/* Set device IP address and network mask for the specified interface

(index 1 in IP instance list of interfaces). */
status = nx_ip_interface_address_set(ip_ptr,1, ip_address, network_mask);

/* If status is NX_SUCCESS the interface IP address and mask was
successfully set. */

See Also
nx_ip_address_change_notify, nx_ip_ address_get, nx_ip_ address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_disable, nx_ip_fragment_enable,
nx_ip_gateway_address_set, nx_ip_info_get,
nx_ip_interface_address_get, nx_ip_interface_attach,
nx_ip_interface_info_get, nx_ip_interface_status_check,
nx_ip_raw_packet_disable, nx_ip_raw_packet_enable,
nx_ip_raw_packet_interface_send, nx_ip_raw_packet_receive,
nx_ip_raw_packet_send, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

182 NetX User Guide

User Guide

nx_ip_interface_attach
Attach network interface to IP instance

Internet Protocol (IP)

Prototype
UINT nx_ip_interface_attach(NX_IP *ip_ptr, CHAR *interface_name,

ULONG ip_address, ULONG network_mask,
VOID(*ip_link_driver)(struct
NX_IP_DRIVER_STRUCT *));

Description
This function adds a physical network interface to the IP interface table.
Note the IP task is created with the primary interface so each additional
interface is secondary to the primary interface.
NX_MAX_PHYSICAL_INTERFACES must be set to the number of
interfaces. The default is 1 for the primary interface.

ip_ptr must point to a valid NetX IP structure.
NX_MAX_PHYSICAL_INTERFACES must be configured for the number of
network interfaces for the IP instance. The default value is one.

Parameters
ip_ptr Pointer to previously created IP instance.
interface_name Pointer to device name buffer.
ip_address Device IP address in host byte order.
network_mask Device network mask in host byte order.
ip_link_driver Ethernet driver for the interface.

Return Values
NX_SUCCESS (0x00) Entry is added to static routing

table.

NX_NO_MORE_ENTRIES (0X17) Max number of interfaces.
NX_MAX_PHYSICAL_INTERFACES
is exceeded.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_PTR_ERROR (0x07) Invalid pointer input.

NX_IP_ADDRESS_ERROR (0x21) Invalid IP address input.

!

Internet Protocol (IP) 183

Express Logic, Inc.

Allowed From
Initialization, threads

Preemption Possible
No

Example
/* Attach secondary interface for device IP address 192.168.1.68 with the

specified ethernet driver. */
status = nx_ip_interface_attach(ip_ptr, “secondary_port”,

IP_ADDRESS(192,168,1,68),
 0xFFFFFF00UL, nx_etherDriver_mcf5485);

/* If status is NX_SUCCESS the interface was successfully added to the IP
task interface table. */

See Also
nx_ip_address_change_notify, nx_ip_ address_get, nx_ip_ address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_disable, nx_ip_fragment_enable,
nx_ip_gateway_address_set, nx_ip_info_get,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_info_get, nx_ip_interface_status_check,
nx_ip_raw_packet_disable, nx_ip_raw_packet_enable,
nx_ip_raw_packet_interface_send, nx_ip_raw_packet_receive,
nx_ip_raw_packet_send, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

184 NetX User Guide

User Guide

nx_ip_interface_info_get
Retrieve network interface parameters

Internet Protocol (IP)

Prototype
UINT nx_ip_interface_info_get(NX_IP *ip_ptr, UINT interface_index, CHAR

**interface_name,
ULONG *ip_address, ULONG *network_mask,
ULONG *mtu_size,
ULONG *physical_address_msw, ULONG
*physical_address_lsw);

Description
This function retrieves information on network parameters for the
specified interface. All network data is retrieved in host byte order.

ip_ptr must point to a valid NetX IP structure. The specified interface, if not
the primary interface, must be previously attached to the IP instance.

Parameters
ip_ptr Pointer to previously created IP instance.
interface_interface Index specifying network interface.
interface_name Pointer to destination for interface name.
ip_address Pointer to destination for network interface IP

address.
network_mask Pointer to destination for network interface

mask.
mtu_size Pointer to destination for maximum transfer

unit for the IP task. Differs from the driver
MTU by the additional size for the Ethernet
header.

physical_address_msw Pointer to destination for MSB of interface
MAC address.

physical_address_lsw Pointer to destination for LSB of interface
MAC address.

Return Values
NX_SUCCESS (0x00) Entry is added to static routing

table.

!

Internet Protocol (IP) 185

Express Logic, Inc.

NX_PTR_ERROR (0x07) Invalid pointer input.

NX_INVALID_INTERFACE (0x4C) Invalid IP pointer.

Allowed From
Initialization, threads, timers, ISRs

Preemption Possible
No

Example
/* Retrieve interface parameters for the specified interface (index 1 in IP

instance list of interfaces). */
status = nx_ip_interface_info_get(ip_ptr, 1, &name_ptr, &ip_address,

&network_mask,
&mtu_size, &physical_address_msw,
&physical_address_lsw);

/* If status is NX_SUCCESS the interface was successfully added to the IP
task interface table. */

See Also
nx_ip_address_change_notify, nx_ip_ address_get, nx_ip_ address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_disable, nx_ip_fragment_enable,
nx_ip_gateway_address_set, nx_ip_info_get,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_status_check,
nx_ip_raw_packet_disable, nx_ip_raw_packet_enable,
nx_ip_raw_packet_interface_send, nx_ip_raw_packet_receive,
nx_ip_raw_packet_send, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

186 NetX User Guide

User Guide

nx_ip_interface_status_check
Check status of attached IP interface

Internet Protocol (IP)

Prototype
UINT nx_ip_interface_status_check NX_IP *ip_ptr, UINT interface_index,

ULONG needed_status,
ULONG *actual_status,
ULONG wait_option);

Description
This service checks and optionally waits for the specified status of the
interface corresponding to the interface index attached to the IP instance.
Note: the nx_ip_status_check service can provide the same information
but defaults to the primary interface on the IP instance.

ip_ptr must point to a valid NetX IP structure. The specified interface, if not
the primary interface, must be previously attached to the IP instance.

Parameters
ip_ptr Pointer to previously created IP instance.
interface_index Index specifying network interface.
needed_status IP status requested, defined in bit-map form

as follows:
NX_IP_INITIALIZE_DONE (0x0001)
NX_IP_ADDRESS_RESOLVED (0x0002)
NX_IP_LINK_ENABLED (0x0004)
NX_IP_ARP_ENABLED (0x0008)
NX_IP_UDP_ENABLED (0x0010)
NX_IP_TCP_ENABLED (0x0020)
NX_IP_IGMP_ENABLED (0x0040)
NX_IP_RARP_COMPLETE (0x0080)

actual_status Pointer to the actual bits set.
wait_option Defines how the service behaves if the

requested status bits are not available. The
wait options are defined as follows:
NX_NO_WAIT 0x00000000)
timeout value (0x00000001 through
0xFFFFFFFE)

!

Internet Protocol (IP) 187

Express Logic, Inc.

Return Values
NX_SUCCESS (0x00) Successful IP status check.

NX_PTR_ERROR (0x07) IP pointer is or has become
invalid or actual status pointer is
invalid.

NX_NOT_SUCCESSFUL (0x43) Status request was not satisfied
within the timeout specified.

NX_WAIT_ABORTED (0x1A) Requested suspension was
aborted by a call to
tx_thread_wait_abort.

NX_INVALID_INTERFACE (0x4C) Invalid interface.

NX_OPTION_ERROR (0x0a) Invalid needed status option.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Initialization, threads

Preemption Possible
No

Example
/* Wait 10 ticks for the link up status on the specified interface (index 1

in IP instance list of interfaces). */
status = nx_ip_interface_status_check(&ip_0, 1, NX_IP_LINK_ENABLED,

&actual_status, 10);

/* If status is NX_SUCCESS, the link for the specified interface is up. */

See Also
nx_ip_address_change_notify, nx_ip_ address_get, nx_ip_ address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_disable, nx_ip_fragment_enable,
nx_ip_gateway_address_set, nx_ip_info_get,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_raw_packet_disable, nx_ip_raw_packet_enable,
nx_ip_raw_packet_interface_send, nx_ip_raw_packet_receive,
nx_ip_raw_packet_send, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

188 NetX User Guide

User Guide

nx_ip_raw_packet_disable
Disable raw packet sending/receiving

Internet Protocol (IP)

Prototype
UINT nx_ip_raw_packet_disable(NX_IP *ip_ptr);

Description
This service disables transmission and reception of raw IP packets for this
IP instance.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful IP raw packet

disable.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Initialization, threads, timers

Preemption Possible
No

Internet Protocol (IP) 189

Express Logic, Inc.

Example
/* Disable raw packet sending/receiving for this IP instance. */
status = nx_ip_raw_packet_disable(&ip_0);

/* If status is NX_SUCCESS, raw IP packet sending/receiving has been
disabled for the previously created IP instance. */

See Also
nx_ip_address_change_notify, nx_ip_address_get, nx_ip_address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_disable, nx_ip_fragment_enable,
nx_ip_gateway_address_set, nx_ip_interface_address_get,
nx_ip_interface_address_set, nx_ip_interface_attach,
nx_ip_interface_info_get, nx_ip_interface_status_check, nx_ip_info_get,
nx_ip_raw_packet_enable, nx_ip_raw_packet_interface_send,
nx_ip_raw_packet_receive, nx_ip_raw_packet_send,
nx_ip_static_route_add, nx_ip_static_route_delete, nx_ip_status_check

190 NetX User Guide

User Guide

nx_ip_raw_packet_enable
Enable raw packet sending/receiving

Internet Protocol (IP)

Prototype
UINT nx_ip_raw_packet_enable(NX_IP *ip_ptr);

Description
This service enables transmission and reception of raw IP packets for this
IP instance. By enabling raw IP facilities, the protocol field in the IP
header is not examined on reception. Instead, all incoming IP packets are
placed on the raw IP receive queue.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful IP raw packet

enable.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Initialization, threads, timers

Preemption Possible
No

Internet Protocol (IP) 191

Express Logic, Inc.

Example
/* Enable raw packet sending/receiving for this IP instance. */
status = nx_ip_raw_packet_enable(&ip_0);

/* If status is NX_SUCCESS, raw IP packet sending/receiving has been
enabled for the previously created IP instance. */

See Also
nx_ip_address_change_notify, nx_ip_address_change_notify,
nx_ip_address_get, nx_ip_address_set, nx_ip_create, nx_ip_delete,
nx_ip_driver_direct_command, nx_ip_forwarding_disable,
nx_ip_forwarding_enable, nx_ip_fragment_disable,
nx_ip_fragment_enable, nx_ip_gateway_address_set,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_info_get,
nx_ip_raw_packet_disable, nx_ip_raw_packet_interface_send,
nx_ip_raw_packet_receive, nx_ip_raw_packet_send,
nx_ip_static_route_add, nx_ip_static_route_delete, nx_ip_status_check

192 NetX User Guide

User Guide

nx_ip_raw_packet_interface_send
Send raw IP packet out specified network interface

Internet Protocol (IP)

Prototype
UINT nx_ip_raw_packet_interface_send(NX_IP *ip_ptr, NX_PACKET *packet_ptr,

ULONG destination_ip,
UINT interface_index,
ULONG type_of_service);

Description
This function sends a raw IP packet through the specified network
interface.

Note that raw IP processing must be enabled.

Parameters
ip_ptr Pointer to previously created IP task.
packet_ptr Pointer to packet to transmit.
destination_ip IP address to send packet.
interface_index Index of interface to send packet out on.
type_of_service Type of service for packet.

!

Internet Protocol (IP) 193

Express Logic, Inc.

Return Values
NX_SUCCESS (0x00) Packet successfully transmitted.

NX_IP_ADDRESS_ERROR (0x21) No suitable outgoing interface
available.

NX_NOT_ENABLED (0x14) Raw IP packet processing not
enabled.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_PTR_ERROR (0x07) Invalid pointer input.

NX_OPTION_ERROR (0x0A) Invalid type of service specified.

NX_OVERFLOW (0x03) Invalid packet prepend pointer.

NX_UNDERFLOW (0x02) Invalid packet prepend pointer.

NX_INVALID_INTERFACE (0x4C) Invalid interface index specified.

Allowed From
Threads

Preemption Possible
Yes

Example
/* Send packet out on interface 1 with normal type of service. */
status = nx_ip_raw_packet_interface_send(ip_ptr, packet_ptr,

destination_ip, 1, NX_IP_NORMAL);

/* If status is NX_SUCCESS the packet was successfully transmitted. */

See Also
nx_ip_address_change_notify, nx_ip_ address_get, nx_ip_ address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_disable, nx_ip_fragment_enable,
nx_ip_gateway_address_set, nx_ip_info_get,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_raw_packet_disable,
nx_ip_raw_packet_enable, nx_ip_raw_packet_receive,
nx_ip_raw_packet_send, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

194 NetX User Guide

User Guide

nx_ip_raw_packet_receive
Receive raw IP packet

Internet Protocol (IP)

Prototype
UINT nx_ip_raw_packet_receive(NX_IP *ip_ptr,

NX_PACKET **packet_ptr, ULONG wait_option);

Description
This service receives a raw IP packet from the specified IP instance. If
there are IP packets on the raw packet receive queue, the first (oldest)
packet is returned to the caller. Otherwise, if no packets are available, the
caller may suspend as specified by the wait option.

If NX_SUCCESS, is returned, the application is responsible for releasing
the received packet when it is no longer needed.

Parameters
ip_ptr Pointer to previously created IP instance.
packet_ptr Pointer to pointer to place the received raw

IP packet in.
wait_option Defines how the service behaves if there are

no raw IP packets available. The wait options
are defined as follows:

NX_NO_WAIT (0x00000000)
NX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Return Values
NX_SUCCESS (0x00) Successful IP raw packet

receive.

NX_NO_PACKET (0x01) No packet was available.

NX_WAIT_ABORTED (0x1A) Requested suspension was
aborted by a call to
tx_thread_wait_abort.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

!

Internet Protocol (IP) 195

Express Logic, Inc.

NX_PTR_ERROR (0x07) Invalid IP or return packet
pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service

Allowed From
Threads

Preemption Possible
Yes

Example
/* Receive a raw IP packet for this IP instance, wait for a maximum

of 4 timer ticks. */
status = nx_ip_raw_packet_receive(&ip_0, &packet_ptr, 4);

/* If status is NX_SUCCESS, the raw IP packet pointer is in the
variable packet_ptr. */

See Also
nx_ip_address_change_notify, nx_ip_address_change_notify,
nx_ip_address_get, nx_ip_address_set, nx_ip_create, nx_ip_delete,
nx_ip_driver_direct_command, nx_ip_forwarding_disable,
nx_ip_forwarding_enable, nx_ip_fragment_enable,
nx_ip_fragment_disable, nx_ip_gateway_address_set,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_info_get,
nx_ip_raw_packet_disable, nx_ip_raw_packet_enable,
nx_ip_raw_packet_interface_send, nx_ip_raw_packet_send,
nx_ip_static_route_add, nx_ip_static_route_delete, nx_ip_status_check

196 NetX User Guide

User Guide

nx_ip_raw_packet_send
Send raw IP packet

Internet Protocol (IP)

Prototype
UINT nx_ip_raw_packet_send(NX_IP *ip_ptr,

NX_PACKET *packet_ptr, ULONG destination_ip,
ULONG type_of_service);

Description
This service sends a raw IP packet to the specified destination IP
address. Note that this routine returns immediately, and it is therefore not
known whether the IP packet has actually been sent. The network driver
will be responsible for releasing the packet when the transmission is
complete. This service differs from other services in that there is no way of
knowing if the packet was actually sent. It could get lost on the Internet.

Unless an error is returned, the application should not release the packet
after this call. Doing so will cause unpredictable results because the
network driver will release the packet after transmission.

Parameters
ip_ptr Pointer to previously created IP instance.
packet_ptr Pointer to the raw IP packet to send.
destination_ip Destination IP address, which can be a

specific host IP address, a network
broadcast, an internal loop-back, or a
multicast address.

type_of_service Defines the type of service for the
transmission, legal values are as follows:

NX_IP_NORMAL (0x00000000)
NX_IP_MIN_DELAY (0x00100000)
NX_IP_MAX_DATA (0x00080000)
NX_IP_MAX_RELIABLE (0x00040000)
NX_IP_MIN_COST (0x00020000)

!

Internet Protocol (IP) 197

Express Logic, Inc.

Return Values
NX_SUCCESS (0x00) Successful IP raw packet send

initiated.

NX_NOT_ENABLED (0x14) Raw IP feature is not enabled.

NX_IP_ADDRESS_ERROR (0x21) Invalid IP address.

NX_OPTION_ERROR (0x0a) Invalid type of service.

NX_UNDERFLOW (0x02) Not enough room to prepend an
IP header on the packet.

NX_OVERFLOW (0x03) Packet append pointer is invalid.

NX_PTR_ERROR (0x07) Invalid IP or packet pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

Example
/* Send a raw IP packet to IP address 1.2.3.5. */
status = nx_ip_raw_packet_send(&ip_0, packet_ptr,

IP_ADDRESS(1,2,3,5),
 NX_IP_NORMAL);

/* If status is NX_SUCCESS, the raw IP packet pointed to by
packet_ptr has been sent. */

See Also
nx_ip_address_change_notify, nx_ip_address_get, nx_ip_address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_disable, nx_ip_fragment_enable,
nx_ip_gateway_address_set, nx_ip_info_get,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_raw_packet_disable,
nx_ip_raw_packet_enable, nx_ip_raw_packet_interface_send,
nx_ip_raw_packet_receive, nx_ip_static_route_add,
nx_ip_static_route_delete, nx_ip_status_check

198 NetX User Guide

User Guide

nx_ip_static_route_add
Add static route

Internet Protocol (IP)

Prototype
UINT nx_ip_static_route_add(NX_IP *ip_ptr, ULONG network_address,

ULONG net_mask, ULONG next_hop)

Description
This function adds an entry to the static routing table. Note that the
next_hop address must be directly accessible from the local interface.

Note that ip_ptr must point to a valid NetX IP structure and static routing
must be enabled via NX_ENABLE_IP_STATIC_ROUTING to use this
service.

Parameters
ip_ptr Pointer to previously created IP instance.
network_address Target network address, in host byte order
net_mask Target network mask, in host byte order
next_hop Next hop address for the target network, in

host byte order

Return Values
NX_SUCCESS (0x00) Entry is added to the static

routing table.

NX_OVERFLOW (0x03) Static routing table is full.

NX_NOT_IMPLEMENTED (0x4A) This feature is not compiled in.

NX_IP_ADDRESS_ERROR (0x21) Next hop is not directly
accessible via local interfaces.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_PTR_ERROR (0x07) Invalid ip_ptr pointer.

Allowed From
Initialization, threads

!

Internet Protocol (IP) 199

Express Logic, Inc.

Preemption Possible
No

Example
/* Specify the next hop for 192.168.1.68 through the gateway

192.168.1.1. */
status = nx_ip_static_route_add(ip_ptr, IP_ADDRESS(192,168,1,68),
 0xFFFFFF00UL, IP_ADDRESS(192,168,1,1));

/* If status is NX_SUCCESS the route was successfully added to the static
routing table. */

See Also
nx_ip_address_change_notify, nx_ip_ address_get, nx_ip_ address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_disable, nx_ip_fragment_enable,
nx_ip_gateway_address_set, nx_ip_info_get,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_raw_packet_disable,
nx_ip_raw_packet_enable, nx_ip_raw_packet_interface_send,
nx_ip_raw_packet_receive, nx_ip_raw_packet_send,
nx_ip_static_route_delete, nx_ip_status_check

200 NetX User Guide

User Guide

nx_ip_static_route_delete
Delete static route

Internet Protocol (IP)

Prototype
UINT nx_ip_static_route_delete(NX_IP *ip_ptr, ULONG network_address,

ULONG net_mask);

Description
This function deletes an entry from the static routing table.

Note that ip_ptr must point to a valid NetX IP structure and static routing
must be enabled via NX_ENABLE_IP_STATIC_ROUTING to use this
service.

Parameters
ip_ptr Pointer to previously created IP instance.
network_address Target network address, in host byte order.
net_mask Target network mask, in host byte order.

Return Values
NX_SUCCESS (0x00) Successful deletion from the

static routing table.

NX_NOT_SUCCESSFUL (0x43) Entry cannot be found in the
routing table.

NX_NOT_IMPLEMENTED (0x4A) This feature is not compiled in.

NX_PTR_ERROR (0x07) Invalid ip_ptr pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

!

Internet Protocol (IP) 201

Express Logic, Inc.

Allowed From
Initialization,threads

Preemption Possible
No

Example
/* Remove the static route for 192.168.1.68 from the routing table. */
status = nx_ip_static_route_delete(ip_ptr, IP_ADDRESS(192,168,1,68),
 0xFFFFFF00UL,);

/* If status is NX_SUCCESS the route was successfully removed from the
static routing table. */

See Also
nx_ip_address_change_notify, nx_ip_ address_get, nx_ip_ address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_disable, nx_ip_fragment_enable,
nx_ip_gateway_address_set, nx_ip_info_get,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_raw_packet_disable,
nx_ip_raw_packet_enable, nx_ip_raw_packet_interface_send,
nx_ip_raw_packet_receive, nx_ip_raw_packet_send,
nx_ip_static_route_add, nx_ip_status_check

202 NetX User Guide

User Guide

nx_ip_status_check
Check status of an IP instance

Internet Protocol (IP)

Prototype
UINT nx_ip_status_check(NX_IP *ip_ptr, ULONG needed_status,

ULONG *actual_status, ULONG wait_option);

Description
This service checks and optionally waits for the specified status of a
previously created IP instance.

Parameters
ip_ptr Pointer to previously created IP instance.
needed_status IP status requested, defined in bit-map form

as follows:
NX_IP_INITIALIZE_DONE (0x0001)
NX_IP_ADDRESS_RESOLVED (0x0002)
NX_IP_LINK_ENABLED (0x0004)
NX_IP_ARP_ENABLED (0x0008)
NX_IP_UDP_ENABLED (0x0010)
NX_IP_TCP_ENABLED (0x0020)
NX_IP_IGMP_ENABLED (0x0040)
NX_IP_RARP_COMPLETE (0x0080)

actual_status Pointer to destination of actual bits set.
wait_option Defines how the service behaves if the

requested status bits are not available. The
wait options are defined as follows:

NX_NO_WAIT 0x00000000)
timeout value (0x00000001 through

0xFFFFFFFE)

Internet Protocol (IP) 203

Express Logic, Inc.

Return Values
NX_SUCCESS (0x00) Successful IP status check.

NX_PTR_ERROR (0x07) IP pointer is or has become
invalid, or actual status pointer is
invalid.

NX_NOT_SUCCESSFUL (0x43) Status request was not satisfied
within the timeout specified.

NX_OPTION_ERROR (0x0a) Invalid needed status option.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

Example
/* Wait 10 ticks for the link up status on the previously created IP

instance. */
status = nx_ip_status_check(&ip_0, NX_IP_LINK_ENABLED,

&actual_status, 10);

/* If status is NX_SUCCESS, the link for the specified IP instance
is up. */

See Also
nx_ip_address_change_notify, nx_ip_address_get, nx_ip_address_set,
nx_ip_create, nx_ip_delete, nx_ip_driver_direct_command,
nx_ip_forwarding_disable, nx_ip_forwarding_enable,
nx_ip_fragment_disable, nx_ip_fragment_enable,
nx_ip_gateway_address_set, nx_ip_info_get,
nx_ip_interface_address_get, nx_ip_interface_address_set,
nx_ip_interface_attach, nx_ip_interface_info_get,
nx_ip_interface_status_check, nx_ip_raw_packet_disable,
nx_ip_raw_packet_enable, nx_ip_raw_packet_interface_send,
nx_ip_raw_packet_receive, nx_ip_raw_packet_send,
nx_ip_static_route_add, nx_ip_static_route_delete

204 NetX User Guide

User Guide

nx_packet_allocate
Allocate packet from specified pool

Packet Management

Prototype
UINT nx_packet_allocate(NX_PACKET_POOL *pool_ptr,

NX_PACKET **packet_ptr, ULONG packet_type,
ULONG wait_option);

Description
This service allocates a packet from the specified pool and adjusts the
prepend pointer in the packet according to the type of packet specified. If
no packet is available, the service suspends according to the supplied
wait option.

Parameters
pool_ptr Pointer to previously created packet pool.
packet_ptr Pointer to the pointer of the allocated packet

pointer.
packet_type Defines the type of packet requested, legal

values are as follows:
NX_IP_PACKET (0x24)
NX_UDP_PACKET (0x2C)
NX_TCP_PACKET (0x38)
NX_RECEIVE_PACKET (0x00)

wait_option Defines how the service behaves if there are
no packets available. The wait options are
defined as follows:

NX_NO_WAIT (0x00000000)
NX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Packet Management 205

Express Logic, Inc.

Return Values
NX_SUCCESS (0x00) Successful packet allocate.

NX_NO_PACKET (0x01) No packet available.

NX_WAIT_ABORTED (0x1A) Requested suspension was
aborted by a call to
tx_thread_wait_abort.

NX_OPTION_ERROR (0x0A) Invalid packet type.

NX_PTR_ERROR (0x07) Invalid pool or packet return
pointer.

NX_INVALID_PARAMETERS (0x4D) Packet size cannot support
protocol.

NX_CALLER_ERROR (0x11) Invalid wait option from non-
thread.

Allowed From
Initialization, threads, timers, and ISRs (application network drivers)

Preemption Possible
Yes

Example
/* Allocate a new UDP packet from the previously created packet pool and

suspend for a maximum of 5 timer ticks if the pool is empty. */
status = nx_packet_allocate(&pool_0, &packet_ptr,

NX_UDP_PACKET, 5);

/* If status is NX_SUCCESS, the newly allocated packet pointer is found
in the variable packet_ptr. */

See Also
nx_packet_copy, nx_packet_data_append,
nx_packet_data_extract_offset, nx_packet_data_retrieve,
nx_packet_length_get, nx_packet_pool_create, nx_packet_pool_delete,
nx_packet_pool_info_get, nx_packet_release,
nx_packet_transmit_release

206 NetX User Guide

User Guide

nx_packet_copy
Copy packet

Packet Management

Prototype
UINT nx_packet_copy(NX_PACKET *packet_ptr,

NX_PACKET **new_packet_ptr,
NX_PACKET_POOL *pool_ptr, ULONG wait_option);

Description
This service copies the information in the supplied packet to one or more
new packets that are allocated from the supplied packet pool. If
successful, the pointer to the new packet is returned in destination pointed
to by new_packet_ptr.

Parameters
packet_ptr Pointer to the source packet.
new_packet_ptr Pointer to the destination of where to return

the pointer to the new copy of the packet.
pool_ptr Pointer to the previously created packet pool

that is used to allocate one or more packets
for the copy.

wait_option Defines how the service waits if there are no
packets available. The wait options are
defined as follows:

NX_NO_WAIT (0x00000000)
NX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Return Values
NX_SUCCESS (0x00) Successful packet copy.

NX_NO_PACKET (0x01) Packet not available for copy.

NX_INVALID_PACKET (0x12) Empty source packet or copy
failed.

NX_WAIT_ABORTED (0x1A) Requested suspension was
aborted by a call to
tx_thread_wait_abort.

Packet Management 207

Express Logic, Inc.

NX_PTR_ERROR (0x07) Invalid pool, packet, or
destination pointer.

NX_UNDERFLOW (0x02) Invalid packet prepend pointer.

NX_OVERFLOW (0x03) Invalid packet append pointer.

NX_CALLER_ERROR (0x11) A wait option was specified in
initialization or in an ISR.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
Yes

Example
NX_PACKET *new_copy_ptr;

/* Copy packet pointed to by "old_packet_ptr" using packets from
previously created packet pool_0. */

status = nx_packet_copy(old_packet, &new_copy_ptr, &pool_0, 20);

/* If status is NX_SUCCESS, new_copy_ptr points to the packet copy. */

See Also
nx_packet_allocate, nx_packet_data_append,
nx_packet_data_extract_offset, nx_packet_data_retrieve,
nx_packet_length_get, nx_packet_pool_create, nx_packet_pool_delete,
nx_packet_pool_info_get, nx_packet_release,
nx_packet_transmit_release

208 NetX User Guide

User Guide

nx_packet_data_append
Append data to end of packet

Packet Management

Prototype
UINT nx_packet_data_append(NX_PACKET *packet_ptr,

VOID *data_start, ULONG data_size,
NX_PACKET_POOL *pool_ptr,
ULONG wait_option);

Description
This service appends data to the end of the specified packet. The
supplied data area is copied into the packet. If there is not enough
memory available, one or more packets will be allocated to satisfy the
request.

Parameters
packet_ptr Packet pointer.
data_start Pointer to the start of the user’s data area to

append to the packet.
data_size Size of user’s data area.
pool_ptr Pointer to packet pool from which to allocate

another packet if there is not enough room in
the current packet.

wait_option Defines how the service behaves if there are
no packets available. The wait options are
defined as follows:

NX_NO_WAIT (0x00000000)
NX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Packet Management 209

Express Logic, Inc.

Return Values
NX_SUCCESS (0x00) Successful packet append.

NX_NO_PACKET (0x01) No packet available.

NX_WAIT_ABORTED (0x1A) Requested suspension was
aborted by a call to
tx_thread_wait_abort.

NX_UNDERFLOW (0x02) Prepend pointer is less than
payload start.

NX_OVERFLOW (0x03) Append pointer is greater than
payload end.

NX_PTR_ERROR (0x07) Invalid pool, packet, or data
Pointer.

NX_SIZE_ERROR (0x09) Invalid data size.

NX_CALLER_ERROR (0x11) Invalid wait option from non-
thread.

 Allowed From
Initialization, threads, timers, and ISRs (application network drivers)

Preemption Possible
Yes

Example
/* Append "abcd" to the specified packet. */
status = nx_packet_data_append(packet_ptr, "abcd", 4, &pool_0, 5);

/* If status is NX_SUCCESS, the additional four bytes "abcd" have
been appended to the packet. */

See Also
nx_packet_allocate, nx_packet_copy, nx_packet_data_extract_offset,
nx_packet_data_retrieve, nx_packet_length_get, nx_packet_pool_create,
nx_packet_pool_delete, nx_packet_pool_info_get, nx_packet_release,
nx_packet_transmit_release

210 NetX User Guide

User Guide

nx_packet_data_extract_offset
Extract data from packet via an offset

Packet Management

Prototype
UINT nx_packet_data_extract_offset(NX_PACKET *packet_ptr, ULONG offset,

VOID *buffer_start,
ULONG buffer_length,
ULONG *bytes_copied);

Description
This service copies data from a NetX packet (or packet chain) starting at
the specified offset from the packet prepend pointer of the specified size
in bytes into the specified buffer. The number of bytes actually copied is
returned in bytes_copied. This service does not remove data from the
packet, nor does it adjust the prepend pointer.

Parameters
packet_ptr Pointer to packet to extract
offset Offset from the current prepend pointer.
buffer_start Pointer to start of save buffer
buffer_length Number of bytes to copy
bytes_copied Number of bytes actually copied

Return Values
NX_SUCCESS (0x00) Successful packet copy

NX_PTR_ERROR (0x07) Invalid packet pointer or buffer
pointer

NX_PACKET_OFFSET_ERROR (0x43) Invalid offset value was supplied

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Packet Management 211

Express Logic, Inc.

Example
/* Extract 10 bytes from the start of the received packet buffer into the

specified memory area. */
status = nx_packet_data_extract_offset(my_packet, 0, &data[0], 10,

&bytes_copied) ;

/* If status is NX_SUCCESS, 10 bytes were successfully copied into the data
buffer. */

See Also
nx_packet_allocate, nx_packet_copy, nx_packet_data_append,
nx_packet_data_extract_offset, nx_packet_data_retrieve,
nx_packet_length_get, nx_packet_pool_create, nx_packet_pool_delete,
nx_packet_pool_info_get, nx_packet_release,
nx_packet_transmit_release

212 NetX User Guide

User Guide

nx_packet_data_retrieve
Retrieve data from packet

Packet Management

Prototype
UINT nx_packet_data_retrieve(NX_PACKET *packet_ptr, VOID *buffer_start,

ULONG *bytes_copied);

Description
This service copies data from the supplied packet into the supplied buffer.
The actual number of bytes copied is returned in the destination pointed to
by bytes_copied.

The destination buffer must be large enough to hold the packet’s contents. If
not, memory will be corrupted causing unpredictable results.

Parameters
packet_ptr Pointer to the source packet.
buffer_start Pointer to the start of the buffer area.
bytes_copied Pointer to the destination for the number of

bytes copied.

Return Values
NX_SUCCESS (0x00) Successful packet data retrieve.

NX_INVALID_PACKET (0x12) Invalid packet.

NX_PTR_ERROR (0x07) Invalid packet, buffer start, or bytes
copied pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

!

Packet Management 213

Express Logic, Inc.

Example
UCHAR buffer[512];
ULONG bytes_copied;

/* Retrieve data from packet pointed to by "packet_ptr". */
status = nx_packet_data_retrieve(packet_ptr, buffer, &bytes_copied);

/* If status is NX_SUCCESS, buffer contains the contents of the
packet, the size of which is contained in "bytes_copied." */

See Also
nx_packet_allocate, nx_packet_copy, nx_packet_data_append,
nx_packet_data_extract_offset, nx_packet_length_get,
nx_packet_pool_create, nx_packet_pool_delete,
nx_packet_pool_info_get, nx_packet_release,
nx_packet_transmit_release

214 NetX User Guide

User Guide

nx_packet_length_get
Get length of packet data

Packet Management

Prototype
UINT nx_packet_length_get (NX_PACKET *packet_ptr, ULONG *length);

Description
This service gets the length of the data in the specified packet.

Parameters
packet_ptr Pointer to the packet.
length Destination for the packet length.

Return Values
NX_SUCCESS (0x00) Successful packet length get.

NX_PTR_ERROR (0x07) Invalid packet pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Packet Management 215

Express Logic, Inc.

Example
/* Get the length of the data in "my_packet." */
status = nx_packet_length_get(my_packet, &my_length);

/* If status is NX_SUCCESS, data length is in "my_length". */

See Also
nx_packet_allocate, nx_packet_copy, nx_packet_data_append,
nx_packet_data_extract_offset, nx_packet_data_retrieve,
nx_packet_pool_create, nx_packet_pool_delete,
nx_packet_pool_info_get, nx_packet_release,
nx_packet_transmit_release

216 NetX User Guide

User Guide

nx_packet_pool_create
Create packet pool in specified memory area

Packet Management

Prototype
UINT nx_packet_pool_create(NX_PACKET_POOL *pool_ptr,

CHAR *name, ULONG payload_size,
VOID *memory_ptr, ULONG memory_size);

Description
This service creates a packet pool of the specified packet size in the memory area
supplied by the user.

Parameters
pool_ptr Pointer to packet pool control block.
name Pointer to application’s name for the packet pool.
 payload_size Number of bytes in each packet in the pool. This value

must be at least 40 bytes and must also be evenly
divisible by 4.

memory_ptr Pointer to the memory area to place the packet pool
in. The pointer should be aligned on an ULONG
boundary.

memory_size Size of the pool memory area.

Return Values
NX_SUCCESS (0x00) Successful packet pool create.

NX_PTR_ERROR (0x07) Invalid pool or memory pointer.

NX_SIZE_ERROR (0x09) Invalid block or memory size.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Packet Management 217

Express Logic, Inc.

Allowed From
Initialization, threads

Preemption Possible
No

Example
/* Create a packet pool of 32000 bytes starting at physical

address 0x10000000. */
status = nx_packet_pool_create(&pool_0, "Default Pool", 128,

(void *) 0x10000000, 32000);

/* If status is NX_SUCCESS, the packet pool has been successfully
created. */

See Also
nx_packet_allocate, nx_packet_copy, nx_packet_data_append,
nx_packet_data_extract_offset, nx_packet_data_retrieve,
nx_packet_length_get, nx_packet_pool_delete, nx_packet_pool_info_get,
nx_packet_release, nx_packet_transmit_release

218 NetX User Guide

User Guide

nx_packet_pool_delete
Delete previously created packet pool

Packet Management

Prototype
UINT nx_packet_pool_delete(NX_PACKET_POOL *pool_ptr);

Description
This service deletes a previously create packet pool.

Parameters
pool_ptr Packet pool control block pointer.

Return Values
NX_SUCCESS (0x00) Successful packet pool delete.

NX_PTR_ERROR (0x07) Invalid pool pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
No

Packet Management 219

Express Logic, Inc.

Example
/* Delete a previously created packet pool. */
status = nx_packet_pool_delete(&pool_0);

/* If status is NX_SUCCESS, the packet pool has been successfully
deleted. */

See Also
nx_packet_allocate, nx_packet_copy, nx_packet_data_append,
nx_packet_data_extract_offset, nx_packet_data_retrieve,
nx_packet_length_get, nx_packet_pool_create,
nx_packet_pool_info_get, nx_packet_release,
nx_packet_transmit_release

220 NetX User Guide

User Guide

nx_packet_pool_info_get
Retrieve information about a packet pool

Packet Management

Prototype
UINT nx_packet_pool_info_get(NX_PACKET_POOL *pool_ptr,

ULONG *total_packets,
ULONG *free_packets,
ULONG *empty_pool_requests,
ULONG *empty_pool_suspensions,
ULONG *invalid_packet_releases);

Description
This service retrieves information about the specified packet pool.

If a destination pointer is NX_NULL, that particular information is not
returned to the caller.

Parameters
pool_ptr Pointer to previously created packet pool.
total_packets Pointer to destination for the total number of

packets in the pool.
free_packets Pointer to destination for the total number of

currently free packets.
empty_pool_requests Pointer to destination of the total number of

allocation requests when the pool was
empty.

empty_pool_suspensions Pointer to destination of the total number of
empty pool suspensions.

invalid_packet_releases Pointer to destination of the total number of
invalid packet releases.

Return Values
NX_SUCCESS (0x00) Successful packet pool

information retrieval.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

i

Packet Management 221

Express Logic, Inc.

Allowed From
Initialization, threads, and timers

Preemption Possible
No

Example
/* Retrieve packet pool information. */
status = nx_packet_pool_info_get(&pool_0,

&total_packets,
&free_packets,
&empty_pool_requests,
&empty_pool_suspensions,
&invalid_packet_releases);

/* If status is NX_SUCCESS, packet pool information was retrieved. */

See Also
nx_packet_allocate, nx_packet_copy, nx_packet_data_append,
nx_packet_data_extract_offset, nx_packet_data_retrieve,
nx_packet_length_get, nx_packet_pool_create, nx_packet_pool_delete,
nx_packet_release, nx_packet_transmit_release

222 NetX User Guide

User Guide

nx_packet_release
Release previously allocated packet

Packet Management

Prototype
UINT nx_packet_release(NX_PACKET *packet_ptr);

Description
This service releases a packet, including any additional packets linked to
the specified packet. If another thread is waiting for packets, it is given the
packet and resumed.

The application must prevent releasing a packet more than once, because
doing so will cause unpredictable results.

Parameters
packet_ptr Packet pointer.

Return Values
NX_SUCCESS (0x00) Successful packet release.

NX_PTR_ERROR (0x07) Invalid packet pointer.

Allowed From
Initialization, threads, timers, and ISRs (application network drivers)

Preemption Possible
Yes

!

Packet Management 223

Express Logic, Inc.

Example
/* Release a previously allocated packet. */
status = nx_packet_release(packet_ptr);

/* If status is NX_SUCCESS, the packet has been returned to the
packet pool it was allocated from. */

See Also
nx_packet_allocate, nx_packet_copy, nx_packet_data_append,
nx_packet_data_extract_offset, nx_packet_data_retrieve,
nx_packet_length_get, nx_packet_pool_create, nx_packet_pool_delete,
nx_packet_pool_info_get, nx_packet_transmit_release

224 NetX User Guide

User Guide

nx_packet_transmit_release
Release a transmitted packet

Packet Management

Prototype
UINT nx_packet_transmit_release(NX_PACKET *packet_ptr);

Description
This service releases a transmitted packet, including any additional
packets linked to the specified packet. If another thread is waiting for
packets, it is given the packet and resumed. This routine is typically
called from the application’s network driver.

The network driver should remove the physical media header and adjust
the length of the packet before calling this service.

Parameters
packet_ptr Packet pointer.

Return Values
NX_SUCCESS (0x00) Successful transmit packet

release.

NX_PTR_ERROR (0x07) Invalid packet pointer.

Allowed From
Application network drivers (including ISRs)

Preemption Possible
Yes

!

Packet Management 225

Express Logic, Inc.

Example
/* Release a previously allocated packet that was just transmitted

from the application network driver. */
status = nx_packet_transmit_release(packet_ptr);

/* If status is NX_SUCCESS, the transmitted packet has been returned
to the packet pool it was allocated from. */

See Also
nx_packet_allocate, nx_packet_copy, nx_packet_data_append,
nx_packet_data_extract_offset, nx_packet_data_retrieve,
nx_packet_length_get, nx_packet_pool_create, nx_packet_pool_delete,
nx_packet_pool_info_get, nx_packet_release

226 NetX User Guide

User Guide

nx_rarp_disable
Disable Reverse Address Resolution Protocol (RARP)

Reverse Address Resolution Protocol (RARP)

Prototype
UINT nx_rarp_disable(NX_IP *ip_ptr);

Description
This service disables the RARP component of NetX for the specific IP
instance.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful RARP disable.

NX_NOT_ENABLED (0x14) RARP was not enabled.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Initialization, threads, timers

Preemption Possible
No

Reverse Address Resolution Protocol (RARP) 227

Express Logic, Inc.

Example
/* Disable RARP on the previously created IP instance. */
status = nx_rarp_disable(&ip_0);

/* If status is NX_SUCCESS, RARP is disabled. */

See Also
nx_rarp_enable, nx_rarp_info_get

228 NetX User Guide

User Guide

nx_rarp_enable
Enable Reverse Address Resolution Protocol (RARP)

Reverse Address Resolution Protocol (RARP)

Prototype
UINT nx_rarp_enable(NX_IP *ip_ptr);

Description
This service enables the RARP component of NetX for the specific IP
instance. Note that the IP instance must be created with an IP address of
zero in order to use RARP. A non-zero IP address implies that it is valid.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful RARP enable.

NX_IP_ADDRESS_ERROR (0x21) IP address is already valid.

NX_ALREADY_ENABLED (0x15) RARP was already enabled.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Initialization, threads, timers

Preemption Possible
No

Reverse Address Resolution Protocol (RARP) 229

Express Logic, Inc.

Example
/* Enable RARP on the previously created IP instance. */
status = nx_rarp_enable(&ip_0);

/* If status is NX_SUCCESS, RARP is enabled and is attempting to
resolve this IP instance’s address by querying the network. */

See Also
nx_rarp_disable, nx_rarp_info_get

230 NetX User Guide

User Guide

nx_rarp_info_get
Retrieve information about RARP activities

Reverse Address Resolution Protocol (RARP)

Prototype
UINT nx_rarp_info_get(NX_IP *ip_ptr,

ULONG *rarp_requests_sent,
ULONG *rarp_responses_received,
ULONG *rarp_invalid_messages);

Description
This service retrieves information about RARP activities for the specified
IP instance.

If a destination pointer is NX_NULL, that particular information is not
returned to the caller.

Parameters
ip_ptr Pointer to previously created IP instance.
rarp_requests_sent Pointer to destination for the total number of

RARP requests sent.
rarp_responses_received Pointer to destination for the total number of

RARP responses received.
rarp_invalid_messages Pointer to destination of the total number of

invalid messages.

Return Values
NX_SUCCESS (0x00) Successful RARP information

retrieval.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Initialization, threads, and timers

i

Reverse Address Resolution Protocol (RARP) 231

Express Logic, Inc.

Preemption Possible
No

Example
/* Retrieve RARP information from previously created IP Instance 0. */
status = nx_rarp_info_get(&ip_0,

&rarp_requests_sent,
&rarp_responses_received,
&rarp_invalid_messages);

/* If status is NX_SUCCESS, RARP information was retrieved. */

See Also
nx_rarp_disable, nx_rarp_enable

232 NetX User Guide

User Guide

nx_system_initialize
Initialize NetX System

System Management

Prototype
VOID nx_system_initialize(VOID);

Description
This service initializes the basic NetX system resources in preparation for
use. It should be called by the application during initialization and before
any other NetX call are made.

Parameters
None

Return Values
None

Allowed From
Initialization, threads

Preemption Possible
No

System Management 233

Express Logic, Inc.

Example
/* Initialize NetX for operation. */
nx_system_initialize();

/* At this point, NetX is ready for IP creation and all subsequent
network operations. */

See Also
None

234 NetX User Guide

User Guide

nx_tcp_client_socket_bind
Bind client TCP socket to TCP port

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_client_socket_bind(NX_TCP_SOCKET *socket_ptr,

UINT port, ULONG wait_option);

Description
This service binds the previously created TCP client socket to the
specified TCP port. Valid TCP sockets range from 0 through 0xFFFF.

Parameters
socket_ptr Pointer to previously created TCP socket

instance.
port Number of port to bind (1 through 0xFFFF). If

port number is NX_ANY_PORT (0x0000),
the IP instance will search for the next free
port and use that for the binding.

wait_option Defines how the service behaves if the port
is already bound to another socket. The wait
options are defined as follows:

NX_NO_WAIT (0x00000000)
NX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

 0xFFFFFFFE)

Return Values
NX_SUCCESS (0x00) Successful socket bind.

NX_ALREADY_BOUND (0x22) This socket is already bound to
another TCP port.

NX_PORT_UNAVAILABLE (0x23) Port is already bound to a
different socket.

NX_NO_FREE_PORTS (0x45) No free port.

NX_WAIT_ABORTED (0x1A) Requested suspension was
aborted by a call to
tx_thread_wait_abort.

NX_INVALID_PORT (0x46) Invalid port.

Transmission Protocol (TCP) 235

Express Logic, Inc.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
Yes

Example
/* Bind a previously created client socket to port 12 and wait for 7

timer ticks for the bind to complete. */
status = nx_tcp_client_socket_bind(&client_socket, 12, 7);

/* If status is NX_SUCCESS, the previously created client_socket is
bound to port 12 on the associated IP instance. */

See Also
nx_tcp_client_socket_connect, nx_tcp_client_socket_port_get,
nx_tcp_client_socket_unbind, nx_tcp_enable, nx_tcp_free_port_find,
nx_tcp_info_get, nx_tcp_server_socket_accept,
nx_tcp_server_socket_listen, nx_tcp_server_socket_relisten,
nx_tcp_server_socket_unaccept, nx_tcp_server_socket_unlisten,
nx_tcp_socket_bytes_available, nx_tcp_socket_create,
nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

236 NetX User Guide

User Guide

nx_tcp_client_socket_connect
Connect client TCP socket

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_client_socket_connect(NX_TCP_SOCKET *socket_ptr,

UINT server_ip, UINT server_port,
ULONG wait_option)

Description
This service connects the previously created TCP client socket to the
specified server’s port. Valid TCP server ports range from 0 through
0xFFFF.

Parameters
socket_ptr Pointer to previously created TCP socket

instance.
server_ip Server’s IP address.
server_port Server port number to connect to (1 through

0xFFFF).
wait_option Defines how the service behaves while the

connection is being established. The wait
options are defined as follows:

NX_NO_WAIT (0x00000000)
NX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Return Values
NX_SUCCESS (0x00) Successful socket connect.

NX_NOT_BOUND (0x24) Socket is not bound.

NX_NOT_CLOSED (0x35) Socket is not in a closed state.

NX_IN_PROGRESS (0x37) No wait was specified, the
connection attempt is in
progress.

NX_WAIT_ABORTED (0x1A) Requested suspension was
aborted by a call to
tx_thread_wait_abort.

Transmission Protocol (TCP) 237

Express Logic, Inc.

NX_IP_ADDRESS_ERROR (0x21) Invalid server IP address.

NX_INVALID_PORT (0x46) Invalid port.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
Yes

Example
/* Initiate a TCP connection from a previously created and bound

client socket. The connection requested in this example is to
port 12 on the server with the IP address of 1.2.3.5. This
service will wait 300 timer ticks for the connection to take
place before giving up. */

status = nx_tcp_client_socket_connect(&client_socket,
IP_ADDRESS(1,2,3,5), 12, 300);

/* If status is NX_SUCCESS, the previously created and bound
client_socket is connected to port 12 on IP 1.2.3.5. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_port_get,
nx_tcp_client_socket_unbind, nx_tcp_enable, nx_tcp_free_port_find,
nx_tcp_info_get, nx_tcp_server_socket_accept,
nx_tcp_server_socket_listen, nx_tcp_server_socket_relisten,
nx_tcp_server_socket_unaccept, nx_tcp_server_socket_unlisten,
nx_tcp_socket_bytes_available, nx_tcp_socket_create,
nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

238 NetX User Guide

User Guide

nx_tcp_client_socket_port_get
Get port number bound to client TCP socket

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_client_socket_port_get(NX_TCP_SOCKET *socket_ptr,

UINT *port_ptr);

Description
This service retrieves the port number associated with the socket, which
is useful to find the port allocated by NetX in situations where the
NX_ANY_PORT was specified at the time the socket was bound.

Parameters
socket_ptr Pointer to previously created TCP socket

instance.
port_ptr Pointer to destination for the return port

number. Valid port numbers are (1 through
0xFFFF).

Return Values
NX_SUCCESS (0x00) Successful socket bind.

NX_NOT_BOUND (0x24) This socket is not bound to a
port.

NX_PTR_ERROR (0x07) Invalid socket pointer or port
return pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
No

Transmission Protocol (TCP) 239

Express Logic, Inc.

Example
/* Get the port number of previously created and bound client

socket. */
status = nx_tcp_client_socket_port_get(&client_socket, &port);

/* If status is NX_SUCCESS, the port variable contains the port this
socket is bound to. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_unbind, nx_tcp_enable,nx_tcp_free_port_find,
nx_tcp_info_get, nx_tcp_server_socket_accept,
nx_tcp_server_socket_listen, nx_tcp_server_socket_relisten, ,
nx_tcp_server_socket_unlisten, nx_tcp_socket_bytes_available,
nx_tcp_socket_create, nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

240 NetX User Guide

User Guide

 nx_tcp_client_socket_unbind
Unbind TCP client socket from TCP port

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_client_socket_unbind(NX_TCP_SOCKET *socket_ptr);

Description
This service releases the binding between the TCP client socket and a
TCP port. If there are other threads waiting to bind another socket to the
unbound port, the first suspended thread is then bound to the newly
unbound port.

Parameters
socket_ptr Pointer to previously created TCP socket

instance.

Return Values
NX_SUCCESS (0x00) Successful socket unbind.

NX_NOT_BOUND (0x24) Socket was not bound to any
port.

NX_NOT_CLOSED (0x35) Socket has not been
disconnected.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
Yes

Transmission Protocol (TCP) 241

Express Logic, Inc.

Example
/* Unbind a previously created and bound client TCP socket.
status = nx_tcp_client_socket_unbind(&client_socket);

/* If status is NX_SUCCESS, the client socket is no longer bound. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_enable, nx_tcp_free_port_find,
nx_tcp_info_get, nx_tcp_server_socket_accept,
nx_tcp_server_socket_listen, nx_tcp_server_socket_relisten,
nx_tcp_server_socket_unaccept, nx_tcp_server_socket_unlisten,
nx_tcp_socket_bytes_available, nx_tcp_socket_create,
nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

242 NetX User Guide

User Guide

nx_tcp_enable
Enable TCP component of NetX

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_enable(NX_IP *ip_ptr);

Description
This service enables the Transmission Control Protocol (TCP) component
of NetX. After enabled, TCP data may be sent and received by the
application.

Parameters
ip_ptr Pointer to previously created IP instance

instance.

Return Values
NX_SUCCESS (0x00) Successful TCP enable.

NX_ALREADY_ENABLED (0x15) TCP is already enabled.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Initialization, threads, timers

Preemption Possible
No

Transmission Protocol (TCP) 243

Express Logic, Inc.

Example
/* Enable TCP on a previously created IP instance. /*
status = nx_tcp_enable(&ip_0);

/* If status is NX_SUCCESS, TCP is enabled on the IP instance. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_free_port_find, nx_tcp_info_get, nx_tcp_server_socket_accept,
nx_tcp_server_socket_listen, nx_tcp_server_socket_relisten,
nx_tcp_server_socket_unaccept, nx_tcp_server_socket_unlisten,
nx_tcp_socket_bytes_available, nx_tcp_socket_create,
nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

244 NetX User Guide

User Guide

nx_tcp_free_port_find
Find next available TCP port

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_free_port_find(NX_IP *ip_ptr, UINT port,

UINT *free_port_ptr);

Description
This service attempts to locate a free TCP port (unbound) starting from
the application supplied port. The search logic will wrap around if the
search happens to reach the maximum port value of 0xFFFF. If the search
is successful, the free port is returned in the variable pointed to by
free_port_ptr.

This service can be called from another thread and have the same port
returned. To prevent this race condition, the application may wish to place
this service and the actual client socket bind under the protection of a
mutex.

Parameters
ip_ptr Pointer to previously created IP instance.
port Port number to start search at (1 through

0xFFFF).
free_port_ptr Pointer to the destination free port return

value.

Return Values
NX_SUCCESS (0x00) Successful free port find.

NX_NO_FREE_PORTS (0x45) No free ports found.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

NX_INVALID_PORT (0x46) The specified port number is
invalid.

!

Transmission Protocol (TCP) 245

Express Logic, Inc.

Allowed From
Threads

Preemption Possible
No

Example
/* Locate a free TCP port, starting at port 12, on a previously

created IP instance. */
status = nx_tcp_free_port_find(&ip_0, 12, &free_port);

/* If status is NX_SUCCESS, "free_port" contains the next free port
on the IP instance. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_info_get, nx_tcp_server_socket_accept,
nx_tcp_server_socket_listen, nx_tcp_server_socket_relisten,
nx_tcp_server_socket_unaccept, nx_tcp_server_socket_unlisten,
nx_tcp_socket_bytes_available, nx_tcp_socket_create,
nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

246 NetX User Guide

User Guide

nx_tcp_info_get
Retrieve information about TCP activities
Transmission Protocol (TCP)

Prototype
UINT nx_tcp_info_get(NX_IP *ip_ptr,

ULONG *tcp_packets_sent,
ULONG *tcp_bytes_sent,
ULONG *tcp_packets_received,
ULONG *tcp_bytes_received,
ULONG *tcp_invalid_packets,
ULONG *tcp_receive_packets_dropped,
ULONG *tcp_checksum_errors,
ULONG *tcp_connections,
ULONG *tcp_disconnections,
ULONG *tcp_connections_dropped,
ULONG *tcp_retransmit_packets);

Description
This service retrieves information about TCP activities for the specified IP
instance.

If a destination pointer is NX_NULL, that particular information is not
returned to the caller.

Parameters
ip_ptr Pointer to previously created IP instance.
tcp_packets_sent Pointer to destination for the total number

of TCP packets sent.
tcp_bytes_sent Pointer to destination for the total number

of TCP bytes sent.
tcp_packets_received Pointer to destination of the total number

of TCP packets received.
tcp_bytes_received Pointer to destination of the total number

of TCP bytes received.
tcp_invalid_packets Pointer to destination of the total number

of invalid TCP packets.
tcp_receive_packets_dropped Pointer to destination of the total number

of TCP receive packets dropped.

i

Transmission Protocol (TCP) 247

Express Logic, Inc.

tcp_checksum_errors Pointer to destination of the total number
of TCP packets with checksum errors.

tcp_connections Pointer to destination of the total number
of TCP connections.

tcp_disconnections Pointer to destination of the total number
of TCP disconnections.

tcp_connections_dropped Pointer to destination of the total number
of TCP connections dropped.

tcp_retransmit_packets Pointer to destination of the total number
of TCP packets retransmitted.

Return Values
NX_SUCCESS (0x00) Successful TCP information

retrieval.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Initialization, threads, and timers

Preemption Possible
No

248 NetX User Guide

User Guide

Example
/* Retrieve TCP information from previously created IP Instance 0.

*/
status = nx_tcp_info_get(&ip_0,

&tcp_packets_sent,
&tcp_bytes_sent,
&tcp_packets_received,
&tcp_bytes_received,
&tcp_invalid_packets,
&tcp_receive_packets_dropped,
&tcp_checksum_errors,
&tcp_connections,
&tcp_disconnections
&tcp_connections_dropped,
&tcp_retransmit_packets);

/* If status is NX_SUCCESS, TCP information was retrieved. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_info_get, nx_tcp_server_socket_accept,
nx_tcp_server_socket_listen, nx_tcp_server_socket_relisten,
nx_tcp_server_socket_unaccept, nx_tcp_server_socket_unlisten,
nx_tcp_socket_bytes_available, nx_tcp_socket_create,
nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

Transmission Protocol (TCP) 249

Express Logic, Inc.

250 NetX User Guide

User Guide

nx_tcp_server_socket_accept
Accept TCP server connection

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_server_socket_accept(NX_TCP_SOCKET *socket_ptr,

ULONG wait_option);

Description
This service accepts (or prepares to accept) a TCP client socket
connection request for a port that was previously set up for listening. This
service may be called immediately after the application calls the listen or
re-listen service or after the listen callback routine is called when the client
connection is actually present.

The application must call nx_tcp_server_socket_unaccept after the
connection is no longer needed to remove the server socket’s binding to
the server port.

Application callback routines are called from within the IP’s helper thread.

Parameters
socket_ptr Pointer to the TCP server socket control

block.
wait_option Defines how the service behaves while the

connection is being established. The wait
options are defined as follows:

NX_NO_WAIT (0x00000000)
NX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Return Values
NX_SUCCESS (0x00) Successful TCP server socket

accept (passive connect).

NX_NOT_LISTEN_STATE (0x36) The server socket supplied is not
in a listen state.

!

i

Transmission Protocol (TCP) 251

Express Logic, Inc.

NX_IN_PROGRESS (0x37) No wait was specified, the connection
attempt is in progress.

NX_WAIT_ABORTED (0x1A) Requested suspension was aborted
by a call to tx_thread_wait_abort.

NX_PTR_ERROR (0x07) Socket pointer error.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
Yes

Example
NX_PACKET_POOL my_pool;
NX_IP my_ip;
NX_TCP_SOCKET server_socket;

void port_12_connect_request(NX_TCP_SOCKET *socket_ptr, UINT port)
{

 /* Simply set the semaphore to wakeup the server thread. */
 tx_semaphore_put(&port_12_semaphore);
}

void port_12_disconnect_request(NX_TCP_SOCKET *socket_ptr)
{
 /* The client has initiated a disconnect on this socket. This exmaple
 doesn't use this callback. */
}

void port_12_server_thread_entry(ULONG id)
{

NX_PACKET *my_packet;
UINT status, i;

 /* Assuming that:
"port_12_semaphore" has already been created with an initial count of 0
"my_ip" has already been created and the link is enabled
"my_pool" packet pool has already been created

 */

 /* Create the server socket. */
 nx_tcp_socket_create(&my_ip, &server_socket, "Port 12 Server Socket",

NX_IP_NORMAL, NX_FRAGMENT_OKAY,

252 NetX User Guide

User Guide

NX_IP_TIME_TO_LIVE, 100,
NX_NULL, port_12_disconnect_request);

 /* Setup server listening on port 12. */
 nx_tcp_server_socket_listen(&my_ip, 12, &server_socket, 5,

port_12_connect_request);

 /* Loop to process 5 server connections, sending "Hello_and_Goodbye" to
each client and then disconnecting. */

 for (i = 0; i < 5; i++)
 {

 /* Get the semaphore that indicates a client connection request is
present. */

 tx_semaphore_get(&port_12_semaphore, TX_WAIT_FOREVER);

 /* Wait for 200 ticks for the client socket connection to complete. */
 status = nx_tcp_server_socket_accept(&server_socket, 200);

 /* Check for a successful connection. */
 if (status == NX_SUCCESS)
 {

 /* Allocate a packet for the "Hello_and_Goodbye" message. */
 nx_packet_allocate(&my_pool, &my_packet, NX_TCP_PACKET,

NX_WAIT_FOREVER);

 /* Place "Hello_and_Goodbye" in the packet. */
 nx_packet_data_append(my_packet, "Hello_and_Goodbye",

sizeof("Hello_and_Goodbye"), &my_pool,
NX_WAIT_FOREVER);

 /* Send "Hello_and_Goodbye" to client. */
 nx_tcp_socket_send(&server_socket, my_packet, 200);

 /* Check for an error. */
 if (status)
 {

 /* Error, release the packet. */
 nx_packet_release(my_packet);
 }

 /* Now disconnect the server socket from the client. */
 nx_tcp_socket_disconnect(&server_socket, 200);
 }

 /* Unaccept the server socket. Note that unaccept is called even if
disconnect or accept fails. */

 nx_tcp_server_socket_unaccept(&server_socket);

 /* Setup server socket for listening with this socket again. */
 nx_tcp_server_socket_relisten(&my_ip, 12, &server_socket);
 }

 /* We are now done so unlisten on server port 12. */
 nx_tcp_server_socket_unlisten(&my_ip, 12);

 /* Delete the server socket. */
 nx_tcp_socket_delete(&server_socket);
}

Transmission Protocol (TCP) 253

Express Logic, Inc.

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find, nx_tcp_info_get,
nx_tcp_server_socket_listen, nx_tcp_server_socket_relisten,
nx_tcp_server_socket_unaccept, nx_tcp_server_socket_unlisten,
nx_tcp_socket_bytes_available, nx_tcp_socket_create,
nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

254 NetX User Guide

User Guide

nx_tcp_server_socket_listen
Enable listening for client connection on TCP port

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_server_socket_listen(NX_IP *ip_ptr, UINT port,

NX_TCP_SOCKET *socket_ptr,
UINT listen_queue_size,
VOID (*listen_callback)(NX_TCP_SOCKET *socket_ptr,
UINT port));

Description
This service enables listening for a client connection request on the specified
TCP port. When a client connection request is received, the supplied server
socket is bound to the specified port and the supplied listen callback function is
called.

The listen callback routine’s processing is completely up to the application. It
may contain logic to wake up an application thread that subsequently performs
an accept operation. If the application already has a thread suspended on
accept processing for this socket, the listen callback routine may not be
needed.

If the application wishes to handle additional client connections on the same
port, the nx_tcp_server_socket_relisten must be called with an available
socket (a socket in the CLOSED state) for the next connection. Until the re-
listen service is called, additional client connections are queued. When the
maximum queue depth is exceeded, the oldest connection request is dropped
in favor of queuing the new connection request. The maximum queue depth is
specified by this service.

Application callback routines are called from the internal IP helper thread.

i

Transmission Protocol (TCP) 255

Express Logic, Inc.

Parameters
ip_ptr Pointer to previously created IP instance.
port Port number to listen on (1 through 0xFFFF).
socket_ptr Pointer to socket to use for the connection.
listen_queue_size Number of client connection requests that

can be queued.
listen_callback Application function to call when the

connection is received. If a NULL is
specified, the listen callback feature is
disabled.

Return Values
NX_SUCCESS (0x00) Successful TCP port listen

enable.

NX_MAX_LISTEN (0x33) No more listen request
structures are available. The
constant
NX_MAX_LISTEN_REQUESTS
in nx_api.h defines how many
active listen requests are
possible.

NX_NOT_CLOSED (0x35) The supplied server socket is not
in a closed state.

NX_ALREADY_BOUND (0x22) The supplied server socket is
already bound to a port.

NX_DUPLICATE_LISTEN (0x34) There is already an active listen
request for this port.

NX_INVALID_PORT (0x46) Invalid port specified.

NX_PTR_ERROR (0x07) Invalid IP or socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

256 NetX User Guide

User Guide

Preemption Possible
No

Example
NX_PACKET_POOL my_pool;
NX_IP my_ip;
NX_TCP_SOCKET server_socket;

void port_12_connect_request(NX_TCP_SOCKET *socket_ptr, UINT port)
{

 /* Simply set the semaphore to wakeup the server thread. */
 tx_semaphore_put(&port_12_semaphore);
}

void port_12_disconnect_request(NX_TCP_SOCKET *socket_ptr)
{
 /* The client has initiated a disconnect on this socket. This exmaple
 doesn't use this callback. */
}

void port_12_server_thread_entry(ULONG id)
{

NX_PACKET *my_packet;
UINT status, i;

 /* Assuming that:
 "port_12_semaphore" has already been created with an initial count of 0
 "my_ip" has already been created and the link is enabled
 "my_pool" packet pool has already been created
 */

 /* Create the server socket. */
 nx_tcp_socket_create(&my_ip, &server_socket, "Port 12 Server Socket",

NX_IP_NORMAL, NX_FRAGMENT_OKAY,
NX_IP_TIME_TO_LIVE, 100,
NX_NULL, port_12_disconnect_request);

 /* Setup server listening on port 12. */
 nx_tcp_server_socket_listen(&my_ip, 12, &server_socket, 5,

port_12_connect_request);

 /* Loop to process 5 server connections, sending "Hello_and_Goodbye" to
each client and then disconnecting. */

 for (i = 0; i < 5; i++)
 {

 /* Get the semaphore that indicates a client connection request is present. */
 tx_semaphore_get(&port_12_semaphore, TX_WAIT_FOREVER);

 /* Wait for 200 ticks for the client socket connection to complete. */
 status = nx_tcp_server_socket_accept(&server_socket, 200);

 /* Check for a successful connection. */
 if (status == NX_SUCCESS)
 {

Transmission Protocol (TCP) 257

Express Logic, Inc.

 /* Allocate a packet for the "Hello_and_Goodbye" message. */
 nx_packet_allocate(&my_pool, &my_packet, NX_TCP_PACKET,

NX_WAIT_FOREVER);

 /* Place "Hello_and_Goodbye" in the packet. */
 nx_packet_data_append(my_packet, "Hello_and_Goodbye",

sizeof("Hello_and_Goodbye"), &my_pool,
NX_WAIT_FOREVER);

 /* Send "Hello_and_Goodbye" to client. */
 nx_tcp_socket_send(&server_socket, my_packet, 200);

 /* Check for an error. */
 if (status)
 {

 /* Error, release the packet. */
 nx_packet_release(my_packet);
 }

 /* Now disconnect the server socket from the client. */
 nx_tcp_socket_disconnect(&server_socket, 200);
 }

 /* Unaccept the server socket. Note that unaccept is called even if
disconnect or accept fails. */

 nx_tcp_server_socket_unaccept(&server_socket);

 /* Setup server socket for listening with this socket again. */
 nx_tcp_server_socket_relisten(&my_ip, 12, &server_socket);
 }

 /* We are now done so unlisten on server port 12. */
 nx_tcp_server_socket_unlisten(&my_ip, 12);

 /* Delete the server socket. */
 nx_tcp_socket_delete(&server_socket);
}

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find,
nx_tcp_info_get,nx_tcp_server_socket_accept,
nx_tcp_server_socket_relisten, nx_tcp_server_socket_unaccept,
nx_tcp_server_socket_unlisten, nx_tcp_socket_bytes_available,
nx_tcp_socket_create, nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

258 NetX User Guide

User Guide

nx_tcp_server_socket_relisten
Re-listen for client connection on TCP port

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_server_socket_relisten(NX_IP *ip_ptr, UINT port,

NX_TCP_SOCKET *socket_ptr);

Description
This service is called after a connection has been received on a port that was
setup previously for listening. The main purpose of this service is to provide a
new server socket for the next client connection. If a connection request is
queued, the connection will be processed immediately during this service call.

The same callback routine specified by the original listen request is also called
when a connection is present for this new server socket.

Parameters
ip_ptr Pointer to previously created IP instance.
port Port number to re-listen on (1 through 0xFFFF).
socket_ptr Socket to use for the next client connection.

Return Values
NX_SUCCESS (0x00) Successful TCP port re-listen.

NX_NOT_CLOSED (0x35) The supplied server socket is not in a
closed state.

NX_ALREADY_BOUND (0x22) The supplied server socket is already
bound to a port.

NX_INVALID_RELISTEN (0x47) There is already a valid socket pointer
for this port or the port specified does
not have a listen request active.

NX_CONNECTION_PENDING(0x48) Same as NX_SUCCESS, except
there was a queued connection
request and it was processed during
this call.

i

Transmission Protocol (TCP) 259

Express Logic, Inc.

NX_INVALID_PORT (0x46) Invalid port specified.

NX_PTR_ERROR (0x07) Invalid IP or listen callback pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
No

Example
NX_PACKET_POOL my_pool;
NX_IP my_ip;
NX_TCP_SOCKET server_socket;

void port_12_connect_request(NX_TCP_SOCKET *socket_ptr, UINT port)
{

 /* Simply set the semaphore to wakeup the server thread. */
 tx_semaphore_put(&port_12_semaphore);
}

void port_12_disconnect_request(NX_TCP_SOCKET *socket_ptr)
{
 /* The client has initiated a disconnect on this socket. This exmaple
 doesn't use this callback. */
}

void port_12_server_thread_entry(ULONG id)
{

NX_PACKET *my_packet;
UINT status, i;

 /* Assuming that:
 "port_12_semaphore" has already been created with an initial count of 0
 "my_ip" has already been created and the link is enabled
 "my_pool" packet pool has already been created
 */

 /* Create the server socket. */
 nx_tcp_socket_create(&my_ip, &server_socket, "Port 12 Server Socket",

NX_IP_NORMAL, NX_FRAGMENT_OKAY,
NX_IP_TIME_TO_LIVE, 100,
NX_NULL, port_12_disconnect_request);

 /* Setup server listening on port 12. */
 nx_tcp_server_socket_listen(&my_ip, 12, &server_socket, 5,

port_12_connect_request);

 /* Loop to process 5 server connections, sending "Hello_and_Goodbye" to
each client and then disconnecting. */

260 NetX User Guide

User Guide

 for (i = 0; i < 5; i++)
 {

 /* Get the semaphore that indicates a client connection request is present. */
 tx_semaphore_get(&port_12_semaphore, TX_WAIT_FOREVER);

 /* Wait for 200 ticks for the client socket connection to complete. */
 status = nx_tcp_server_socket_accept(&server_socket, 200);

 /* Check for a successful connection. */
 if (status == NX_SUCCESS)
 {

 /* Allocate a packet for the "Hello_and_Goodbye" message. */
 nx_packet_allocate(&my_pool, &my_packet, NX_TCP_PACKET,

NX_WAIT_FOREVER);

 /* Place "Hello_and_Goodbye" in the packet. */
 nx_packet_data_append(my_packet, "Hello_and_Goodbye",

sizeof("Hello_and_Goodbye"), &my_pool,
NX_WAIT_FOREVER);

 /* Send "Hello_and_Goodbye" to client. */
 nx_tcp_socket_send(&server_socket, my_packet, 200);

 /* Check for an error. */
 if (status)
 {

 /* Error, release the packet. */
 nx_packet_release(my_packet);
 }

 /* Now disconnect the server socket from the client. */
 nx_tcp_socket_disconnect(&server_socket, 200);
 }

 /* Unaccept the server socket. Note that unaccept is called even if
disconnect or accept fails. */

 nx_tcp_server_socket_unaccept(&server_socket);

 /* Setup server socket for listening with this socket again. */
 nx_tcp_server_socket_relisten(&my_ip, 12, &server_socket);
 }

 /* We are now done so unlisten on server port 12. */
 nx_tcp_server_socket_unlisten(&my_ip, 12);

 /* Delete the server socket. */
 nx_tcp_socket_delete(&server_socket);
}

Transmission Protocol (TCP) 261

Express Logic, Inc.

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find, nx_tcp_info_get,
nx_tcp_server_socket_accept, nx_tcp_server_socket_listen,
nx_tcp_server_socket_unaccept, nx_tcp_server_socket_unlisten,
nx_tcp_socket_bytes_available, nx_tcp_socket_create,
nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

262 NetX User Guide

User Guide

nx_tcp_server_socket_unaccept
Unaccept previous server socket connection
Transmission Protocol (TCP)

Prototype
UINT nx_tcp_server_socket_unaccept(NX_TCP_SOCKET *socket_ptr);

Description
This service removes the association between this server socket and the
specified server port. The application must call this service after a
disconnection or after an unsuccessful accept call.

Parameters
socket_ptr Pointer to previously setup server socket

instance.

Return Values
NX_SUCCESS (0x00) Successful server socket unaccept.

NX_NOT_LISTEN_STATE (0x36) Server socket is in an improper
state, and is probably not
disconnected.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
No

Transmission Protocol (TCP) 263

Express Logic, Inc.

Example
NX_PACKET_POOL my_pool;
NX_IP my_ip;
NX_TCP_SOCKET server_socket;

void port_12_connect_request(NX_TCP_SOCKET *socket_ptr, UINT port)
{

 /* Simply set the semaphore to wakeup the server thread. */
 tx_semaphore_put(&port_12_semaphore);
}

void port_12_disconnect_request(NX_TCP_SOCKET *socket_ptr)
{
 /* The client has initiated a disconnect on this socket. This exmaple
 doesn't use this callback. */
}

void port_12_server_thread_entry(ULONG id)
{

NX_PACKET *my_packet;
UINT status, i;

 /* Assuming that:
 "port_12_semaphore" has already been created with an initial count of 0
 "my_ip" has already been created and the link is enabled
 "my_pool" packet pool has already been created
 */

 /* Create the server socket. */
 nx_tcp_socket_create(&my_ip, &server_socket, "Port 12 Server Socket",

NX_IP_NORMAL, NX_FRAGMENT_OKAY,
NX_IP_TIME_TO_LIVE, 100,
NX_NULL, port_12_disconnect_request);

 /* Setup server listening on port 12. */
 nx_tcp_server_socket_listen(&my_ip, 12, &server_socket, 5,

port_12_connect_request);

 /* Loop to process 5 server connections, sending "Hello_and_Goodbye" to
each client and then disconnecting. */

 for (i = 0; i < 5; i++)
 {

 /* Get the semaphore that indicates a client connection request is
present. */

 tx_semaphore_get(&port_12_semaphore, TX_WAIT_FOREVER);

 /* Wait for 200 ticks for the client socket connection to complete. */
 status = nx_tcp_server_socket_accept(&server_socket, 200);

 /* Check for a successful connection. */
 if (status == NX_SUCCESS)
 {

 /* Allocate a packet for the "Hello_and_Goodbye" message. */
 nx_packet_allocate(&my_pool, &my_packet, NX_TCP_PACKET,

NX_WAIT_FOREVER);

264 NetX User Guide

User Guide

 /* Place "Hello_and_Goodbye" in the packet. */
 nx_packet_data_append(my_packet, "Hello_and_Goodbye",

sizeof("Hello_and_Goodbye"), &my_pool,
NX_WAIT_FOREVER);

 /* Send "Hello_and_Goodbye" to client. */
 nx_tcp_socket_send(&server_socket, my_packet, 200);

 /* Check for an error. */
 if (status)
 {

 /* Error, release the packet. */
 nx_packet_release(my_packet);
 }

 /* Now disconnect the server socket from the client. */
 nx_tcp_socket_disconnect(&server_socket, 200);
 }

 /* Unaccept the server socket. Note that unaccept is called even if
disconnect or accept fails. */

 nx_tcp_server_socket_unaccept(&server_socket);

 /* Setup server socket for listening with this socket again. */
 nx_tcp_server_socket_relisten(&my_ip, 12, &server_socket);
 }

 /* We are now done so unlisten on server port 12. */
 nx_tcp_server_socket_unlisten(&my_ip, 12);

 /* Delete the server socket. */
 nx_tcp_socket_delete(&server_socket);
}

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find,
nx_tcp_info_get,nx_tcp_server_socket_accept,
nx_tcp_server_socket_listen, nx_tcp_server_socket_relisten,
nx_tcp_server_socket_unlisten, nx_tcp_socket_bytes_available,
nx_tcp_socket_create, nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

Transmission Protocol (TCP) 265

Express Logic, Inc.

266 NetX User Guide

User Guide

nx_tcp_server_socket_unlisten
Disable listening for client connection on TCP port

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_server_socket_unlisten(NX_IP *ip_ptr, UINT port);

Description
This service disables listening for a client connection request on the
specified TCP port.

Parameters
ip_ptr Pointer to previously created IP instance.
port Number of port to disable listening (0 through

0xFFFF).

Return Values
NX_SUCCESS (0x00) Successful TCP listen disable.

NX_ENTRY_NOT_FOUND (0x16) Listening was not enabled for
thespecified port.

NX_INVALID_PORT (0x46) Invalid port specified.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
No

Transmission Protocol (TCP) 267

Express Logic, Inc.

Example
NX_PACKET_POOL my_pool;
NX_IP my_ip;
NX_TCP_SOCKET server_socket;

void port_12_connect_request(NX_TCP_SOCKET *socket_ptr, UINT port)
{

 /* Simply set the semaphore to wakeup the server thread. */
 tx_semaphore_put(&port_12_semaphore);
}

void port_12_disconnect_request(NX_TCP_SOCKET *socket_ptr)
{
 /* The client has initiated a disconnect on this socket. This exmaple
 doesn't use this callback. */
}

void port_12_server_thread_entry(ULONG id)
{

NX_PACKET *my_packet;
UINT status, i;

 /* Assuming that:
 "port_12_semaphore" has already been created with an initial count of 0
 "my_ip" has already been created and the link is enabled
 "my_pool" packet pool has already been created
 */

 /* Create the server socket. */
 nx_tcp_socket_create(&my_ip, &server_socket, "Port 12 Server Socket",

NX_IP_NORMAL, NX_FRAGMENT_OKAY,
NX_IP_TIME_TO_LIVE, 100,
NX_NULL, port_12_disconnect_request);

 /* Setup server listening on port 12. */
 nx_tcp_server_socket_listen(&my_ip, 12, &server_socket, 5,

port_12_connect_request);

 /* Loop to process 5 server connections, sending "Hello_and_Goodbye" to
each client and then disconnecting. */

 for (i = 0; i < 5; i++)
 {

 /* Get the semaphore that indicates a client connection request is
present. */

 tx_semaphore_get(&port_12_semaphore, TX_WAIT_FOREVER);

 /* Wait for 200 ticks for the client socket connection to complete. */
 status = nx_tcp_server_socket_accept(&server_socket, 200);

 /* Check for a successful connection. */
 if (status == NX_SUCCESS)
 {

 /* Allocate a packet for the "Hello_and_Goodbye" message. */
 nx_packet_allocate(&my_pool, &my_packet, NX_TCP_PACKET,

NX_WAIT_FOREVER);

268 NetX User Guide

User Guide

 /* Place "Hello_and_Goodbye" in the packet. */
 nx_packet_data_append(my_packet, "Hello_and_Goodbye",

sizeof("Hello_and_Goodbye"), &my_pool,
NX_WAIT_FOREVER);

 /* Send "Hello_and_Goodbye" to client. */
 nx_tcp_socket_send(&server_socket, my_packet, 200);

 /* Check for an error. */
 if (status)
 {

 /* Error, release the packet. */
 nx_packet_release(my_packet);
 }

 /* Now disconnect the server socket from the client. */
 nx_tcp_socket_disconnect(&server_socket, 200);
 }

 /* Unaccept the server socket. Note that unaccept is called even if
disconnect or accept fails. */

 nx_tcp_server_socket_unaccept(&server_socket);

 /* Setup server socket for listening with this socket again. */
 nx_tcp_server_socket_relisten(&my_ip, 12, &server_socket);
 }

 /* We are now done so unlisten on server port 12. */
 nx_tcp_server_socket_unlisten(&my_ip, 12);

 /* Delete the server socket. */
 nx_tcp_socket_delete(&server_socket);
}

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find, nx_tcp_info_get,
nx_tcp_server_socket_accept, nx_tcp_server_socket_listen,
nx_tcp_server_socket_relisten, nx_tcp_server_socket_unaccept,
nx_tcp_socket_bytes_available, nx_tcp_socket_create,
nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

Transmission Protocol (TCP) 269

Express Logic, Inc.

270 NetX User Guide

User Guide

nx_tcp_socket_bytes_available
Retrieves number of bytes available for retrieval

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_socket_bytes_available(NX_TCP_SOCKET *socket_ptr,

ULONG *bytes_available);

Description
This retrieves number of bytes available for retrieval in the specified TCP
socket. Note that the TCP socket must already be connected.

Parameters
socket_ptr Pointer to previously created and connected

TCP socket.
bytes_available Pointer to destination for bytes available.

Return Values
NX_SUCCESS (0x00) Service executes successfully.

Number of bytes available for
read is returned to the caller.

NX_NOT_CONNECTED (0x38) Socket is not in a connected
state.

NX_PTR_ERROR (0x07) Invalid pointers.

NX_NOT_ENABLED (0x14) TCP is not enabled.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
No

Transmission Protocol (TCP) 271

Express Logic, Inc.

Example
/* Get the bytes available for retrieval on the specified socket. */
status = nx_tcp_socket_bytes_available(&my_socket,&bytes_available);

/* Is status = NX_SUCCESS, the available bytes is returned in
bytes_available. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find,
nx_tcp_info_get,nx_tcp_server_socket_accept,
nx_tcp_server_socket_listen, nx_tcp_server_socket_relisten,
nx_tcp_server_socket_unaccept, nx_tcp_server_socket_unlisten,
nx_tcp_socket_create, nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

272 NetX User Guide

User Guide

nx_tcp_socket_create
Create TCP client or server socket

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_socket_create(NX_IP *ip_ptr,

NX_TCP_SOCKET *socket_ptr, CHAR *name,
ULONG type_of_service, ULONG fragment,
UINT time_to_live,
ULONG window_size,
VOID (*urgent_data_callback)(NX_TCP_SOCKET
*socket_ptr),
VOID (*disconnect_callback)(NX_TCP_SOCKET
*socket_ptr));

Description
This service creates a TCP client or server socket for the specified IP
instance.

Application callback routines are called from the thread associated with
this IP instance.

Parameters
ip_ptr Pointer to previously created IP instance.
socket_ptr Pointer to new TCP client socket control

block.
name Application name for this TCP socket.
type_of_service Defines the type of service for the

transmission, legal values are as follows:
NX_IP_NORMAL (0x00000000)
NX_IP_MIN_DELAY (0x00100000)
NX_IP_MAX_DATA (0x00080000)
NX_IP_MAX_RELIABLE (0x00040000)
NX_IP_MIN_COST (0x00020000)

fragment Specifies whether or not IP fragmenting is
allowed. If NX_FRAGMENT_OKAY (0x0) is
specified, IP fragmenting is allowed. If
NX_DONT_FRAGMENT (0x4000) is
specified, IP fragmenting is disabled.

i

Transmission Protocol (TCP) 273

Express Logic, Inc.

time_to_live Specifies the 8-bit value that defines how
many routers this packet can pass before
being thrown away. The default value is
specified by NX_IP_TIME_TO_LIVE.

window_size Defines the maximum number of bytes
allowed in the receive queue for this socket

urgent_data_callback Application function that is called whenever
urgent data is detected in the receive stream.
If this value is NX_NULL, urgent data is
ignored.

disconnect_callback Application function that is called whenever a
disconnect is issued by the socket at the
other end of the connection. If this value is
NX_NULL, the disconnect callback function
is disabled.

Return Values
NX_SUCCESS (0x00) Successful TCP client socket

create.

NX_OPTION_ERROR (0x0A) Invalid type-of-service, fragment,
or time-to-live option.

NX_PTR_ERROR (0x07) Invalid IP or socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Initialization and Threads

Preemption Possible
No

274 NetX User Guide

User Guide

Example
/* Create a TCP client socket on the previously created IP instance,

with normal delivery, IP fragmentation enabled, 0x80 time to
live, a 200-byte receive window, no urgent callback routine, and
the "client_disconnect" routine to handle disconnection initiated
from the other end of the connection. */

status = nx_tcp_socket_create(&ip_0, &client_socket,
"Client Socket",
NX_IP_NORMAL, NX_FRAGMENT_OKAY,
0x80, 200, NX_NULL, client_disconnect);

/* If status is NX_SUCCESS, the client socket is created and ready
to be bound. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find, nx_tcp_info_get,
nx_tcp_server_socket_accept, nx_tcp_server_socket_listen,
nx_tcp_server_socket_relisten, nx_tcp_server_socket_unaccept,
nx_tcp_server_socket_unlisten, nx_tcp_socket_bytes_available,
nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

Transmission Protocol (TCP) 275

Express Logic, Inc.

276 NetX User Guide

User Guide

nx_tcp_socket_delete
Delete TCP socket

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_socket_delete(NX_TCP_SOCKET *socket_ptr);

Description
This service deletes a previously created TCP socket.

Parameters
socket_ptr Previously created TCP socket

Return Values
NX_SUCCESS (0x00) Successful socket delete.

NX_NOT_CREATED (0x27) Socket was not created.

NX_STILL_BOUND (0x42) Socket is still bound.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
No

Transmission Protocol (TCP) 277

Express Logic, Inc.

Example
/* Delete a previously created TCP client socket. */
status = nx_tcp_socket_delete(&client_socket);

/* If status is NX_SUCCESS, the client socket is deleted. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find, nx_tcp_info_get,
nx_tcp_server_socket_accept, nx_tcp_server_socket_listen,
nx_tcp_server_socket_relisten, nx_tcp_server_socket_unaccept,
nx_tcp_server_socket_unlisten, nx_tcp_socket_bytes_available,
nx_tcp_socket_create, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

278 NetX User Guide

User Guide

nx_tcp_socket_disconnect
Disconnect client and server socket connections

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_socket_disconnect(NX_TCP_SOCKET *socket_ptr,

ULONG wait_option);

Description
This service disconnects an established client or server socket
connection. A disconnect of a server socket should be followed by an un-
accept request, while a client socket that is disconnected is left in a state
ready for another connection request.

Parameters
socket_ptr Pointer to previously connected client or

server socket instance.
wait_option Defines how the service behaves while the

disconnection is in progress. The wait
options are defined as follows:

NX_NO_WAIT (0x00000000)
NX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Return Values
NX_SUCCESS (0x00) Successful socket disconnect.

NX_NO_PACKET (0x01) No packet available for
disconnect message.

NX_NOT_CONNECTED (0x38) Specified socket is not
connected.

NX_IN_PROGRESS (0x37) Disconnect is in progress, no
wait was specified.

NX_WAIT_ABORTED (0x1A) Requested suspension was
aborted by a call to
tx_thread_wait_abort.

NX_PTR_ERROR (0x07) Invalid socket pointer.

Transmission Protocol (TCP) 279

Express Logic, Inc.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
Yes

Example
/* Disconnect from a previously established connection and wait a

maximum of 400 timer ticks. */
status = nx_tcp_socket_disconnect(&client_socket, 400);

/* If status is NX_SUCCESS, the previously connected socket (either
as a result of the client socket connect or the server accept) is
disconnected. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find,
nx_tcp_info_get,nx_tcp_server_socket_accept,
nx_tcp_server_socket_listen, nx_tcp_server_socket_relisten,
nx_tcp_server_socket_unaccept, nx_tcp_server_socket_unlisten,
nx_tcp_socket_bytes_available, nx_tcp_socket_create,
nx_tcp_socket_delete, nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

280 NetX User Guide

User Guide

nx_tcp_socket_info_get
Retrieve information about TCP socket activities

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_socket_info_get(NX_TCP_SOCKET *socket_ptr,

ULONG *tcp_packets_sent,
ULONG *tcp_bytes_sent,
ULONG *tcp_packets_received,
ULONG *tcp_bytes_received,
ULONG *tcp_retransmit_packets,
ULONG *tcp_packets_queued,
ULONG *tcp_checksum_errors,
ULONG *tcp_socket_state,
ULONG *tcp_transmit_queue_depth,
ULONG *tcp_transmit_window,
ULONG *tcp_receive_window);

Description
This service retrieves information about TCP socket activities for the
specified TCP socket instance.

If a destination pointer is NX_NULL, that particular information is not
returned to the caller.

Parameters
socket_ptr Pointer to previously created TCP socket

instance.
tcp_packets_sent Pointer to destination for the total number of

TCP packets sent on socket.
tcp_bytes_sent Pointer to destination for the total number of

TCP bytes sent on socket.
tcp_packets_received Pointer to destination of the total number of

TCP packets received on socket.
tcp_bytes_received Pointer to destination of the total number of

TCP bytes received on socket.
tcp_retransmit_packets Pointer to destination of the total number of

TCP packet retransmissions.

i

Transmission Protocol (TCP) 281

Express Logic, Inc.

tcp_packets_queued Pointer to destination of the total number of
queued TCP packets on socket.

tcp_checksum_errors Pointer to destination of the total number of
TCP packets with checksum errors on
socket.

tcp_socket_state Pointer to destination of the socket’s current
state.

tcp_transmit_queue_depth Pointer to destination of the total number of
transmit packets still queued waiting for ACK.

tcp_transmit_window Pointer to destination of the current transmit
window size.

tcp_receive_window Pointer to destination of the current receive
window size.

Return Values
NX_SUCCESS (0x00) Successful TCP socket

information retrieval.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Initialization, threads, and timers

Preemption Possible
No

282 NetX User Guide

User Guide

Example
/* Retrieve TCP socket information from previously created socket 0. */
status = nx_tcp_socket_info_get(&socket_0,

&tcp_packets_sent,
&tcp_bytes_sent,
&tcp_packets_received,
&tcp_bytes_received,
&tcp_retransmit_packets,
&tcp_packets_queued,
&tcp_checksum_errors,
&tcp_socket_state,
&tcp_transmit_queue_depth,
&tcp_transmit_window,
&tcp_receive_window);

/* If status is NX_SUCCESS, TCP socket information was retrieved. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find, nx_tcp_info_get,
nx_tcp_server_socket_accept, nx_tcp_server_socket_listen,
nx_tcp_server_socket_relisten, nx_tcp_server_socket_unaccept,
nx_tcp_server_socket_unlisten, nx_tcp_socket_bytes_available,
nx_tcp_socket_create, nx_tcp_socket_delete, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

Transmission Protocol (TCP) 283

Express Logic, Inc.

284 NetX User Guide

User Guide

nx_tcp_socket_mss_get
Get MSS of socket

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_socket_mss_get(NX_TCP_SOCKET *socket_ptr, ULONG *mss);

Description
This service retrieves the specified socket’s current Maximum Segment
Size (MSS).

Parameters
socket_ptr Pointer to previously created socket.
mss Destination for returning MSS.

Return Values
NX_SUCCESS (0x00) Successful MSS get.

NX_PTR_ERROR (0x07) Invalid socket or MSS
destination pointer.

NX_NOT_ENABLED (0x14) TCP is not enabled.

NX_CALLER_ERROR (0x11) Caller is not a thread or
initialization.

Transmission Protocol (TCP) 285

Express Logic, Inc.

Allowed From
Initialization and threads

Example
/* Get the MSS for the socket "my_socket". */
status = nx_tcp_socket_mss_get(&my_socket, &mss_value);

/* If status is NX_SUCCESS, the "mss_value" variable contains the
socket's current MSS value. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find, nx_tcp_info_get,
nx_tcp_server_socket_accept, nx_tcp_server_socket_listen,
nx_tcp_server_socket_relisten, nx_tcp_server_socket_unaccept,
nx_tcp_server_socket_unlisten, nx_tcp_socket_bytes_available,
nx_tcp_socket_create, nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_peer_get,
nx_tcp_socket_mss_set, nx_tcp_socket_receive,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive_notify,
nx_tcp_socket_send, nx_tcp_socket_state_wait,
nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

286 NetX User Guide

User Guide

nx_tcp_socket_mss_peer_get
Get MSS of socket peer

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_socket_mss_peer_get(NX_TCP_SOCKET *socket_ptr, ULONG *mss);

Description
This service retrieves the specified socket connected peer’s advertised
Maximum Segment Size (MSS).

Parameters
socket_ptr Pointer to previously created and connected

socket.
mss Destination for returning the MSS.

Return Values
NX_SUCCESS (0x00) Successful peer MSS get.

NX_PTR_ERROR (0x07) Invalid socket or MSS
destination pointer.

NX_NOT_ENABLED (0x14) TCP is not enabled.

NX_CALLER_ERROR (0x11) Caller is not a thread or
initialization.

Transmission Protocol (TCP) 287

Express Logic, Inc.

Allowed From
Initialization and threads

Example
/* Get the MSS of the connected peer to the socket "my_socket". */
status = nx_tcp_socket_mss_peer_get(&my_socket, &mss_value);

/* If status is NX_SUCCESS, the "mss_value" variable contains the
socket peer’s advertised MSS value. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find, nx_tcp_info_get,
nx_tcp_server_socket_accept, nx_tcp_server_socket_listen,
nx_tcp_server_socket_relisten, nx_tcp_server_socket_unaccept,
nx_tcp_server_socket_unlisten, nx_tcp_socket_bytes_available,
nx_tcp_socket_create, nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_set, nx_tcp_socket_receive,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive_notify,
nx_tcp_socket_send, nx_tcp_socket_state_wait,
nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

288 NetX User Guide

User Guide

nx_tcp_socket_mss_set
Set MSS of socket

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_socket_mss_set(NX_TCP_SOCKET *socket_ptr, ULONG mss);

Description
This service sets the specified socket’s Maximum Segment Size (MSS).

Parameters
socket_ptr Pointer to previously created socket.
mss Value of MSS to set.

Return Values
NX_SUCCESS (0x00) Successful MSS set.

NX_SIZE_ERROR (0x09) Specified MSS value is too large.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_NOT_ENABLED (0x14) TCP is not enabled.

NX_CALLER_ERROR (0x11) Caller is not a thread or
initialization.

Transmission Protocol (TCP) 289

Express Logic, Inc.

Allowed From
Initialization and threads

Example
/* Set the MSS of the socket "my_socket" to 1000 bytes. */
status = nx_tcp_socket_mss_set(&my_socket, 1000);

/* If status is NX_SUCCESS, the MSS of "my_socket" is 1000 bytes. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find, nx_tcp_info_get,
nx_tcp_server_socket_accept, nx_tcp_server_socket_listen,
nx_tcp_server_socket_relisten, nx_tcp_server_socket_unaccept,
nx_tcp_server_socket_unlisten, nx_tcp_socket_bytes_available,
nx_tcp_socket_create, nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_peer_info_get,
nx_tcp_socket_receive, nx_tcp_socket_receive_notify,
nx_tcp_socket_send, nx_tcp_socket_state_wait,
nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

290 NetX User Guide

User Guide

nx_tcp_socket_peer_info_get
Retrieve information about peer TCP socket

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_socket_peer_info_get(NX_TCP_SOCKET *socket_ptr,

ULONG *peer_ip_address, ULONG *peer_port);

Description
This service retrieves IP address and port number of the peer socket for a
connection.

Parameters
socket_ptr Pointer to previously created TCP socket.
peer_ip_address Pointer to destination for peer IP address, in

host byte order.
peer_port Pointer to destination for peer port number, in

host byte order.

Return Values
NX_SUCCESS (0x00) Service executes successfully.

Peer IP address and port
number are returned to the
caller.

NX_NOT_CONNECTED (0x38) Socket is not in a connected
state.

NX_PTR_ERROR (0x07) Invalid pointers.

NX_NOT_ENABLED (0x14) TCP is not enabled.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
Yes

Transmission Protocol (TCP) 291

Express Logic, Inc.

Example
/* Obtain peer IP address and port on the specified TCP socket. */
status = nx_tcp_socket_peer_info_get(&my_socket, &peer_ip_address, &peer_port);

/* If status = NX_SUCCESS, the data was successfully obtained. */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find,
nx_tcp_info_get,nx_tcp_server_socket_accept,
nx_tcp_server_socket_listen, nx_tcp_server_socket_relisten,
nx_tcp_server_socket_unaccept, nx_tcp_server_socket_unlisten,
nx_tcp_socket_bytes_available, nx_tcp_socket_create,
nx_tcp_socket_delete, nx_tcp_socket_disconnect, nx_tcp_socket_info_get,
nx_tcp_socket_mss_get, nx_tcp_socket_mss_peer_get,
nx_tcp_socket_mss_set, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

292 NetX User Guide

User Guide

nx_tcp_socket_receive
Receive data from TCP socket

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_socket_receive(NX_TCP_SOCKET *socket_ptr,

NX_PACKET **packet_ptr, ULONG wait_option);

Description
This service receives TCP data from the specified socket. If no data is
queued on the specified socket, the caller suspends based on the
supplied wait option.

If NX_SUCCESS is returned, the application is responsible for releasing
the received packet when it is no longer needed.

Parameters
socket_ptr Pointer to previously created TCP socket

instance.
packet_ptr Pointer to TCP packet pointer.
wait_option Defines how the service behaves if do data

are currently queued on this socket. The wait
options are defined as follows:

NX_NO_WAIT (0x00000000)
NX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Return Values
NX_SUCCESS (0x00) Successful socket data receive.

NX_NOT_BOUND (0x24) Socket is not bound yet.

NX_NO_PACKET (0x01) No data received.

NX_WAIT_ABORTED (0x1A) Requested suspension was
aborted by a call to
tx_thread_wait_abort.

!

Transmission Protocol (TCP) 293

Express Logic, Inc.

NX_NOT_CONNECTED (0x38) The socket is no longer connected.

NX_PTR_ERROR (0x07) Invalid socket or return packet pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
Yes

Example
/* Receive a packet from the previously created and connected TCP

client socket. If no packet is available, wait for 200 timer ticks
before giving up. */

status = nx_tcp_socket_receive(&client_socket, &packet_ptr, 200);

/* If status is NX_SUCCESS, the received packet is pointed to by
"packet_ptr". */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind, nx_tcp_enable,
nx_tcp_free_port_find, nx_tcp_info_get, nx_tcp_server_socket_accept,
nx_tcp_server_socket_listen, nx_tcp_server_socket_relisten,
nx_tcp_server_socket_unaccept, nx_tcp_server_socket_unlisten,
nx_tcp_socket_bytes_available, nx_tcp_socket_create, nx_tcp_socket_delete,
nx_tcp_socket_disconnect, nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive_notify,
nx_tcp_socket_send, nx_tcp_socket_state_wait,
nx_tcp_socket_transmit_configure, nx_tcp_socket_window_update_notify_set

294 NetX User Guide

User Guide

nx_tcp_socket_receive_notify
Notify application of received packets

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_socket_receive_notify(NX_TCP_SOCKET

*socket_ptr,
VOID (*tcp_receive_notify)(NX_TCP_SOCKET
*socket_ptr));

Description
This service sets the receive notify function pointer to the callback
function specified by the application. This callback function is then called
whenever one or more packets are received on the socket. If a NX_NULL
pointer is supplied, the notify function is disabled.

Parameters
socket_ptr Pointer to the TCP socket.
tcp_receive_notify Application callback function pointer that is

called when one or more packets are
received on the socket.

Return Values
NX_SUCCESS (0x00) Successful socket receive notify.

NX_PTR_ERROR (0x07) Invalid socket pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Transmission Protocol (TCP) 295

Express Logic, Inc.

Example
/* Setup a receive packet callback function for the "client_socket"

socket. */
status = nx_tcp_socket_receive_notify(client_socket,

 my_receive_notify);

/* If status is NX_SUCCESS, NetX will call the function named
"my_receive_notify" whenever one or more packets are received for
"client_socket". */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find, nx_tcp_info_get,
nx_tcp_server_socket_accept, nx_tcp_server_socket_listen,
nx_tcp_server_socket_relisten, nx_tcp_server_socket_unaccept,
nx_tcp_server_socket_unlisten, nx_tcp_socket_bytes_available,
nx_tcp_socket_create, nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_send, nx_tcp_socket_state_wait,
nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

296 NetX User Guide

User Guide

nx_tcp_socket_send
Send data through a TCP socket

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_socket_send(NX_TCP_SOCKET *socket_ptr,

NX_PACKET *packet_ptr,
ULONG wait_option);

Description
This service sends TCP data through a previously connected TCP socket.
If the receiver’s last advertised window size is less than this request, the
service optionally suspends based on the wait options specified.

Unless an error is returned, the application should not release the packet
after this call. Doing so will cause unpredictable results because the
network driver will release the packet after transmission.

Parameters
socket_ptr Pointer to previously connected TCP socket

instance.
packet_ptr TCP data packet pointer.
wait_option Defines how the service behaves if the

request is greater than the window size of
the receiver. The wait options are defined as
follows:

NX_NO_WAIT (0x00000000)
NX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

0xFFFFFFFE)

Return Values
NX_SUCCESS (0x00) Successful socket send.

NX_NOT_BOUND (0x024) Socket was not bound to any
port.

NX_NOT_CONNECTED (0x38) Socket is no longer connected.

NX_ALREADY_SUSPENDED (0x40) Another thread is already
suspended trying to send data

!

Transmission Protocol (TCP) 297

Express Logic, Inc.

on this socket. Only one thread is
allowed.

NX_WINDOW_OVERFLOW (0x39) Request is greater than receiver’s
advertised window size in bytes.

NX_WAIT_ABORTED (0x1A) Requested suspension was aborted
by a call to tx_thread_wait_abort.

NX_OVERFLOW (0x03) Packet append pointer is invalid.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_INVALID_PACKET (0x12) Packet is not allocated.

NX_TX_QUEUE_DEPTH (0x49) Maximum transmit queue depth has
been reached.

NX_INVALID_PACKET (0x12) Packet is not valid.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
Yes

298 NetX User Guide

User Guide

Example
/* Send a packet out on the previously created and connected TCP

client socket. If the receive window on the other side of the
connection is less than the packet size, wait 200 timer ticks
before giving up. */

status = nx_tcp_socket_send(&client_socket, packet_ptr, 200);

/* If status is NX_SUCCESS, the packet has been sent! */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find, nx_tcp_info_get,
nx_tcp_server_socket_accept, nx_tcp_server_socket_listen,
nx_tcp_server_socket_relisten, nx_tcp_server_socket_unaccept,
nx_tcp_server_socket_unlisten, nx_tcp_socket_bytes_available,
nx_tcp_socket_create, nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_state_wait,
nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

Transmission Protocol (TCP) 299

Express Logic, Inc.

300 NetX User Guide

User Guide

nx_tcp_socket_state_wait
Wait for TCP socket to enter specific state

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_socket_state_wait(NX_TCP_SOCKET *socket_ptr,

UINT desired_state,
ULONG wait_option);

Description
This service waits for the socket to enter the desired state.

Parameters
socket_ptr Pointer to previously connected TCP socket

instance.
desired_state Desired TCP state. Valid TCP socket states

are defined as follows:
NX_TCP_CLOSED (0x01)
NX_TCP_LISTEN_STATE (0x02)
NX_TCP_SYN_SENT (0x03)
NX_TCP_SYN_RECEIVED (0x04)
NX_TCP_ESTABLISHED (0x05)
NX_TCP_CLOSE_WAIT (0x06)
NX_TCP_FIN_WAIT_1 (0x07)
NX_TCP_FIN_WAIT_2 (0x08)
NX_TCP_CLOSING (0x09)
NX_TCP_TIMED_WAIT (0x0A)
NX_TCP_LAST_ACK (0x0B)

wait_option Defines how the service behaves if the
requested state is not present. The wait
options are defined as follows:

NX_NO_WAIT (0x00000000)
timeout value (0x00000001 through

0xFFFFFFFE)

Return Values
NX_SUCCESS (0x00) Successful state wait.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_NOT_SUCCESSFUL (0x43) State not present within the
specified wait time.

Transmission Protocol (TCP) 301

Express Logic, Inc.

NX_WAIT_ABORTED (0x1A) Requested suspension was
aborted by a call to
tx_thread_wait_abort.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

NX_OPTION_ERROR (0x0A) The desired socket state is
invalid.

Allowed From
Threads

Preemption Possible
Yes

Example
/* Wait 300 timer ticks for the previously created socket to enter

the established state in the TCP state machine. */
status = nx_tcp_socket_state_wait(&client_socket,

NX_TCP_ESTABLISHED, 300);

/* If status is NX_SUCCESS, the socket is now in the established
state! */

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find, nx_tcp_info_get,
nx_tcp_server_socket_accept, nx_tcp_server_socket_listen,
nx_tcp_server_socket_relisten, nx_tcp_server_socket_unaccept,
nx_tcp_server_socket_unlisten, nx_tcp_socket_bytes_available,
nx_tcp_socket_create, nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_transmit_configure,
nx_tcp_socket_window_update_notify_set

302 NetX User Guide

User Guide

nx_tcp_socket_transmit_configure
Configure socket’s transmit parameters

Transmission Protocol (TCP)

Prototype
UINT nx_tcp_socket_transmit_configure(NX_TCP_SOCKET

*socket_ptr, ULONG max_queue_depth,
ULONG timeout, ULONG max_retries,
ULONG timeout_shift);

Description
This service configures various transmit parameters of the specified TCP
socket.

Parameters
socket_ptr Pointer to the TCP socket.
max_queue_depth Maximum number of packets allowed to be

queued for transmission.
timeout Number of ThreadX timer ticks an ACK is

waited for before the packet is sent again.
max_retries Maximum number of retries allowed.
timeout_shift Value to shift the timeout for each

subsequent retry. A value of 0, results in the
same timeout between successive retries. A
value of 1, doubles the timeout between
retries.

Return Values
NX_SUCCESS (0x00) Successful transmit socket

configure.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_OPTION_ERROR (0x0a) Invalid queue depth option.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

Transmission Protocol (TCP) 303

Express Logic, Inc.

Example
/* Configure the "client_socket" for a maximum transmit queue depth of 12,

100 tick timeouts, a maximum of 20 retries, and a timeout double on each
successive retry. */

status = nx_tcp_socket_transmit_configure(client_socket, 12, 100, 20, 1);

/* If status is NX_SUCCESS, the socket’s transmit retry has been configured.
*/

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find, nx_tcp_info_get,
nx_tcp_server_socket_accept, nx_tcp_server_socket_listen,
nx_tcp_server_socket_relisten, nx_tcp_server_socket_unaccept,
nx_tcp_server_socket_unlisten, nx_tcp_socket_bytes_available,
nx_tcp_socket_create, nx_tcp_socket_delete, nx_tcp_socket_disconnect,
nx_tcp_socket_info_get, nx_tcp_socket_mss_get,
nx_tcp_socket_mss_peer_get, nx_tcp_socket_mss_set,
nx_tcp_socket_peer_info_get, nx_tcp_socket_receive,
nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_window_update_notify_set

304 NetX User Guide

User Guide

nx_tcp_socket_window_update_notify_set
Notify application of window size updates
User Datagram Protocol (UDP)

Prototype
UINT nx_tcp_socket_window_update_notify_set(NX_TCP_SOCKET *socket_ptr,

VOID (*tcp_window_update_notify)(NX_TCP_SOCKET *socket_ptr))

Description
This service installs a socket window update callback routine. This routine
is called automatically whenever the specified socket receives a packet
indicating an increase in the window size of the remote host.

Parameters
socket_ptr Pointer to previously created TCP socket.
tcp_window_update_notify Callback routine to be called when the

window size changes. A value of NULL
disables the window change update.

Return Values
NX_SUCCESS (0x00) Callback routine is installed on

the socket.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_PTR_ERROR (0x07) Invalid pointers.

NX_NOT_ENABLED (0x14) TCP feature is not enabled.

Allowed From
Initialization, threads, timers

Preemption Possible
No

User Datagram Protocol (UDP) 305

Express Logic, Inc.

Example
/* Set the function pointer to the windows update callback after creating the

socket. */
status = nx_tcp_socket_window_update_notify_set(&data_socket,

my_windows_update_callback);

/* Define the window callback function in the host application. */
void my_windows_update_callback(&data_socket)
{

 /* Process update on increase TCP transmit socket window size. */
return ;

}

See Also
nx_tcp_client_socket_bind, nx_tcp_client_socket_connect,
nx_tcp_client_socket_port_get, nx_tcp_client_socket_unbind,
nx_tcp_enable, nx_tcp_free_port_find,
nx_tcp_info_get,nx_tcp_server_socket_accept,
nx_tcp_server_socket_listen, nx_tcp_server_socket_relisten,
nx_tcp_server_socket_unaccept, nx_tcp_server_socket_unlisten,
nx_tcp_socket_bytes_available, nx_tcp_socket_create,
nx_tcp_socket_delete, nx_tcp_socket_disconnect, nx_tcp_socket_info_get,
nx_tcp_socket_mss_get, nx_tcp_socket_mss_peer_get,
nx_tcp_socket_mss_set, nx_tcp_socket_peer_info_get,
nx_tcp_socket_receive, nx_tcp_socket_receive_notify, nx_tcp_socket_send,
nx_tcp_socket_state_wait, nx_tcp_socket_transmit_configure

306 NetX User Guide

User Guide

nx_udp_enable
Enable UDP component of NetX

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_enable(NX_IP *ip_ptr);

Description
This service enables the User Datagram Protocol (UDP) component of
NetX. After enabled, UDP datagrams may be sent and received by the
application.

Parameters
ip_ptr Pointer to previously created IP instance.

Return Values
NX_SUCCESS (0x00) Successful UDP enable.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_ALREADY_ENABLED (0x15) This component has already
been enabled.

Allowed From
Initialization, threads, timers

Preemption Possible
No

User Datagram Protocol (UDP) 307

Express Logic, Inc.

Example
/* Enable UDP on the previously created IP instance. */
status = nx_udp_enable(&ip_0);

/* If status is NX_SUCCESS, UDP is now enabled on the specified IP
instance. */

See Also
nx_udp_free_port_find, nx_udp_info_get, nx_udp_packet_info_extract,
nx_udp_socket_bind, nx_udp_socket_bytes_available,
nx_udp_socket_checksum_disable, nx_udp_socket_checksum_enable,
nx_udp_socket_create, nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_interface_send, nx_udp_socket_port_get,
nx_udp_socket_receive, nx_udp_socket_receive_notify,
nx_udp_socket_send, nx_udp_socket_unbind, nx_udp_source_extract

308 NetX User Guide

User Guide

nx_udp_free_port_find
Find next available UDP port

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_free_port_find(NX_IP *ip_ptr, UINT port,

UINT *free_port_ptr);

Description
This service starts looking for a free UDP port (unbound) starting from the
application supplied port. The search logic will wrap around if the search
happens to reach the maximum port value of 0xFFFF. If the search is
successful, the free port is returned in the variable pointed to by
free_port_ptr.

This service can be called from another thread and can have the same
port returned. To prevent this race condition, the application may wish to
place this service and the actual socket bind under the protection of a
mutex.

Parameters
ip_ptr Pointer to previously created IP instance.
port Port number to start search (1 through

0xFFFF).
free_port_ptr Pointer to the destination free port return

variable.

Return Values
NX_SUCCESS (0x00) Successful free port find.

NX_NO_FREE_PORTS (0x45) No free ports found.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

NX_INVALID_PORT (0x46) Specified port number is invalid.

!

User Datagram Protocol (UDP) 309

Express Logic, Inc.

Allowed From
Threads, timers

Preemption Possible
No

Example
/* Locate a free UDP port, starting at port 12, on a previously

created IP instance. */
status = nx_udp_free_port_find(&ip_0, 12, &free_port);

/* If status is NX_SUCCESS pointer, "free_port" identifies the next
free UDP port on the IP instance. */

See Also
nx_udp_enable, nx_udp_info_get, nx_udp_packet_info_extract,
nx_udp_socket_bind, nx_udp_socket_bytes_available,
nx_udp_socket_checksum_disable, nx_udp_socket_checksum_enable,
nx_udp_socket_create, nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_interface_send, nx_udp_socket_port_get,
nx_udp_socket_receive, nx_udp_socket_receive_notify,
nx_udp_socket_send, nx_udp_socket_unbind, nx_udp_source_extract

310 NetX User Guide

User Guide

nx_udp_info_get
Retrieve information about UDP activities
User Datagram Protocol (UDP)

Prototype
UINT nx_udp_info_get(NX_IP *ip_ptr,

ULONG *udp_packets_sent,
ULONG *udp_bytes_sent,
ULONG *udp_packets_received,
ULONG *udp_bytes_received,
ULONG *udp_invalid_packets,
ULONG *udp_receive_packets_dropped,
ULONG *udp_checksum_errors);

Description
This service retrieves information about UDP activities for the specified IP
instance.

If a destination pointer is NX_NULL, that particular information is not
returned to the caller.

Parameters
ip_ptr Pointer to previously created IP instance.
udp_packets_sent Pointer to destination for the total number

of UDP packets sent.
udp_bytes_sent Pointer to destination for the total number

of UDP bytes sent.
udp_packets_received Pointer to destination of the total number

of UDP packets received.
udp_bytes_received Pointer to destination of the total number

of UDP bytes received.
udp_invalid_packets Pointer to destination of the total number

of invalid UDP packets.
udp_receive_packets_dropped Pointer to destination of the total number

of UDP receive packets dropped.
udp_checksum_errors Pointer to destination of the total number

of UDP packets with checksum errors.

i

User Datagram Protocol (UDP) 311

Express Logic, Inc.

Return Values
NX_SUCCESS (0x00) Successful UDP information

retrieval.

NX_PTR_ERROR (0x07) Invalid IP pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Initialization, threads, and timers

Preemption Possible
No

Example
/* Retrieve UDP information from previously created IP Instance 0. */
status = nx_udp_info_get(&ip_0, &udp_packets_sent,

&udp_bytes_sent,
&udp_packets_received,
&udp_bytes_received,
&udp_invalid_packets,
&udp_receive_packets_dropped,
&udp_checksum_errors);

/* If status is NX_SUCCESS, UDP information was retrieved. */

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_packet_info_extract,
nx_udp_socket_bind, nx_udp_socket_bytes_available,
nx_udp_socket_checksum_disable, nx_udp_socket_checksum_enable,
nx_udp_socket_create, nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_interface_send, nx_udp_socket_port_get,
nx_udp_socket_receive, nx_udp_socket_receive_notify,
nx_udp_socket_send, nx_udp_socket_unbind, nx_udp_source_extract

312 NetX User Guide

User Guide

nx_udp_packet_info_extract
Extract network parameters from UDP packet

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_packet_info_extract(NX_PACKET *packet_ptr, ULONG *ip_address,

UINT *protocol, UINT *port, UINT *interface_index);

Description
This function extracts network parameters from a packet received on an
incoming interface.

Parameters
packet_ptr Pointer to packet.
ip_address Pointer to destination for packet sender IP

address.
Protocol Pointer to destination for packet protocol

(UDP).
port Pointer to destination for packet sender port.
interface_index Pointer to destination for packet incoming

interface index.

Return Values
NX_SUCCESS (0x00) Packet interface data

successfully extracted.

NX_PTR_ERROR (0x07) Invalid pointer input

Allowed From
Initialization, threads, timers, ISRs

Preemption Possible
No

Example
/* Extract network data from UDP packet interface. */
status = nx_udp_packet_info_extract(packet_ptr, &ip_address,

&protocol, &port, &interface_index)

/* If status is NX_SUCCESS packet data was successfully retrieved. */

User Datagram Protocol (UDP) 313

Express Logic, Inc.

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_socket_bind, nx_udp_socket_bytes_available,
nx_udp_socket_checksum_disable, nx_udp_socket_checksum_enable,
nx_udp_socket_create, nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_interface_send, nx_udp_socket_port_get,
nx_udp_socket_receive, nx_udp_socket_receive_notify,
nx_udp_socket_send, nx_udp_socket_unbind, nx_udp_source_extract

314 NetX User Guide

User Guide

nx_udp_socket_bind
Bind UDP socket to UDP port

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_socket_bind(NX_UDP_SOCKET *socket_ptr, UINT port,

ULONG wait_option);

Description
This service binds the previously created UDP socket to the specified
UDP port. Valid UDP sockets range from 0 through 0xFFFF.

Parameters
socket_ptr Pointer to previously created UDP socket

instance.
port Port number to bind to (1 through 0xFFFF). If

port number is NX_ANY_PORT (0x0000),
the IP instance will search for the next free
port and use that for the binding.

wait_option Defines how the service behaves if the port
is already bound to another socket. The wait
options are defined as follows:

NX_NO_WAIT (0x00000000)
NX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

 0xFFFFFFFE)

Return Values
NX_SUCCESS (0x00) Successful socket bind.

NX_ALREADY_BOUND (0x22) This socket is already bound to
another port.

NX_PORT_UNAVAILABLE (0x23) Port is already bound to a
different socket.

NX_NO_FREE_PORTS (0x45) No free port.

NX_WAIT_ABORTED (0x1A) Requested suspension was
aborted by a call to
tx_thread_wait_abort.

User Datagram Protocol (UDP) 315

Express Logic, Inc.

NX_INVALID_PORT (0x46) Invalid port specified.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
Yes

Example
/* Bind the previously created UDP socket to port 12 on the previously

created IP instance. If the port is already bound, wait for 300
timer ticks before giving up. */

status = nx_udp_socket_bind(&udp_socket, 12, 300);

/* If status is NX_SUCCESS, the UDP socket is now bound to port 12. */

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_packet_info_extract, nx_udp_socket_bytes_available,
nx_udp_socket_checksum_disable, nx_udp_socket_checksum_enable,
nx_udp_socket_create,nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_interface_send, nx_udp_socket_port_get,
nx_udp_socket_receive, nx_udp_socket_receive_notify,
nx_udp_socket_send, nx_udp_socket_unbind, nx_udp_source_extract

316 NetX User Guide

User Guide

nx_udp_socket_bytes_available
Retrieves number of bytes available for retrieval

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_socket_bytes_available(NX_UDP_SOCKET *socket_ptr,

ULONG *bytes_available)

Description
This service retrieves number of bytes available for retrieval in the
specified UDP socket.

Parameters
socket_ptr Pointer to previously created UDP socket.

bytes_available Pointer to destination for bytes available.

Return Values
NX_SUCCESS (0x00) Successful bytes available

retrieval.

NX_NOT_SUCCESSFUL (0x43) Socket not bound to a port.

NX_PTR_ERROR (0x07) Invalid pointers.

NX_NOT_ENABLED (0x14) UDP feature is not enabled.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From
Threads

Preemption Possible
No

User Datagram Protocol (UDP) 317

Express Logic, Inc.

Example
/* Get the bytes available for retrieval from the UDP socket. */
status = nx_udp_socket_bytes_available(&my_socket, &bytes_available);

/* If status = NX_SUCCESS, the number of bytes was successfully retrieved.*/

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_packet_info_extract, nx_udp_socket_bind,
nx_udp_socket_checksum_disable, nx_udp_socket_checksum_enable,
nx_udp_socket_create, nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_interface_send, nx_udp_socket_port_get,
nx_udp_socket_receive, nx_udp_socket_receive_notify,
nx_udp_socket_send, nx_udp_socket_unbind, nx_udp_source_extract

318 NetX User Guide

User Guide

nx_udp_socket_checksum_disable
Disable checksum for UDP socket

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_socket_checksum_disable(NX_UDP_SOCKET *socket_ptr);

Description
This service disables the checksum logic for the specified UDP socket.
When the checksum logic is disabled, a value of zero is loaded into the
UDP header’s checksum field for all packets sent through this socket.

Parameters
socket_ptr Pointer to previously created UDP socket

instance.

Return Values
NX_SUCCESS (0x00) Successful socket checksum

disable.

NX_NOT_BOUND (0x24) Socket is not bound.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Initialization, threads, timer

Preemption Possible
No

User Datagram Protocol (UDP) 319

Express Logic, Inc.

Example
/* Disable the UDP checksum logic for packets sent on this socket. */
status = nx_udp_socket_checksum_disable(&udp_socket);

/* If status is NX_SUCCESS, outgoing packets will not have a checksum
calculated. */

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_packet_info_extract, nx_udp_socket_bind,
nx_udp_socket_bytes_available, nx_udp_socket_checksum_enable,
nx_udp_socket_create, nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_interface_send, nx_udp_socket_port_get,
nx_udp_socket_receive, nx_udp_socket_receive_notify,
nx_udp_socket_send, nx_udp_socket_unbind, nx_udp_source_extract

320 NetX User Guide

User Guide

nx_udp_socket_checksum_enable
Enable checksum for UDP socket

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_socket_checksum_enable(NX_UDP_SOCKET *socket_ptr);

Description
This service enables the checksum logic for the specified UDP socket.
The checksum covers the entire UDP data area as well as a pseudo IP
header.

Parameters
socket_ptr Pointer to previously created UDP socket

instance.

Return Values
NX_SUCCESS (0x00) Successful socket checksum

enable.

NX_NOT_BOUND (0x24) Socket is not bound.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Initialization, threads, timer

Preemption Possible
No

User Datagram Protocol (UDP) 321

Express Logic, Inc.

Example
/* Enable the UDP checksum logic for packets sent on this socket. */
status = nx_udp_socket_checksum_enable(&udp_socket);

/* If status is NX_SUCCESS, outgoing packets will have a checksum
calculated. */

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_packet_info_extract, nx_udp_socket_bind,
nx_udp_socket_bytes_available, nx_udp_socket_checksum_disable,
nx_udp_socket_create, nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_interface_send, nx_udp_socket_port_get,
nx_udp_socket_receive, nx_udp_socket_receive_notify,
nx_udp_socket_send, nx_udp_socket_unbind, nx_udp_source_extract

322 NetX User Guide

User Guide

nx_udp_socket_create
Create UDP socket

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_socket_create(NX_IP *ip_ptr,

NX_UDP_SOCKET *socket_ptr, CHAR *name,
ULONG type_of_service, ULONG fragment,
UINT time_to_live, ULONG queue_maximum);

Description
This service creates a UDP socket for the specified IP instance.

Parameters
ip_ptr Pointer to previously created IP instance.
socket_ptr Pointer to new UDP socket control bloc.
name Application name for this UDP socket.
type_of_service Defines the type of service for the

transmission, legal values are as follows:
NX_IP_NORMAL (0x00000000)
NX_IP_MIN_DELAY (0x00100000)
NX_IP_MAX_DATA (0x00080000)
NX_IP_MAX_RELIABLE (0x00040000)
NX_IP_MIN_COST (0x00020000)

fragment Specifies whether or not IP fragmenting is
allowed. If NX_FRAGMENT_OKAY (0x0) is
specified, IP fragmenting is allowed. If
NX_DONT_FRAGMENT (0x4000) is
specified, IP fragmenting is disabled.

time_to_live Specifies the 8-bit value that defines how
many routers this packet can pass before
being thrown away. The default value is
specified by NX_IP_TIME_TO_LIVE.

queue_maximum Defines the maximum number of UDP
datagrams that can be queued for this
socket. After the queue limit is reached, for
every new packet received the oldest UDP
packet is released.

User Datagram Protocol (UDP) 323

Express Logic, Inc.

Return Values
NX_SUCCESS (0x00) Successful UDP socket create.

NX_OPTION_ERROR (0x0A) Invalid type-of-service, fragment,
or time-to-live option.

NX_PTR_ERROR (0x07) Invalid IP or socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Initialization and Threads

Preemption Possible
No

Example
/* Create a UDP socket with a maximum receive queue of 30 packets. */
status = nx_udp_socket_create(&ip_0, &udp_socket, "Sample UDP Socket",

NX_IP_NORMAL, NX_FRAGMENT_OKAY, 0x80, 30);

/* If status is NX_SUCCESS, the new UDP socket has been created and is
ready for binding. */

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_packet_info_extract, nx_udp_socket_bind,
nx_udp_socket_bytes_available, nx_udp_socket_checksum_disable,
nx_udp_socket_checksum_enable, nx_udp_socket_delete,
nx_udp_socket_info_get, nx_udp_socket_interface_send,
nx_udp_socket_port_get, nx_udp_socket_receive,
nx_udp_socket_receive_notify, nx_udp_socket_send,
nx_udp_socket_unbind, nx_udp_source_extract

324 NetX User Guide

User Guide

nx_udp_socket_delete
Delete UDP socket

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_socket_delete(NX_UDP_SOCKET *socket_ptr);

Description
This service deletes a previously created UDP socket.

Parameters
socket_ptr Pointer to previously created UDP socket

instance.

Return Values
NX_SUCCESS (0x00) Successful socket delete.

NX_NOT_CREATED (0x27) Socket was not created.

NX_STILL_BOUND (0x42) Socket is still bound.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
No

User Datagram Protocol (UDP) 325

Express Logic, Inc.

Example
/* Delete a previously created UDP socket. */
status = nx_udp_socket_delete(&udp_socket);

/* If status is NX_SUCCESS, the previously created UDP socket has
been deleted. */

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_packet_info_extract, nx_udp_socket_bind,
nx_udp_socket_bytes_available, nx_udp_socket_checksum_disable,
nx_udp_socket_checksum_enable, nx_udp_socket_create,
nx_udp_socket_info_get, nx_udp_socket_interface_send,
nx_udp_socket_port_get, nx_udp_socket_receive,
nx_udp_socket_receive_notify, nx_udp_socket_send,
nx_udp_socket_unbind, nx_udp_source_extract

326 NetX User Guide

User Guide

nx_udp_socket_info_get
Retrieve information about UDP socket activities

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_socket_info_get(NX_UDP_SOCKET *socket_ptr,

ULONG *udp_packets_sent,
ULONG *udp_bytes_sent,
ULONG *udp_packets_received,
ULONG *udp_bytes_received,
ULONG *udp_packets_queued,
ULONG *udp_receive_packets_dropped,
ULONG *udp_checksum_errors);

Description
This service retrieves information about UDP socket activities for the
specified UDP socket instance.

If a destination pointer is NX_NULL, that particular information is not
returned to the caller.

Parameters
socket_ptr Pointer to previously created UDP socket

instance.
udp_packets_sent Pointer to destination for the total

number of UDP packets sent on socket.
udp_bytes_sent Pointer to destination for the total

number of UDP bytes sent on socket.
udp_packets_received Pointer to destination of the total number

of UDP packets received on socket.
udp_bytes_received Pointer to destination of the total number

of UDP bytes received on socket.
udp_packets_queued Pointer to destination of the total number

of queued UDP packets on socket.
udp_receive_packets_dropped Pointer to destination of the total number

of UDP receive packets dropped for
socket due to queue size being
exceeded.

i

User Datagram Protocol (UDP) 327

Express Logic, Inc.

udp_checksum_errors Pointer to destination of the total number
of UDP packets with checksum errors on
socket.

Return Values
NX_SUCCESS (0x00) Successful UDP socket

information retrieval.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Initialization, threads, and timers

Preemption Possible
No

Example
/* Retrieve UDP socket information from previously created socket 0. */
status = nx_udp_socket_info_get(&socket_0, &udp_packets_sent,

&udp_bytes_sent,
&udp_packets_received,
&udp_bytes_received,
&udp_queued_packets,
&udp_receive_packets_dropped,
&udp_checksum_errors);

/* If status is NX_SUCCESS, UDP socket information was retrieved. */

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_packet_info_extract, nx_udp_socket_bind,
nx_udp_socket_bytes_available, nx_udp_socket_checksum_disable,
nx_udp_socket_checksum_enable, nx_udp_socket_create,
nx_udp_socket_delete, nx_udp_info_get,
nx_udp_socket_interface_send, nx_udp_socket_port_get,
nx_udp_socket_receive, nx_udp_socket_receive_notify,
nx_udp_socket_send, nx_udp_socket_unbind, nx_udp_source_extract

328 NetX User Guide

User Guide

nx_udp_socket_interface_send
Send datagram through UDP socket

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_socket_interface_send(NX_UDP_SOCKET *socket_ptr,

NX_PACKET **packet_ptr, ULONG ip_address, UINT
port, UINT interface_index)

Description
This function sends a UDP packet through the specified network interface.

Parameters
socket_ptr Socket to transmit the packet out on.
packet_ptr Pointer to packet to transmit.
ip_address Destination IP address to send packet.
Port Destination port.
interface_index Index of interface to send packet on.

Return Values
NX_SUCCESS (0x00) Packet successfully sent.

NX_NOT_BOUND (0x24) Socket not bound to a port.

NX_IP_ADDRESS_ERROR (0x21) Invalid IP address.

NX_NOT_ENABLED (0x14) UDP processing not enabled.

NX_PTR_ERROR (0x07) Invalid pointer.

NX_OVERFLOW (0x03) Invalid packet append pointer.

NX_UNDERFLOW (0x02) Invalid packet prepend pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_INVALID_INTERFACE (0x4C) Invalid interface index.

NX_INVALID_PORT (0x46) Port number exceeds maximum
port number.

Allowed From
Threads

User Datagram Protocol (UDP) 329

Express Logic, Inc.

Preemption Possible
No

Example
/* Send packet out on port 80 to the specified destination IP on the

interface at index 1 in the IP task interface list. */
status = nx_udp_packet_interface_send(socket_ptr, packet_ptr,

destination_ip, 80, 1);

/* If status is NX_SUCCESS packet was successfully transmitted. */

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_packet_info_extract, nx_udp_socket_bind,
nx_udp_socket_checksum_disable, nx_udp_socket_checksum_enable,
nx_udp_socket_bytes_available, nx_udp_socket_create,
nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_port_get, nx_udp_socket_receive,
nx_udp_socket_receive_notify, nx_udp_socket_send,
nx_udp_socket_unbind, nx_udp_source_extract

330 NetX User Guide

User Guide

nx_udp_socket_port_get
Pick up port number bound to UDP socket

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_socket_port_get(NX_UDP_SOCKET *socket_ptr,

UINT *port_ptr);

Description
This service retrieves the port number associated with the socket, which
is useful to find the port allocated by NetX in situations where the
NX_ANY_PORT was specified at the time the socket was bound.

Parameters
socket_ptr Pointer to previously created UDP socket

instance.
port_ptr Pointer to destination for the return port

number. Valid port numbers are (1- 0xFFFF).

Return Values
NX_SUCCESS (0x00) Successful socket bind.

NX_NOT_BOUND (0x24) This socket is not bound to a
port.

NX_PTR_ERROR (0x07) Invalid socket pointer or port
return pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads, timers

Preemption Possible
No

User Datagram Protocol (UDP) 331

Express Logic, Inc.

Example
/* Get the port number of previously created and bound UDP socket. */
status = nx_udp_socket_port_get(&udp_socket, &port);

/* If status is NX_SUCCESS, the port variable contains the port this
socket is bound to. */

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_packet_info_extract, nx_udp_socket_bind,
nx_udp_socket_bytes_available, nx_udp_socket_checksum_disable,
nx_udp_socket_checksum_enable, nx_udp_socket_create,
nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_interface_send, nx_udp_socket_receive,
nx_udp_socket_receive_notify, nx_udp_socket_send,
nx_udp_socket_unbind, nx_udp_source_extract

332 NetX User Guide

User Guide

nx_udp_socket_receive
Receive datagram from UDP socket

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_socket_receive(NX_UDP_SOCKET *socket_ptr,

NX_PACKET **packet_ptr, ULONG wait_option);

Description
This service receives an UDP datagram from the specified socket. If no
datagram is queued on the specified socket, the caller suspends based
on the supplied wait option.

If NX_SUCCESS is returned, the application is responsible for releasing
the received packet when it is no longer needed.

Parameters
socket_ptr Pointer to previously created UDP socket

instance.
packet_ptr Pointer to UDP datagram packet pointer.
wait_option Defines how the service behaves if a

datagram is not currently queued on this
socket. The wait options are defined as
follows:

NX_NO_WAIT (0x00000000)
NX_WAIT_FOREVER (0xFFFFFFFF)
timeout value (0x00000001 through

 0xFFFFFFFE)

Return Values
NX_SUCCESS (0x00) Successful socket receive.

NX_NOT_BOUND (0x24) Socket was not bound to any
port.

NX_NO_PACKET (0x01) There was no UDP datagram to
receive.

!

User Datagram Protocol (UDP) 333

Express Logic, Inc.

NX_WAIT_ABORTED (0x1A) Requested suspension was
aborted by a call to
tx_thread_wait_abort.

NX_PTR_ERROR (0x07) Invalid socket or packet return
pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
Yes

Example
/* Receive a packet from a previously created and bound UDP socket.

If no packets are currently available, wait for 500 timer ticks
before giving up. */

status = nx_udp_socket_receive(&udp_socket, &packet_ptr, 500);

/* If status is NX_SUCCESS, the received UDP packet is pointed to by
packet_ptr. */

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_packet_info_extract, nx_udp_socket_bind,
nx_udp_socket_bytes_available, nx_udp_socket_checksum_disable,
nx_udp_socket_checksum_enable, nx_udp_socket_create,
nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_interface_send, nx_udp_socket_port_get,
nx_udp_socket_receive_notify, nx_udp_socket_send,
nx_udp_socket_unbind, nx_udp_source_extract

334 NetX User Guide

User Guide

nx_udp_socket_receive_notify
Notify application of each received packet

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_socket_receive_notify(NX_UDP_SOCKET *socket_ptr,

VOID (*udp_receive_notify)
(NX_UDP_SOCKET *socket_ptr));

Description
This service sets the receive notify function pointer to the callback
function specified by the application. This callback function is then called
whenever a packet is received on the socket. If a NX_NULL pointer is
supplied, the receive notify function is disabled.

Parameters
socket_ptr Pointer to the UDP socket.
udp_receive_notify Application callback function pointer that is

called when a packet is received on the
socket.

Return Values
NX_SUCCESS (0x00) Successful socket receive notify.

NX_PTR_ERROR (0x07) Invalid socket pointer.

Allowed From
Initialization, threads, timers, and ISRs

Preemption Possible
No

User Datagram Protocol (UDP) 335

Express Logic, Inc.

Example
/* Setup a receive packet callback function for the "udp_socket"

socket. */
status = nx_udp_socket_receive_notify(udp_socket,

my_receive_notify);

/* If status is NX_SUCCESS, NetX will call the function named
"my_receive_notify" whenever a packet is received for
"udp_socket". */

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_packet_info_extract, nx_udp_socket_bind,
nx_udp_socket_bytes_available, nx_udp_socket_checksum_disable,
nx_udp_socket_checksum_enable, nx_udp_socket_create,
nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_interface_send, nx_udp_socket_port_get,
nx_udp_socket_receive, nx_udp_socket_send, nx_udp_socket_unbind,
nx_udp_socket_extract

336 NetX User Guide

User Guide

nx_udp_socket_send
Send datagram through UDP socket

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_socket_send(NX_UDP_SOCKET *socket_ptr,

NX_PACKET *packet_ptr,
ULONG ip_address, UINT port);

Description
This service sends a UDP datagram through a previously created and
bound UDP socket. Note that the service returns immediately, regardless
of whether or not the UDP datagram was successfully sent.

Unless an error is returned, the application should not release the packet
after this call. Doing so will cause unpredictable results because the
network driver will release the packet after transmission.

Parameters
socket_ptr Pointer to previously created UDP socket

instance.
packet_ptr UDP datagram packet pointer.
ip_address Destination IP address, which can be a

specific host IP address, a network
broadcast, an internal loopback, or a
multicast address.

port Destination port number, legal values range
between 1 and 0xFFFF.

Return Values
NX_SUCCESS (0x00) Successful socket send.

NX_NOT_BOUND (0x24) Socket was not bound to any
port.

NX_IP_ADDRESS_ERROR (0x21) Invalid IP address.

NX_UNDERFLOW (0x02) Not enough room to prepend the
UPD header in the packet
structure.

NX_OVERFLOW (0x03) Packet append pointer is invalid.

!

User Datagram Protocol (UDP) 337

Express Logic, Inc.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_INVALID_PACKET (0x12) Packet is not valid.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

NX_INVALID_PORT (0x46) Invalid port specified.

Allowed From
Threads

Preemption Possible
No

Example
/* Send a packet through a previously created and bound UDP socket

to port 12 on IP 1.2.3.5. */
status = nx_udp_socket_send(&udp_socket, packet_ptr,

IP_ADDRESS(1,2,3,5), 12);

/* If status is NX_SUCCESS, the UDP packet was sent. */

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_packet_info_extract, nx_udp_socket_bind,
nx_udp_socket_bytes_available, nx_udp_socket_checksum_disable,
nx_udp_socket_checksum_enable, nx_udp_socket_create,
nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_interface_send, nx_udp_socket_port_get,
nx_udp_socket_receive, nx_udp_socket_receive_notify,
nx_udp_socket_unbind, nx_udp_source_extract

338 NetX User Guide

User Guide

nx_udp_socket_unbind
Unbind UDP socket from UDP port

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_socket_unbind(NX_UDP_SOCKET *socket_ptr);

Description
This service releases the binding between the UDP socket and a UDP
port. If there are other threads waiting to bind another socket to the
unbound port, the first suspended thread is then bound to the newly
unbound port.

Parameters
socket_ptr Pointer to previously created UDP socket

instance.

Return Values
NX_SUCCESS (0x00) Successful socket unbind.

NX_NOT_BOUND (0x24) Socket was not bound to any
port.

NX_PTR_ERROR (0x07) Invalid socket pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
Yes

User Datagram Protocol (UDP) 339

Express Logic, Inc.

Example
/* Unbind the previously bound UDP socket. */
status = nx_udp_socket_unbind(&udp_socket);

/* If status is NX_SUCCESS, the previously bound socket is now
unbound. */

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_packet_info_extract, nx_udp_socket_bind,
nx_udp_socket_bytes_available, nx_udp_socket_checksum_disable,
nx_udp_socket_checksum_enable, nx_udp_socket_create,
nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_interface_send, nx_udp_socket_port_get,
nx_udp_socket_receive, nx_udp_socket_receive_notify,
nx_udp_socket_send, nx_udp_source_extract

340 NetX User Guide

User Guide

nx_udp_source_extract
Extract IP and sending port from UDP datagram

User Datagram Protocol (UDP)

Prototype
UINT nx_udp_source_extract(NX_PACKET *packet_ptr,

ULONG *ip_address, UINT *port);

Description
This service extracts the sender’s IP and port number from the IP and
UDP headers of the supplied UDP datagram.

Parameters
packet_ptr UDP datagram packet pointer.
ip_address Pointer to the return IP address variable.
port Pointer to the return port variable.

Return Values
NX_SUCCESS (0x00) Successful source IP/port

extraction.

NX_INVALID_PACKET (0x12) The supplied packet is invalid.

NX_PTR_ERROR (0x07) Invalid packet or IP or port
destination.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

NX_NOT_ENABLED (0x14) This component has not been
enabled.

Allowed From
Threads

Preemption Possible
No

User Datagram Protocol (UDP) 341

Express Logic, Inc.

Example
/* Extract the IP and port information from the sender of the UPD

packet. */
status = nx_udp_source_extract(packet_ptr, &sender_ip_address,

&sender_port);

/* If status is NX_SUCCESS, the sending IP and port information has been
stored in sender_ip_address and sender_port respectively. */

See Also
nx_udp_enable, nx_udp_free_port_find, nx_udp_info_get,
nx_udp_packet_info_extract, nx_udp_socket_bind,
nx_udp_socket_bytes_available, nx_udp_socket_checksum_disable,
nx_udp_socket_checksum_enable, nx_udp_socket_create,
nx_udp_socket_delete, nx_udp_socket_info_get,
nx_udp_socket_interface_send, nx_udp_socket_port_get,
nx_udp_socket_receive, nx_udp_socket_receive_notify,
nx_udp_socket_send, nx_udp_socket_unbind

342 NetX User Guide

User Guide

User Guide

C H A P T E R 5

NetX Network Drivers

This chapter contains a description of network drivers
for NetX. The information presented is designed to
help developers write application-specific network
drivers for NetX. The following topics are covered:

1 Driver Introduction 344

1 Driver Entry 345

1 Driver Requests 345
Initialize 346
Enable Link 347
Disable Link 348
Packet Send 348
Packet Broadcast 349
ARP Send 349
ARP Response Send 350
RARP Send 351
Multicast Group Join 351
Multicast Group Leave 352
Attach Interface 353
Get Link Status 353
Get Link Speed 354
Get Duplex Type 354
Get Error Count 355
Get Receive Packet Count 355
Get Transmit Packet Count 356
Get Allocation Errors 356
Driver Deferred Processing 357
User Commands 357
Unimplemented Commands 358

1 Driver Output 358

1 Driver Input 359
Deferred Receive Packet Handling 360

1 Example RAM Ethernet Network Driver 361

344 NetX User Guide

User Guide

Driver Introduction
The NX_IP structure contains an array of all active
network interfaces on the host application. Driver
specific information is stored with each individual
network interface in the NX_INTERFACE structure
defined in nx_api.h.

typedef struct NX_IP_DRIVER_STRUCT
{

UINT nx_ip_driver_command;
UINT nx_ip_driver_status;
ULONG nx_ip_driver_physical_address_msw;
ULONG nx_ip_driver_physical_address_lsw;
struct NX_PACKET_STRUCT*nx_ip_driver_packet;
ULONG *nx_ip_driver_return_ptr;
struct NX_IP_STRUCT *nx_ip_driver_ptr;
struct NX_INTERFACE * nx_ip_driver_interface;

} NX_IP_DRIVER;

NetX Network Drivers 345

Express Logic, Inc.

Driver Entry
The driver entry function for the primary interface (or
only interface for single interface hosts) is defined in
the nx_ip_create service call. Driver entry functions
for secondary interfaces are defined in the
nx_ip_interface_attach service call in a similar
manner. The driver entry function has the following
format:
VOID my_driver_entry(NX_IP_DRIVER *request);

NetX calls the network driver entry function for
sending packets and for various control and status
operations including initializing and enabling the
network interface. NetX issues commands to the
network driver by setting the
nx_ip_driver_command field in the NX_IP_DRIVER
request structure.

Driver Requests
When NetX interfaces with the physical network, for
example to send a packet, it knows which interface
the packet must go out on. The driver entry function
for that interface is stored in the associated
NX_INTERFACE control block. NetX creates the
driver request with a send command and invokes the
driver entry function to execute the command.

Because each network driver has a single entry
function, NetX makes all requests through the driver
request data structure. The nx_ip_driver_command
member of the driver request data structure
(NX_IP_DRIVER) defines the request. Status
information is reported back to the caller in the
member nx_ip_driver_status. If this field is
NX_SUCCESS, the driver request was completed
successfully.

346 NetX User Guide

User Guide

NetX serializes all access to the driver. Therefore,
the driver does not need to worry about multiple
threads asynchronously calling the entry function.

Initialize Although the actual driver initialization processing is
application and hardware specific, it usually consists
of data structure and physical hardware initialization.

The information required by NetX from driver
initialization is the Maximum Transmission Unit
(MTU) and whether or not the physical interface
needs logical to physical mapping. The driver should
store this information in the
nx_interface_ip_mtu_size and
nx_interface_mapping_needed fields of the
associated NX_INTERFACE control block, which is
pointed to by nx_ip_driver_interface in the driver
request.

After the application calls nx_ip_create, or in the
case of multihome host applications, after the
application calls nx_ip_create and
nx_ip_interface_attach, the IP helper thread
initializes each physical network interface associated
with the IP instance. It sets the driver command to
NX_LINK_INITIALIZE in the driver request and
sending the request to the network driver.

The following NX_IP_DRIVER members are used for
the initialize request:

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_INITIALIZE

nx_ip_driver_ptr Pointer to IP instance. This
should be saved for use during
processing for receive packets.

nx_ip_driver_interface Pointer to the physical network
interface.

NetX Network Drivers 347

Express Logic, Inc.

The driver is actually called from the IP helper thread
that was created for the IP instance. Because of this,
it may suspend during the initialization request—if the
physical media initialization requires it.

Enable Link Next, the IP helper thread enables each physical
network interface associated with the IP instance by
setting the driver command to NX_LINK_ENABLE in
the driver request and sending the request to the
network driver. This happens shortly after the IP
helper thread completes the initialization request.
Enabling the link may be as simple as setting the
nx_interface_link_up field in the NX_INTERFACE
structure pointed to by nx_ip_driver_interface. But
it may also involve manipulation of the physical
hardware. The following NX_IP_DRIVER members
are used for the enable link request:

Disable Link This request is made by NetX during the deletion of
an IP instance by the nx_ip_delete service. This
service disables each physical network interface on
the IP instance. Disabling the link may be as simple
as clearing the nx_interface_link_up field in the
NX_INTERFACE structure pointed to by
nx_ip_driver_interface. But it may also involve
manipulation of the physical hardware. The following

i

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_ENABLE

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_interface Pointer to the physical network
interface.

348 NetX User Guide

User Guide

NX_IP_DRIVER members are used for the disable
link request:

Packet Send This request is made during internal IP send
processing, which all NetX protocols use to transmit
packets (except for ARP and RARP). The packet
send processing places a physical media header on
the front of the packet and then calls the driver’s
output function to transmit the packet. The following
NX_IP_DRIVER members are used for the packet
send request:

Packet Broadcast This request is almost identical to the send packet
request. The only difference is that the physical
address fields are not required because the

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_DISABLE

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_interface Pointer to the physical network
interface.

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_PACKET_SEND

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_packet Pointer to the packet to send

nx_ip_driver_interface Pointer to the physical network
interface.

nx_ip_driver_physical_address_msw Most significant 32-bits of
physical address (only if
physical mapping needed)

nx_ip_driver_physical_address_lsw Least significant 32-bits of
physical address (only if
physical mapping needed)

NetX Network Drivers 349

Express Logic, Inc.

destination is a broadcast. The following
NX_IP_DRIVER members are used for the packet
broadcast request:

This request is not used internally by NetX so
implementation is optional.

ARP Send This request is also similar to the IP packet send
request. The only difference is that the Ethernet
header specifies an ARP packet instead of an IP
packet, and physical address fields are must be set
to broadcast address. The following NX_IP_DRIVER
members are used for the ARP send request:

If physical mapping is not needed, implementation of
this request is not required.

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_PACKET_BROADCAST

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_packet Pointer to the packet to send

nx_ip_driver_physical_address_msw 0x0000FFFF (broadcast)

nx_ip_driver_physical_address_lsw 0xFFFFFFFF (broadcast)

nx_ip_driver_interface Pointer to the physical network
interface

i

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_ARP_SEND

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_packet Pointer to the packet to send

nx_ip_driver_physical_address_msw 0x0000FFFF (broadcast)

nx_ip_driver_physical_address_lsw 0xFFFFFFFF (broadcast)

nx_ip_driver_interface Pointer to the physical network
interface

i

350 NetX User Guide

User Guide

ARP Response
Send

This request is almost identical to the ARP send
packet request. The only difference is the physical
address fields are required. The following
NX_IP_DRIVER members are used for the ARP
response send request:

If physical mapping is not needed, implementation of
this request is not required.

RARP Send This request is almost identical to the send packet
request. The only differences are the type of packet
header and the physical address fields are not
required because the physical destination is always a
broadcast. The following NX_IP_DRIVER members
are used for the RARP send request:

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_ARP_RESPONSE_SEND

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_packet Pointer to the packet to send

nx_ip_driver_physical_address_msw Most significant 32-bits of physical
address

nx_ip_driver_physical_address_lsw Least significant 32-bits of physical
address

nx_ip_driver_interface Pointer to the physical network
interface

i

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_RARP_SEND

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_packet Pointer to the packet to send

nx_ip_driver_physical_address_msw 0x0000FFFF (broadcast)

nx_ip_driver_physical_address_lsw 0xFFFFFFFF (broadcast)

nx_ip_driver_interface Pointer to the physical network
interface

NetX Network Drivers 351

Express Logic, Inc.

If physical mapping is not needed, implementation of
this request is optional.

Multicast Group
Join

This request is made with the
nx_igmp_multicast_interface_join service with an
input parameter specifying the interface to send the
multicast packet out on. The
nx_igmp_multicast_join service is still available, for
multicast transmissions on the primary interface. The
driver takes the supplied multicast group address and
sets up the physical media to accept incoming
packets from that address. The following
NX_IP_DRIVER members are used for the multicast
group join request:

If multicast capabilities are not required,
implementation of this request is not required.

It is recommended the application use the newer
interface specific service instead of the older
nx_igmp_multicast_join service.

Multicast Group
Leave

This request is invoked from the
nx_igmp_multicast_leave service. The driver
removes the supplied Ethernet multicast address
from the multicast join list for that physical interface.

i

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_MULTICAST_JOIN

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_physical_address_msw Most significant 32-bits of
physical multicast address

nx_ip_driver_physical_address_lsw Least significant 32-bits of
physical multicast address

nx_ip_driver_interface Pointer to the physical network
interface

i
i

352 NetX User Guide

User Guide

After a host has left a multicast group, packets on the
network with this Ethernet multicast address are no
longer received by the physical interface. The
following NX_IP_DRIVER members are used for the
multicast group leave request:

If multicast capabilities are not required,
implementation of this request is not required.

Attach Interface This request is invoked from the
nx_ip_interface_attach service. The specified
interface is attached to the host IP instance. The
following NX_IP_DRIVER members are used for the
attach interface request:

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_MULTICAST_LEAVE

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_physical_address_msw Most significant 32-bits of
physical multicast address

nx_ip_driver_physical_address_lsw Least significant 32-bits of
physical multicast address

nx_ip_driver_interface Pointer to the physical network
interface

i

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_INTERFACE_ATTACH

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_interface Pointer to the physical network
interface

nx_ip_driver_status Completion status. If the driver is
not able to attach the specified
interface to the IP instance, it will
return a non-zero error status.

NetX Network Drivers 353

Express Logic, Inc.

Get Link Status The host application can query the primary interface
link status using the NetX service
nx_ip_interface_status_check service for any
interface on the host. See Chapter 4 Description of
Services for more details on these services.

The the link status is contained in the
nx_interface_link_up field in the NX_INTERFACE
structure pointed to by nx_ip_driver_interface.The
following NX_IP_DRIVER members are used for the
link status request:

nx_ip_status_check is still available for checking
the status of the primary interface. However,
application developers are encouraged to use the
interface specific service.

Get Link Speed This request is made from within the
nx_ip_driver_direct_command service. The driver
stores the link’s line speed in the supplied
destination. The following NX_IP_DRIVER members
are used for the link line speed request:

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_GET_STATUS

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_return_ptr Pointer to the destination to
place the status.

nx_ip_driver_interface Pointer to the physical
network interface

i

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_GET_SPEED

nx_ip_driver_ptr Pointer to IP instance

354 NetX User Guide

User Guide

This request is not used internally by NetX so its
implementation is optional.

Get Duplex Type This request is made from within the
nx_ip_driver_direct_command service. The driver
stores the link’s duplex type in the supplied
destination. The following NX_IP_DRIVER members
are used for the duplex type request:

This request is not used internally by NetX so its
implementation is optional.

Get Error Count This request is made from within the
nx_ip_driver_direct_command service. The driver
stores the link’s error count in the supplied
destination. The following NX_IP_DRIVER members

nx_ip_driver_return_ptr Pointer to the destination to
place the line speed

nx_ip_driver_interface Pointer to the physical
network interface

NX_IP_DRIVER member Meaning

i

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_GET_DUPLEX_TYPE

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_return_ptr Pointer to the destination to
place the duplex type

nx_ip_driver_interface Pointer to the physical network
interface

i

NetX Network Drivers 355

Express Logic, Inc.

are used for the link error count request:

This request is not used internally by NetX so its
implementation is optional.

Get Receive
Packet Count

This request is made from within the
nx_ip_driver_direct_command service. The driver
stores the link’s receive packet count in the supplied
destination. The following NX_IP_DRIVER members
are used for the link receive packet count request:

This request is not used internally by NetX so its
implementation is optional.

Get Transmit
Packet Count

This request is made from within the
nx_ip_driver_direct_command service. The driver
stores the link’s transmit packet count in the supplied
destination. The following NX_IP_DRIVER members

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_GET_ERROR_COUNT

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_return_ptr Pointer to the destination to place
the error count

nx_ip_driver_interface Pointer to the physical network
interface

i

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_GET_RX_COUNT

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_return_ptr Pointer to the destination to
place the receive packet count

nx_ip_driver_interface Pointer to the physical network
interface

i

356 NetX User Guide

User Guide

are used for the link transmit packet count request:

This request is not used internally by NetX so its
implementation is optional.

Get Allocation
Errors

This request is made from within the
nx_ip_driver_direct_command service. The driver
stores the link’s allocation error count in the supplied
destination. The following NX_IP_DRIVER members
are used for the link allocation error count request:

This request is not used internally by NetX so its
implementation is optional.

Driver Deferred
Processing

This request is made from the IP helper thread in
response to the driver calling the
_nx_ip_driver_deferred_processing routine from a

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_GET_TX_COUNT

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_return_ptr Pointer to the destination to
place the transmit packet
count

nx_ip_driver_interface Pointer to the physical network
interface

i

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_GET_ALLOC_ERRORS

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_return_ptr Pointer to the destination to place the
allocation error count

nx_ip_driver_interface Pointer to the physical network
interface

i

NetX Network Drivers 357

Express Logic, Inc.

transmit or receive ISR. This allows the driver ISR to
defer the packet receive and transmit processing to
the IP helper thread and thus reduce the amount to
processing in the ISR. The
nx_interface_additional_link_info field in the
NX_INTERFACE structure pointed to by
nx_ip_driver_interface may be used by the driver to
store information about the deferred processing
event from the IP helper thread context. The following
NX_IP_DRIVER members are used for the deferred
processing event:

User Commands This request is made from within the
nx_ip_driver_direct_command service. The driver
processes the application specific user commands.
The following NX_IP_DRIVER members are used for
the user command request:

This request is not used internally by NetX so its
implementation is optional.

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_DEFERRED_PROCESSING

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_interface Pointer to the physical network interface

NX_IP_DRIVER member Meaning
nx_ip_driver_command NX_LINK_USER_COMMAND

nx_ip_driver_ptr Pointer to IP instance

nx_ip_driver_return_ptr User defined

nx_ip_driver_interface Pointer to the physical network
interface

i

358 NetX User Guide

User Guide

Unimplemented
Commands

Commands unimplemented by the network driver
must have the return status field set to
NX_UNHANDLED_COMMAND.

Driver Output
All previously mentioned packet transmit requests
require an output function implemented in the driver.
Specific transmit logic is hardware specific, but it
usually consists of checking for hardware capacity to
send the packet immediately. If possible, the packet
payload (and additional payloads in the packet chain)
are loaded into one or more of the hardware transmit
buffers and a send operation is initiated. If the packet
won’t fit in the available transmit buffers, the packet is
queued.

The recommended transmit queue is a singly linked
list, having both head and tail pointers. New packets
are added to the end of the queue, keeping the oldest
packet at the front. The nx_packet_queue_next field
is used as the packet’s next link in the queue. The
driver defines the head and tail pointers of the transmit
queue.

Because this queue is accessed from thread and
interrupt portions of the driver, interrupt protection must
be placed around the queue manipulations.

Most physical hardware implementations generate an
interrupt upon packet transmit completion. When the
driver receives such an interrupt, it calls the
nx_packet_transmit_release service to release the
packet associated with the transmit complete interrupt
back to the available packet pool. Next, the driver
examines the transmit queue for additional packets
waiting to be sent. As many of the queued transmit
packets that fit into the hardware transmit buffer(s) are

!

NetX Network Drivers 359

Express Logic, Inc.

de-queued and loaded into the buffers. This is followed
by initiation of another send operation.

Driver Input
Upon reception of a received packet interrupt, the
network driver retrieves the packet from the physical
hardware receive buffers and builds a valid NetX
packet. Building a valid NetX packet involves setting
up the appropriate length field and chaining together
multiple packets if the incoming packet’s size was
greater than a single packet payload. After properly
built, the physical layer header is removed and the
receive packet is dispatched to NetX.

NetX assumes that the IP and ARP headers are
aligned on a ULONG boundary. The NetX network
driver must therefore ensure this alignment. In
Ethernet environments this is done by starting the
Ethernet header two bytes from the beginning of the
packet. When the Ethernet header is removed, the
underlying IP or ARP header is ULONG aligned.

There are several receive packet functions available in
NetX. If the received packet is an ARP packet,
_nx_arp_packet_deferred_receive is called. If the
received packet is an RARP packet,
_nx_rarp_packet_deferred_receive is called. There
are several options for handling incoming IP packets.
For the fastest handling of IP packets,
_nx_ip_packet_receive is called. This approach has
the least overhead, but requires more processing in
the driver’s receive interrupt service handler (ISR). For
minimal ISR processing
_nx_ip_packet_deferred_receive is called.

After the new receive packet is properly built, the
physical hardware’s receive buffers are setup to
receive more data. This might require allocating NetX

!

360 NetX User Guide

User Guide

packets and placing the payload address in the
hardware receive buffer or it may simply amount to
changing a setting in the hardware receive buffer. To
minimize overrun possibilities, it is important that the
hardware’s receive buffers have available buffers as
soon as possible after a packet is received.

The initial receive buffers are setup during driver
initialization.

Deferred Receive
Packet Handling

The driver may defer receive packet processing to the
NetX IP helper thread. For some applications this
may be necessary to minimize ISR processing as well
as dropped packets.

To use deferred packet handling, the NetX library
must first be compiled with
NX_DRIVER_DEFERRED_PROCESSING defined.
This adds the deferred packet logic to the NetX IP
helper thread. Next, the driver must register its
deferred handling function before any packets can be
processed. This routine should be called during driver
initialization. For multihome hosts, unless one driver
handles all interfaces, each interface driver must
register its deferred handling function. The function
prototype for registration of the deferred packet
handler follows:

The deferred receive function should be called from
the driver’s receive interrupt processing. The function
prototype for the deferred receive function follows:

The deferred receive function places the receive

i

VOID _nx_ip_driver_deferred_enable(NX_IP *ip_ptr,
VOID (*driver_deferred_packet_handler)(NX_IP *ip_ptr,

NX_PACKET *packet_ptr));

VOID _nx_ip_driver_deferred_receive(NX_IP *ip_ptr,
NX_PACKET *packet_ptr);

NetX Network Drivers 361

Express Logic, Inc.

packet represented by packet_ptr on a FIFO (linked
list) and notifies the IP helper thread. After executing,
the IP helper repetitively calls the deferred handling
function to process each deferred packet. The deferred
handler processing typically includes removing the
packet’s physical layer header (usually Ethernet) and
dispatching it to one of these NetX receive functions:

_nx_ip_packet_receive
_nx_arp_packet_deferred_receive
_nx_rarp_packet_deferred_receive

Example RAM Ethernet Network Driver
The NetX demonstration system is delivered with a
small RAM Ethernet network driver, defined in the file
nx_ram_network_driver.c. For single interface hosts
creating multiple IP instances, this driver assumes all
the IP instances exchange packets on the same
network. This driver assumes the IP instances are all
on the same network and simply assigns virtual
hardware addresses to each IP instance as they are
created. This file provides a good example of the basic
structure for NetX network drivers and is listed on the
following page.

For multihome hosts, this driver assumes each IP
instance interface exchanges packets with another IP
instance on the same network interface. The RAM
driver assigns virtual hardware addresses to each
interface as they are created.

362 NetX User Guide

User Guide

/**/
/* */
/* Copyright (c) 1996-2009 by Express Logic Inc. */
/* */
/* This software is copyrighted by and is the sole property of Express */
/* Logic, Inc. All rights, title, ownership, or other interests */
/* in the software remain the property of Express Logic, Inc. This */
/* software may only be used in accordance with the corresponding */
/* license agreement. Any unauthorized use, duplication, transmission, */
/* distribution, or disclosure of this software is expressly forbidden. */
/* */
/* This Copyright notice may not be removed or modified without prior */
/* written consent of Express Logic, Inc. */
/* */
/* Express Logic, Inc. reserves the right to modify this software */
/* without notice. */
/* */
/* Express Logic, Inc. info@expresslogic.com */
/* 11423 West Bernardo Court http://www.expresslogic.com */
/* San Diego, CA 92127 */
/* */
/**/

/**/
/**/
/** */
/** NetX Component */
/** */
/** RAM Network (RAM) */
/** */
/**/
/**/

/* Include necessary system files. */

#include "nx_api.h"

#define NX_LINK_MTU 8096

/* Define Ethernet address format. This is prepended to the incoming IP
 and ARP/RARP messages. The frame beginning is 14 bytes, but for speed
 purposes, we are going to assume there are 16 bytes free in front of the
 prepend pointer and that the prepend pointer is 32-bit aligned.

 Byte Offset Size Meaning

 0 6 Destination Ethernet Address
 6 6 Source Ethernet Address
 12 2 Ethernet Frame Type, where:

 0x0800 -> IP Datagram
 0x0806 -> ARP Request/Reply
 0x0835 -> RARP request reply

 42 18 Padding on ARP and RARP messages only. */

#define NX_ETHERNET_IP 0x0800
#define NX_ETHERNET_ARP 0x0806
#define NX_ETHERNET_RARP 0x8035
#define NX_ETHERNET_SIZE 14

/* For the simulated ethernet driver, physical addresses are allocated starting
 at the preset value and then incremented before the next allocation. */

ULONG simulated_address_msw = 0x1122;
ULONG simulated_address_lsw = 0x33445566;

NetX Network Drivers 363

Express Logic, Inc.

/* Define driver prototypes. */

VOID _nx_ram_network_driver(NX_IP_DRIVER *driver_req_ptr);
void _nx_ram_network_driver_output(NX_IP *ip_ptr, NX_PACKET *packet_ptr);
void _nx_ram_network_driver_receive(NX_IP *ip_ptr, NX_PACKET *packet_ptr);

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* _nx_ram_network_driver PORTABLE C */
/* 5.3 */
/* AUTHOR */
/* */
/* William E. Lamie, Express Logic, Inc. */
/* */
/* DESCRIPTION */
/* */
/* This function acts as a virtual network for testing the NetX source */
/* and driver concepts. */
/* */
/* INPUT */
/* */
/* ip_ptr Pointer to IP protocol block */
/* */
/* OUTPUT */
/* */
/* None */
/* */
/* CALLS */
/* */
/* _nx_ram_network_driver_output Send physical packet out */
/* */
/* CALLED BY */
/* */
/* NetX IP processing */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* 12-12-2005 William E. Lamie Initial Version 5.0 */
/* 08-09-2007 William E. Lamie Modified comments and */
/* changed UL to ULONG cast, */
/* resulting in version 5.1 */
/* 07-04-2009 William E. Lamie Modified comments, resulting */
/* in version 5.2 */
/* 12-31-2009 Yuxin Zhou Modified comments and */
/* added multihome support, */
/* resulting in version 5.3 */
/**/
VOID _nx_ram_network_driver(NX_IP_DRIVER *driver_req_ptr)
{

NX_IP *ip_ptr;
NX_PACKET *packet_ptr;
ULONG *ethernet_frame_ptr;
NX_INTERFACE *interface_ptr;

 /* Setup the IP pointer from the driver request. */
 ip_ptr = driver_req_ptr -> nx_ip_driver_ptr;

 /* Default to successful return. */
 driver_req_ptr -> nx_ip_driver_status = NX_SUCCESS;

 /* Setup interface pointer. */
 interface_ptr = driver_req_ptr -> nx_ip_driver_interface;

364 NetX User Guide

User Guide

 /* Process according to the driver request type in the IP control
 block. */
 switch (driver_req_ptr -> nx_ip_driver_command)
 {

 case NX_LINK_INITIALIZE:

 case NX_LINK_INTERFACE_ATTACH:
 break;

 {

 /* Process driver initialization. */
#ifdef NX_DEBUG
 printf("NetX RAM Driver Initialization - %s\n", ip_ptr -> nx_ip_name);
 printf(" IP Address =%08X\n", interface_ptr -> nx_interface_ip_address);
#endif

 /* Setup the link maximum transfer unit. Note that the MTU should
 take into account the physical header needs and alignment
 requirements. For example, we are going to report actual
 MTU less the ethernet header and 2 bytes to keep alignment. */
 interface_ptr -> nx_interface_ip_mtu_size = (NX_LINK_MTU - NX_ETHERNET_SIZE - 2);

 /* Setup the physical address of this IP instance. Increment the
 physical address lsw to simulate multiple nodes hanging on the
 ethernet. */
 interface_ptr -> nx_interface_physical_address_msw = simulated_address_msw;
 interface_ptr -> nx_interface_physical_address_lsw = simulated_address_lsw++;

 /* Indicate to the IP software that IP to physical mapping
 is required. */
 interface_ptr -> nx_interface_address_mapping_needed = NX_TRUE;

 break;
 }

 case NX_LINK_ENABLE:
 {

 /* Process driver link enable. */

 /* In the RAM driver, just set the enabled flag. */
 interface_ptr -> nx_interface_link_up = NX_TRUE;

#ifdef NX_DEBUG
 printf("NetX RAM Driver Link Enabled - %s\n", ip_ptr -> nx_ip_name);
#endif
 break;
 }

 case NX_LINK_DISABLE:
 {

 /* Process driver link disable. */

 /* In the RAM driver, just clear the enabled flag. */
 interface_ptr -> nx_interface_link_up = NX_FALSE;

#ifdef NX_DEBUG
 printf("NetX RAM Driver Link Disabled - %s\n", ip_ptr -> nx_ip_name);
#endif
 break;
 }

 case NX_LINK_PACKET_SEND:
 {

 /* Process driver send packet. */

NetX Network Drivers 365

Express Logic, Inc.

 /* Place the ethernet frame at the front of the packet. */
 packet_ptr = driver_req_ptr -> nx_ip_driver_packet;

 /* Adjust the prepend pointer. */
 packet_ptr -> nx_packet_prepend_ptr = packet_ptr ->

nx_packet_prepend_ptr - NX_ETHERNET_SIZE;

 /* Adjust the packet length. */
 packet_ptr -> nx_packet_length = packet_ptr -> nx_packet_length + NX_ETHERNET_SIZE;

 /* Setup the ethernet frame pointer to build the ethernet frame. Backup another 2
 bytes to get 32-bit word alignment. */
 ethernet_frame_ptr = (ULONG_PTR) (packet_ptr -> nx_packet_prepend_ptr - 2);

 /* Build the ethernet frame. */
 *ethernet_frame_ptr = driver_req_ptr -> nx_ip_driver_physical_address_msw;
 *(ethernet_frame_ptr+1) = driver_req_ptr -> nx_ip_driver_physical_address_lsw;
 *(ethernet_frame_ptr+2) = (interface_ptr -> nx_interface_physical_address_msw << 16) |
 (interface_ptr -> nx_interface_physical_address_lsw >> 16);
 *(ethernet_frame_ptr+3) = (interface_ptr -> nx_interface_physical_address_lsw << 16) |
 /* Endian swapping if NX_LITTLE_ENDIAN is defined. */
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr));
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+1));
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+2));
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+3));
#ifdef NX_DEBUG_PACKET
 printf("NetX RAM Driver Packet Send - %s\n", ip_ptr -> nx_ip_name);
#endif
 _nx_ram_network_driver_output(ip_ptr, packet_ptr);
 break;
 }

 case NX_LINK_PACKET_BROADCAST:
 {

 /* Process driver send packet. */

 /* Place the ethernet frame at the front of the packet. */
 packet_ptr = driver_req_ptr -> nx_ip_driver_packet;

 /* Adjust the prepend pointer. */
 packet_ptr -> nx_packet_prepend_ptr = packet_ptr ->

nx_packet_prepend_ptr - NX_ETHERNET_SIZE;

 /* Adjust the packet length. */
 packet_ptr -> nx_packet_length = packet_ptr -> nx_packet_length + NX_ETHERNET_SIZE;

 /* Setup the ethernet frame pointer to build the ethernet frame. Backup another 2
 bytes to get 32-bit word alignment. */
 ethernet_frame_ptr = (ULONG_PTR) (packet_ptr -> nx_packet_prepend_ptr - 2);

 /* Build the ethernet frame. */
 ethernet_frame_ptr = (ULONG) 0xFFFF; / Broadcast! */
 *(ethernet_frame_ptr+1) = (ULONG) 0xFFFFFFFF;
 *(ethernet_frame_ptr+2) = (interface_ptr -> nx_interface_physical_address_msw << 16) |
 (interface_ptr -> nx_interface_physical_address_lsw >> 16);
 *(ethernet_frame_ptr+3) = (interface_ptr -> nx_interface_physical_address_lsw << 16) |

 /* Endian swapping if NX_LITTLE_ENDIAN is defined. */
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr));
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+1));
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+2));
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+3));

#ifdef NX_DEBUG_PACKET
 printf("NetX RAM Driver Packet Broadcast - %s\n", ip_ptr -> nx_ip_name);
#endif
 _nx_ram_network_driver_output(ip_ptr, packet_ptr);
 break;
 }

366 NetX User Guide

User Guide

 case NX_LINK_ARP_SEND:
 {

 /* Process driver send packet. */

 /* Place the ethernet frame at the front of the packet. */
 packet_ptr = driver_req_ptr -> nx_ip_driver_packet;

 /* Adjust the prepend pointer. */
 packet_ptr -> nx_packet_prepend_ptr =

packet_ptr ->nx_packet_prepend_ptr - NX_ETHERNET_SIZE;

 /* Adjust the packet length. */
 packet_ptr -> nx_packet_length = packet_ptr -> nx_packet_length + NX_ETHERNET_SIZE;

 /* Setup the ethernet frame pointer to build the ethernet frame. Backup another 2
 bytes to get 32-bit word alignment. */
 ethernet_frame_ptr = (ULONG_PTR) (packet_ptr -> nx_packet_prepend_ptr - 2);

 /* Build the ethernet frame. */
 ethernet_frame_ptr = (ULONG) 0xFFFF; / Broadcast! */
 *(ethernet_frame_ptr+1) = (ULONG) 0xFFFFFFFF;
 *(ethernet_frame_ptr+2) = (interface_ptr -> nx_interface_physical_address_msw << 16) |
 (interface_ptr -> nx_interface_physical_address_lsw >> 16);
 *(ethernet_frame_ptr+3) = (interface_ptr -> nx_interface_physical_address_lsw << 16) |

 /* Endian swapping if NX_LITTLE_ENDIAN is defined. */
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr));
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+1));
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+2));
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+3));

#ifdef NX_DEBUG
 printf("NetX RAM Driver ARP Send - %s\n", ip_ptr -> nx_ip_name);
#endif
 _nx_ram_network_driver_output(ip_ptr, packet_ptr);
 break;
 }

 case NX_LINK_ARP_RESPONSE_SEND:
 {

 /* Process driver send packet. */

 /* Place the ethernet frame at the front of the packet. */
 packet_ptr = driver_req_ptr -> nx_ip_driver_packet;

 /* Adjust the prepend pointer. */
 packet_ptr -> nx_packet_prepend_ptr = packet_ptr ->

nx_packet_prepend_ptr - NX_ETHERNET_SIZE;

 /* Adjust the packet length. */
 packet_ptr -> nx_packet_length = packet_ptr -> nx_packet_length + NX_ETHERNET_SIZE;

 /* Setup the ethernet frame pointer to build the ethernet frame. Backup another 2
 bytes to get 32-bit word alignment. */
 ethernet_frame_ptr = (ULONG_PTR) (packet_ptr -> nx_packet_prepend_ptr - 2);

 /* Build the ethernet frame. */

 *ethernet_frame_ptr = driver_req_ptr -> nx_ip_driver_physical_address_msw;
 *(ethernet_frame_ptr+1) = driver_req_ptr -> nx_ip_driver_physical_address_lsw;
 *(ethernet_frame_ptr+2) = (interface_ptr -> nx_interface_physical_address_msw << 16) |
 (interface_ptr -> nx_interface_physical_address_lsw >> 16);
 *(ethernet_frame_ptr+3) = (interface_ptr -> nx_interface_physical_address_lsw << 16) |

 /* Endian swapping if NX_LITTLE_ENDIAN is defined. */
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr));

NetX Network Drivers 367

Express Logic, Inc.

 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+1));
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+2));
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+3));

#ifdef NX_DEBUG
 printf("NetX RAM Driver ARP Response Send - %s\n", ip_ptr -> nx_ip_name);
#endif
 _nx_ram_network_driver_output(ip_ptr, packet_ptr);
 break;
 }

 case NX_LINK_RARP_SEND:
 {

 /* Process driver send packet. */

 /* Place the ethernet frame at the front of the packet. */
 packet_ptr = driver_req_ptr -> nx_ip_driver_packet;

 /* Adjust the prepend pointer. */
 packet_ptr -> nx_packet_prepend_ptr = packet_ptr ->

nx_packet_prepend_ptr - NX_ETHERNET_SIZE;

 /* Adjust the packet length. */
 packet_ptr -> nx_packet_length = packet_ptr -> nx_packet_length + NX_ETHERNET_SIZE;

 /* Setup the ethernet frame pointer to build the ethernet frame. Backup another 2
 bytes to get 32-bit word alignment. */
 ethernet_frame_ptr = (ULONG_PTR) (packet_ptr -> nx_packet_prepend_ptr - 2);

 /* Build the ethernet frame. */
 ethernet_frame_ptr = (ULONG) 0xFFFF; / Broadcast! */
 *(ethernet_frame_ptr+1) = (ULONG) 0xFFFFFFFF;
 *(ethernet_frame_ptr+2) = (interface_ptr -> nx_interface_physical_address_msw << 16) |
 (interface_ptr -> nx_interface_physical_address_lsw >> 16);
 *(ethernet_frame_ptr+3) = (interface_ptr -> nx_interface_physical_address_lsw << 16) |

 /* Endian swapping if NX_LITTLE_ENDIAN is defined. */
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr));
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+1));
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+2));
 NX_CHANGE_ULONG_ENDIAN(*(ethernet_frame_ptr+3));

#ifdef NX_DEBUG
 printf("NetX RAM Driver RARP Send - %s\n", ip_ptr -> nx_ip_name);
#endif
 _nx_ram_network_driver_output(ip_ptr, packet_ptr);
 break;
 }

 case NX_LINK_MULTICAST_JOIN:
 {

 /* For real ethernet devices the hardware registers that support IP multicast
 need to be searched for an open entry. If found, the multicast ethernet
 address contained in the driver request structure
 (nx_ip_driver_physical_address_msw & nx_ip_driver_physical_address_lsw)
 needs to be loaded into ethernet chip. If no free entries are found,
 an NX_NO_MORE_ENTRIES error should be returned to the caller. */
 break;
 }

 case NX_LINK_MULTICAST_LEAVE:
 {

 /* For real ethernet devices the hardware registers that support IP multicast
 need to be searched for a matching entry. If found, the multicast ethernet
 address should be cleared in the hardware so that a new entry may use it
 on the next join operation. */

368 NetX User Guide

User Guide

 break;
 }

 case NX_LINK_GET_STATUS:
 {

 /* Return the link status in the supplied return pointer. */
 *(driver_req_ptr -> nx_ip_driver_return_ptr) =
 ip_ptr-> nx_ip_interface[0].nx_interface_link_up;
 }

 default:
 {

 /* Invalid driver request. */

 /* Return the unhandled command status. */
 driver_req_ptr -> nx_ip_driver_status = NX_UNHANDLED_COMMAND;

#ifdef NX_DEBUG
 printf("NetX RAM Driver Received invalid request - %s\n", ip_ptr -> nx_ip_name);
#endif
 }
 }
}

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* _nx_ram_network_driver_output PORTABLE C */
/* 5.3 */
/* AUTHOR */
/* */
/* William E. Lamie, Express Logic, Inc. */
/* */
/* DESCRIPTION */
/* */
/* This function simply sends the packet to the IP instance on the */
/* created IP list that matches the physical destination specified in */
/* the Ethernet packet. In a real hardware setting, this routine */
/* would simply put the packet out on the wire. */
/* */
/* INPUT */
/* */
/* ip_ptr Pointer to IP protocol block */
/* packet_ptr Packet pointer */
/* */
/* OUTPUT */
/* */
/* None */
/* */
/* CALLS */
/* */
/* nx_packet_copy Copy a packet */
/* nx_packet_transmit_release Release a packet */
/* _nx_ram_network_driver_receive RAM driver receive processing */
/* */
/* CALLED BY */
/* */
/* NetX IP processing */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* 12-12-2005 William E. Lamie Initial Version 5.0 */
/* 08-09-2007 William E. Lamie Modified comments and */

NetX Network Drivers 369

Express Logic, Inc.

/* changed UL to ULONG cast, */
/* resulting in version 5.1 */
/* 07-04-2009 William E. Lamie Modified comments, resulting */
/* in version 5.2 */
/* 12-31-2009 Yuxin Zhou Modified comments and */
/* added multihome support, */
/* resulting in version 5.3 */
/**/
void _nx_ram_network_driver_output(NX_IP *ip_ptr, NX_PACKET *packet_ptr)
{

NX_IP *next_ip;
NX_PACKET *packet_copy;
ULONG destination_address_msw;
ULONG destination_address_lsw;
UINT old_threshold;

#ifdef NX_DEBUG_PACKET
UCHAR *ptr;
UINT j, i;

 ptr = packet_ptr -> nx_packet_prepend_ptr;
 printf("Ethernet Packet: ");
 for (j = 0; j < 6; j++)
 printf("%02X", *ptr++);
 printf(" ");
 for (j = 0; j < 6; j++)
 printf("%02X", *ptr++);
 printf(" %02X", *ptr++);
 printf("%02X ", *ptr++);

 i = 0;
 for (j = 0; j < (packet_ptr -> nx_packet_length - NX_ETHERNET_SIZE); j++)
 {
 printf("%02X", *ptr++);
 i++;
 if (i > 3)
 {
 i = 0;
 printf(" ");
 }
 }
 printf("\n");

#endif

 /* Pickup the destination IP address from the packet_ptr. */
 destination_address_msw = (ULONG) *(packet_ptr -> nx_packet_prepend_ptr);
 destination_address_msw = (destination_address_msw << 8) | (ULONG) *(packet_ptr ->

 nx_packet_prepend_ptr+1);
 destination_address_lsw = (ULONG) *(packet_ptr -> nx_packet_prepend_ptr+2);
 destination_address_lsw = (destination_address_lsw << 8) | (ULONG) *(packet_ptr ->

nx_packet_prepend_ptr+3);
 destination_address_lsw = (destination_address_lsw << 8) | (ULONG) *(packet_ptr ->
 nx_packet_prepend_ptr+4);
 destination_address_lsw = (destination_address_lsw << 8) | (ULONG) *(packet_ptr ->
 nx_packet_prepend_ptr+5);

 /* Disable preemption. */
 tx_thread_preemption_change(tx_thread_identify(), 0, &old_threshold);

 /* Loop through all instances of created IPs to see who gets the packet. */
 next_ip = ip_ptr -> nx_ip_created_next;

 while (next_ip != ip_ptr)
 {

 /* Check for broadcast or a match with this IP destination. */
 if (((destination_address_msw == ((ULONG) 0x0000FFFF)) &&
 (destination_address_lsw == ((ULONG) 0xFFFFFFFF))) ||

370 NetX User Guide

User Guide

 ((destination_address_msw ==
 next_ip ->
 nx_ip_interface[0].nx_interface_physical_address_msw) &&
 (destination_address_lsw ==

next_ip ->nx_ip_interface[0].nx_interface_physical_address_lsw)))
 {

 /* Make a copy of packet for the forwarding. */
 if (nx_packet_copy(packet_ptr, &packet_copy, next_ip ->

nx_ip_default_packet_pool, NX_NO_WAIT))
 {

 /* Error, no point in continuing. */
 nx_packet_transmit_release(packet_ptr);
 return;
 }

 /* For now, route the packet to the next created IP instance. */
 _nx_ram_network_driver_receive(next_ip, packet_copy);
 }

 /* Move to the next IP instance. */
 next_ip = next_ip -> nx_ip_created_next;
 }

 /* Restore the packet prepend pointer. In real hardware environments, this is typically
 done after a transmit complete interrupt. */
 packet_ptr -> nx_packet_prepend_ptr = packet_ptr -> nx_packet_prepend_ptr + NX_ETHERNET_SIZE;

 /* Adjust the packet length. */
 packet_ptr -> nx_packet_length = packet_ptr -> nx_packet_length - NX_ETHERNET_SIZE;

 /* Release the packet. */
 nx_packet_transmit_release(packet_ptr);

 /* Restore preemption. */
 tx_thread_preemption_change(tx_thread_identify(), old_threshold, &old_threshold);
}

/**/
/* */
/* FUNCTION RELEASE */
/* */
/* _nx_ram_network_driver_receive PORTABLE C */
/* 5.3 */
/* AUTHOR */
/* */
/* William E. Lamie, Express Logic, Inc. */
/* */
/* DESCRIPTION */
/* */
/* This function processing incoming packets. In the RAM network */
/* driver, the incoming packets are coming from the RAM driver output */
/* routine. In real hardware settings, this routine would be called */
/* from the receive packet ISR. */
/* */
/* INPUT */
/* */
/* ip_ptr Pointer to IP protocol block */
/* packet_ptr Packet pointer */
/* */
/* OUTPUT */
/* */
/* None */
/* */
/* CALLS */
/* */
/* _nx_ip_packet_receive IP receive packet processing */
/* _nx_ip_packet_deferred_receive IP deferred receive packet */
/* processing */
/* _nx_arp_packet_deferred_receive ARP receive processing */
/* _nx_rarp_packet_deferred_receive RARP receive processing */

NetX Network Drivers 371

Express Logic, Inc.

/* nx_packet_release Packet release */
/* */
/* CALLED BY */
/* */
/* NetX IP processing */
/* */
/* RELEASE HISTORY */
/* */
/* DATE NAME DESCRIPTION */
/* */
/* 12-12-2005 William E. Lamie Initial Version 5.0 */
/* 08-09-2007 William E. Lamie Modified comments resulting */
/* in version 5.1 */
/* 07-04-2009 William E. Lamie Modified comments, resulting */
/* in version 5.2 */
/* 12-31-2009 Yuxin Zhou Modified comments resulting */
/* in version 5.3 */
/**/
void _nx_ram_network_driver_receive(NX_IP *ip_ptr, NX_PACKET *packet_ptr)
{

UINT packet_type;

 /* Pickup the packet header to determine where the packet needs to be
 sent. */
 packet_type = (((UINT) (*(packet_ptr -> nx_packet_prepend_ptr+12))) << 8) |
 ((UINT) (*(packet_ptr -> nx_packet_prepend_ptr+13)));

 /* Pickup the interface pointer. */
 packet_ptr -> nx_packet_ip_interface = &(ip_ptr -> nx_ip_interface[0]);

 /* Route the incoming packet according to its ethernet type. */
 if (packet_type == NX_ETHERNET_IP)
 {

 /* Note: The length reported by some Ethernet hardware includes bytes after the packet
 as well as the Ethernet header. In some cases, the actual packet length after the
 Ethernet header should be derived from the length in the IP header (lower 16 bits of
 the first 32-bit word). */

 /* Clean off the Ethernet header. */
 packet_ptr -> nx_packet_prepend_ptr = packet_ptr ->

nx_packet_prepend_ptr + NX_ETHERNET_SIZE;

 /* Adjust the packet length. */
 packet_ptr -> nx_packet_length = packet_ptr -> nx_packet_length - NX_ETHERNET_SIZE;

 /* Route to the ip receive function. */
#ifdef NX_DEBUG_PACKET
 printf("NetX RAM Driver IP Packet Receive - %s\n", ip_ptr -> nx_ip_name);
#endif

#ifdef NX_DIRECT_ISR_CALL
 _nx_ip_packet_receive(ip_ptr, packet_ptr);
#else
 _nx_ip_packet_deferred_receive(ip_ptr, packet_ptr);
#endif
 }
 else if (packet_type == NX_ETHERNET_ARP)
 {

 /* Clean off the Ethernet header. */
 packet_ptr -> nx_packet_prepend_ptr = packet_ptr ->

nx_packet_prepend_ptr + NX_ETHERNET_SIZE;

 /* Adjust the packet length. */
 packet_ptr -> nx_packet_length = packet_ptr -> nx_packet_length - NX_ETHERNET_SIZE;

 /* Route to the ARP receive function. */
#ifdef NX_DEBUG

372 NetX User Guide

User Guide

 printf("NetX RAM Driver ARP Receive - %s\n", ip_ptr -> nx_ip_name);
#endif
 _nx_arp_packet_deferred_receive(ip_ptr, packet_ptr);

 }
 else if (packet_type == NX_ETHERNET_RARP)
 {

 /* Clean off the Ethernet header. */
 packet_ptr -> nx_packet_prepend_ptr = packet_ptr -> nx_packet_prepend_ptr +

NX_ETHERNET_SIZE;

 /* Adjust the packet length. */
 packet_ptr -> nx_packet_length = packet_ptr -> nx_packet_length - NX_ETHERNET_SIZE;

 /* Route to the RARP receive function. */
#ifdef NX_DEBUG
 printf("NetX RAM Driver RARP Receive - %s\n", ip_ptr -> nx_ip_name);
#endif
 _nx_rarp_packet_deferred_receive(ip_ptr, packet_ptr);
 }
 else
 {

 /* Invalid ethernet header... release the packet. */
 nx_packet_release(packet_ptr);
 }
}

NetX Network Drivers 373

Express Logic, Inc.

374 NetX Network Drivers

User Guide

User Guide

A P P E N D I X A

NetX Services
1 Address Resolution Protocol (ARP) 376

1 Internet Control Message Protocol (ICMP) 376

1 Internet Group Management Protocol (IGMP) 377

1 Internet Protocol (IP) 377

1 Packet Management 378

1 Reverse Address Resolution Protocol (RARP) 379

1 System Management 379

1 Transmission Control Protocol (TCP) 379

1 User Datagram Protocol (UDP) 381

376 NetX User Guide

User Guide

Address
Resolution
Protocol
(ARP)

UINT nx_arp_dynamic_entries_invalidate(NX_IP *ip_ptr);

UINT nx_arp_dynamic_entry_set(NX_IP *ip_ptr, ULONG
ip_address, ULONG physical_msw, ULONG physical_lsw);

UINT nx_arp_enable(NX_IP *ip_ptr, VOID *arp_cache_memory,
ULONG arp_cache_size);

UINT nx_arp_gratuitous_send(NX_IP *ip_ptr,
VOID (*response_handler)(NX_IP *ip_ptr,
NX_PACKET *packet_ptr));

UINT nx_arp_hardware_address_find(NX_IP *ip_ptr,
ULONG ip_address, ULONG*physical_msw,
ULONG *physical_lsw);

UINT nx_arp_info_get(NX_IP *ip_ptr, ULONG
*arp_requests_sent, ULONG*arp_requests_received,
ULONG *arp_responses_sent,
ULONG*arp_responses_received,
ULONG *arp_dynamic_entries,
ULONG *arp_static_entries,
ULONG *arp_aged_entries,
ULONG *arp_invalid_messages);

UINT nx_arp_ip_address_find(NX_IP *ip_ptr,
ULONG *ip_address, ULONG physical_msw,
ULONG physical_lsw);

UINT nx_arp_static_entries_delete(NX_IP *ip_ptr);

UINT nx_arp_static_entry_create(NX_IP *ip_ptr,
ULONG ip_address,
ULONG physical_msw, ULONG physical_lsw);

UINT nx_arp_static_entry_delete(NX_IP *ip_ptr,
ULONG ip_address, ULONG physical_msw,
ULONG physical_lsw);

Internet
Control
Message
Protocol
(ICMP)

UINT nx_icmp_enable(NX_IP *ip_ptr);

UINT nx_icmp_info_get(NX_IP *ip_ptr, ULONG *pings_sent,
ULONG *ping_timeouts, ULONG *ping_threads_suspended,
ULONG *ping_responses_received,
ULONG *icmp_checksum_errors,
ULONG *icmp_unhandled_messages);

UINT nx_icmp_ping(NX_IP *ip_ptr,
ULONG ip_address, CHAR *data,
ULONG data_size, NX_PACKET **response_ptr,
ULONG wait_option);

377

Express Logic, Inc.

Internet
Group
Management
Protocol
(IGMP)

UINT nx_igmp_enable(NX_IP *ip_ptr);

UINT nx_igmp_info_get(NX_IP *ip_ptr, ULONG
*igmp_reports_sent, ULONG *igmp_queries_received,
ULONG *igmp_checksum_errors,
ULONG *current_groups_joined);

UINT nx_igmp_loopback_disable(NX_IP *ip_ptr);

UINT nx_igmp_loopback_enable(NX_IP *ip_ptr);

UINT nx_igmp_multicast_interface_join(NX_IP *ip_ptr,
ULONG group_address, UINT interface_index);

UINT nx_igmp_multicast_join(NX_IP *ip_ptr,
ULONG group_address);

UINT nx_igmp_multicast_leave(NX_IP *ip_ptr,
ULONG group_address);

Internet
Protocol (IP)

UINT nx_ip_address_change_notify(NX_IP *ip_ptr,
VOID (*change_notify)(NX_IP *, VOID *),
VOID *additional_info);

UINT nx_ip_address_get(NX_IP *ip_ptr, ULONG *ip_address,
ULONG *network_mask);

UINT nx_ip_address_set(NX_IP *ip_ptr, ULONG ip_address,
ULONG network_mask);

UINT nx_ip_create(NX_IP *ip_ptr, CHAR *name,
ULONG ip_address,
ULONG network_mask, NX_PACKET_POOL *default_pool,
VOID (*ip_network_driver)(NX_IP_DRIVER *),
VOID *memory_ptr, ULONG memory_size, UINT priority);

UINT nx_ip_delete(NX_IP *ip_ptr);

UINT nx_ip_driver_direct_command(NX_IP *ip_ptr, UINT
command, ULONG *return_value_ptr);

UINT nx_ip_forwarding_disable(NX_IP *ip_ptr);

UINT nx_ip_forwarding_enable(NX_IP *ip_ptr);

UINT nx_ip_fragment_disable(NX_IP *ip_ptr);

UINT nx_ip_fragment_enable(NX_IP *ip_ptr);

UINT nx_ip_gateway_address_set(NX_IP *ip_ptr,
ULONG ip_address);

UINT nx_ip_info_get(NX_IP *ip_ptr,
ULONG *ip_total_packets_sent,
ULONG *ip_total_bytes_sent,
ULONG *ip_total_packets_received,
ULONG *ip_total_bytes_received,
ULONG *ip_invalid_packets,

378 NetX User Guide

User Guide

ULONG *ip_receive_packets_dropped,
ULONG *ip_receive_checksum_errors,
ULONG *ip_send_packets_dropped,
ULONG *ip_total_fragments_sent,
ULONG *ip_total_fragments_received);

UINT nx_ip_interface_address_get(NX_IP *ip_ptr, ULONG
interface_index, ULONG *ip_address, ULONG *network_mask);

UINT nx_ip_interface_address_set(NX_IP *ip_ptr,
ULONG interface_index, ULONG ip_address, ULONG network_mask);

UINT nx_ip_interface_attach(NX_IP *ip_ptr, CHAR* interface_name,
ULONG ip_address, ULONG network_mask,
VOID (*ip_link_driver)(struct NX_IP_DRIVER_STRUCT *));

UINT nx_ip_interface_info_get(NX_IP *ip_ptr, UINT interface_index,
CHAR **interface_name, ULONG *ip_address,
ULONG *network_mask, ULONG *mtu_size,
ULONG *phsyical_address_msw, ULONG *physical_address_lsw);

UINT nx_ip_interface_status_check(NX_IP *ip_ptr,
UINT interface_index, ULONG needed_status,
ULONG *actual_status, ULONG wait_option);

UINT nx_ip_raw_packet_disable(NX_IP *ip_ptr);

UINT nx_ip_raw_packet_enable(NX_IP *ip_ptr);

UINT nx_ip_raw_packet_interface_send(NX_IP *ip_ptr,
NX_PACKET *packet_ptr, ULONG destination_ip,
UINT interface_index, ULONG type_of_service);

UINT nx_ip_raw_packet_receive(NX_IP *ip_ptr,
NX_PACKET **packet_ptr,
ULONG wait_option);

UINT nx_ip_raw_packet_send(NX_IP *ip_ptr,
NX_PACKET *packet_ptr,
ULONG destination_ip, ULONG type_of_service);

UINT nx_ip_static_route_add(NX_IP *ip_ptr, ULONG network_address,
ULONG net_mask, ULONG next_hop);

UINT nx_ip_static_route_delete(NX_IP *ip_ptr, ULONG network_address,
ULONG net_mask);

UINT nx_ip_status_check(NX_IP *ip_ptr, ULONG needed_status, ULONG
*actual_status, ULONG wait_option);

Packet
Management

UINT nx_packet_allocate(NX_PACKET_POOL *pool_ptr,
NX_PACKET **packet_ptr, ULONG packet_type,
ULONG wait_option);

UINT nx_packet_copy(NX_PACKET *packet_ptr,
NX_PACKET **new_packet_ptr, NX_PACKET_POOL *pool_ptr,
ULONG wait_option);

379

Express Logic, Inc.

UINT nx_packet_data_append(NX_PACKET *packet_ptr,
VOID *data_start, ULONG data_size,
NX_PACKET_POOL *pool_ptr, ULONG wait_option);

UINT nx_packet_data_extract_offset(NX_PACKET *packet_ptr,
ULONG offset, VOID *buffer_start, ULONG buffer_length,
ULONG *bytes_copied);

UINT nx_packet_data_retrieve(NX_PACKET *packet_ptr,
VOID *buffer_start, ULONG *bytes_copied);

UINT nx_packet_length_get(NX_PACKET *packet_ptr, ULONG *length);

UINT nx_packet_pool_create(NX_PACKET_POOL *pool_ptr,
CHAR *name, ULONG block_size, VOID *memory_ptr, ULONG
memory_size);

UINT nx_packet_pool_delete(NX_PACKET_POOL *pool_ptr);

UINT nx_packet_pool_info_get(NX_PACKET_POOL *pool_ptr, ULONG
*total_packets, ULONG *free_packets,
ULONG *empty_pool_requests,
ULONG *empty_pool_suspensions,
ULONG *invalid_packet_releases);

UINT nx_packet_release(NX_PACKET *packet_ptr);

UINT nx_packet_transmit_release(NX_PACKET *packet_ptr);

Reverse
Address
Resolution
Protocol
(RARP)

UINT nx_rarp_disable(NX_IP *ip_ptr);

UINT nx_rarp_enable(NX_IP *ip_ptr);

UINT nx_rarp_info_get(NX_IP *ip_ptr,
ULONG *rarp_requests_sent,
ULONG *rarp_responses_received,
ULONG *rarp_invalid_messages);

System
Management

VOID nx_system_initialize(VOID);

Transmission
Control
Protocol
(TCP)

UINT nx_tcp_client_socket_bind(NX_TCP_SOCKET *socket_ptr, UINT
port, ULONG wait_option);

UINT nx_tcp_client_socket_connect(NX_TCP_SOCKET *socket_ptr, ULONG
server_ip, UINT server_port,
ULONG wait_option);

UINT nx_tcp_client_socket_port_get(NX_TCP_SOCKET *socket_ptr, UINT
*port_ptr);

UINT nx_tcp_client_socket_unbind(NX_TCP_SOCKET *socket_ptr);

380 NetX User Guide

User Guide

UINT nx_tcp_enable(NX_IP *ip_ptr);

UINT nx_tcp_free_port_find(NX_IP *ip_ptr, UINT port,
UINT *free_port_ptr);

UINT nx_tcp_info_get(NX_IP *ip_ptr, ULONG *tcp_packets_sent,
ULONG *tcp_bytes_sent, ULONG *tcp_packets_received,
ULONG *tcp_bytes_received, ULONG
*tcp_invalid_packets, ULONG
*tcp_receive_packets_dropped,
ULONG *tcp_checksum_errors,ULONG *tcp_connections,
ULONG *tcp_disconnections,
ULONG *tcp_connections_dropped,
ULONG*tcp_retransmit_packets);

UINT nx_tcp_server_socket_accept(NX_TCP_SOCKET *socket_ptr,
ULONG wait_option);

UINT nx_tcp_server_socket_listen(NX_IP *ip_ptr,
UINT port, NX_TCP_SOCKET *socket_ptr,
UINT listen_queue_size,
VOID (*tcp_listen_callback)(NX_TCP_SOCKET
*socket_ptr, UINT port));

UINT nx_tcp_server_socket_relisten(NX_IP *ip_ptr,
UINT port, NX_TCP_SOCKET *socket_ptr);

UINT nx_tcp_server_socket_unaccept(NX_TCP_SOCKET
*socket_ptr);

UINT nx_tcp_server_socket_unlisten(NX_IP *ip_ptr, UINT
port);

UINT nx_tcp_socket_bytes_available(NX_TCP_SOCKET
*socket_ptr, ULONG *bytes_available);

UINT nx_tcp_socket_create(NX_IP *ip_ptr,
NX_TCP_SOCKET *socket_ptr, CHAR *name,
ULONG type_of_service, ULONG fragment,
UINT time_to_live, ULONG window_size,
VOID (*tcp_urgent_data_callback)(NX_TCP_SOCKET
*socket_ptr),
VOID (*tcp_disconnect_callback)(NX_TCP_SOCKET
*socket_ptr));

UINT nx_tcp_socket_delete(NX_TCP_SOCKET *socket_ptr);

UINT nx_tcp_socket_disconnect(NX_TCP_SOCKET *socket_ptr,
ULONG wait_option);

UINT nx_tcp_socket_info_get(NX_TCP_SOCKET *socket_ptr,
ULONG *tcp_packets_sent, ULONG *tcp_bytes_sent,
ULONG *tcp_packets_received, ULONG
*tcp_bytes_received,
ULONG *tcp_retransmit_packets, ULONG
*tcp_packets_queued,
ULONG *tcp_checksum_errors, ULONG *tcp_socket_state,
ULONG *tcp_transmit_queue_depth, ULONG
*tcp_transmit_window,
ULONG *tcp_receive_window);

381

Express Logic, Inc.

UINT nx_tcp_socket_mss_get(NX_TCP_SOCKET *socket_ptr,
ULONG *mss);

UINT nx_tcp_socket_mss_peer_get(NX_TCP_SOCKET *socket_ptr,
ULONG *peer_mss);

UINT nx_tcp_socket_mss_set(NX_TCP_SOCKET *socket_ptr,
ULONG mss);

UINT nx_tcp_socket_peer_info_get(NX_TCP_SOCKET *socket_ptr,
ULONG *peer_ip_address, ULONG *peer_port);

UINT nx_tcp_socket_receive(NX_TCP_SOCKET *socket_ptr,
NX_PACKET **packet_ptr, ULONG wait_option);

UINT nx_tcp_socket_receive_notify(NX_TCP_SOCKET
*socket_ptr, VOID
(*tcp_receive_notify)(NX_TCP_SOCKET *socket_ptr));

UINT nx_tcp_socket_send(NX_TCP_SOCKET *socket_ptr,
NX_PACKET *packet_ptr, ULONG wait_option);

UINT nx_tcp_socket_state_wait(NX_TCP_SOCKET *socket_ptr,
UINT desired_state, ULONG wait_option);

UINT nx_tcp_socket_transmit_configure(NX_TCP_SOCKET
*socket_ptr, ULONG max_queue_depth, ULONG timeout,
ULONG max_retries, ULONG timeout_shift);

UINT nx_tcp_socket_window_update_notify_set
(NX_TCP_SOCKET *socket_ptr,
VOID (*tcp_window_update_notify)
(NX_TCP_SOCKET *socket_ptr));

User
Datagram
Protocol
(UDP)

UINT nx_udp_enable(NX_IP *ip_ptr);

UINT nx_udp_free_port_find(NX_IP *ip_ptr, UINT port,
UINT *free_port_ptr);

UINT nx_udp_info_get(NX_IP *ip_ptr, ULONG *udp_packets_sent,
ULONG *udp_bytes_sent, ULONG *udp_packets_received,
ULONG *udp_bytes_received,
ULONG *udp_invalid_packets,
ULONG *udp_receive_packets_dropped,
ULONG *udp_checksum_errors);

UINT nx_udp_packet_info_extract(NX_PACKET *packet_ptr,
ULONG *ip_address, UINT *protocol, UINT *port,
UINT *interface_index);

UINT nx_udp_socket_bind(NX_UDP_SOCKET *socket_ptr,
UINT port, ULONG wait_option);

UINT nx_udp_socket_bytes_available(NX_UDP_SOCKET
*socket_ptr, ULONG *bytes_available);

UINT nx_udp_socket_checksum_disable(NX_UDP_SOCKET
*socket_ptr);

382 NetX User Guide

User Guide

UINT nx_udp_socket_checksum_enable(NX_UDP_SOCKET
*socket_ptr);

UINT nx_udp_socket_create(NX_IP *ip_ptr, NX_UDP_SOCKET
*socket_ptr, CHAR *name, ULONG type_of_service,
ULONG fragment,
UINT time_to_live, ULONG queue_maximum);

UINT nx_udp_socket_delete(NX_UDP_SOCKET *socket_ptr);

UINT nx_udp_socket_info_get(NX_UDP_SOCKET *socket_ptr,
ULONG *udp_packets_sent, ULONG *udp_bytes_sent,
ULONG *udp_packets_received, ULONG
*udp_bytes_received,
ULONG *udp_packets_queued,
ULONG *udp_receive_packets_dropped,
ULONG *udp_checksum_errors);

UINT nx_udp_socket_interface_send(NX_UDP_SOCKET
*socket_ptr, NX_PACKET *packet_ptr, ULONG
ip_address, UINT port, UINT interface_index);

UINT nx_udp_socket_port_get(NX_UDP_SOCKET *socket_ptr,
UINT *port_ptr);

UINT nx_udp_socket_receive(NX_UDP_SOCKET *socket_ptr,
NX_PACKET **packet_ptr, ULONG wait_option);

UINT nx_udp_socket_receive_notify(NX_UDP_SOCKET
*socket_ptr, VOID
(*udp_receive_notify)(NX_UDP_SOCKET *socket_ptr));

UINT nx_udp_socket_send(NX_UDP_SOCKET *socket_ptr,
NX_PACKET *packet_ptr, ULONG ip_address, UINT port);

UINT nx_udp_socket_unbind(NX_UDP_SOCKET *socket_ptr);

UINT nx_udp_source_extract(NX_PACKET *packet_ptr,
ULONG *ip_address, UINT *port);

User Guide

A P P E N D I X B

NetX Constants
1 Alphabetic Listing 384

1 Listings by Value 393

384 NetX User Guide

User Guide

Alphabetic
Listing

NX_ALL_HOSTS_ADDRESS 0xFE000001
NX_ALREADY_BOUND 0x22
NX_ALREADY_ENABLED 0x15
NX_ALREADY_RELEASED 0x31
NX_ALREADY_SUSPENDED 0x40
NX_ANY_PORT 0
NX_ARP_DEBUG_LOG_SIZE 100
NX_ARP_EXPIRATION_RATE 0
NX_ARP_HARDWARE_SIZE 0x06
NX_ARP_HARDWARE_TYPE 0x0001
NX_ARP_MAX_QUEUE_DEPTH 4
NX_ARP_MAXIMUM_RETRIES 18
NX_ARP_MESSAGE_SIZE 28
NX_ARP_OPTION_REQUEST 0x0001
NX_ARP_OPTION_RESPONSE 0x0002
NX_ARP_PROTOCOL_SIZE 0x04
NX_ARP_PROTOCOL_TYPE 0x0800
NX_ARP_TIMER_ERROR 0x18
NX_ARP_UPDATE_RATE 10
NX_CALLER_ERROR 0x11
NX_CARRY_BIT 0x10000
NX_CONNECTION_PENDING 0x48
NX_DELETE_ERROR 0x10
NX_DELETED 0x05
NX_DISCONNECT_FAILED 0x41
NX_DONT_FRAGMENT 0x00004000
NX_DRIVER_TX_DONE 0xDDDDDDDD
NX_DUPLICATE_LISTEN 0x34
NX_ENTRY_NOT_FOUND 0x16
NX_FALSE 0
NX_FOREVER 1

NetX Constants 385

Express Logic, Inc.

NX_FRAG_OFFSET_MASK 0x00001FFF
NX_FRAGMENT_OKAY 0x00000000
NX_ICMP_ADDRESS_MASK_REP_TYPE 18
NX_ICMP_ADDRESS_MASK_REQ_TYPE 17
NX_ICMP_DEBUG_LOG_SIZE 100
NX_ICMP_DEST_UNREACHABLE_TYPE 3
NX_ICMP_ECHO_REPLY_TYPE 0
NX_ICMP_ECHO_REQUEST_TYPE 8
NX_ICMP_FRAMENT_NEEDED_CODE 4
NX_ICMP_HOST_PROHIBIT_CODE 10
NX_ICMP_HOST_SERVICE_CODE 12
NX_ICMP_HOST_UNKNOWN_CODE 7
NX_ICMP_HOST_UNREACH_CODE 1
NX_ICMP_NETWORK_PROHIBIT_CODE 9
NX_ICMP_NETWORK_SERVICE_CODE 11
NX_ICMP_NETWORK_UNKNOWN_CODE 6
NX_ICMP_NETWORK_UNREACH_CODE 0
NX_ICMP_PACKET 36
NX_ICMP_PARAMETER_PROB_TYPE 12
NX_ICMP_PORT_UNREACH_CODE 3
NX_ICMP_PROTOCOL_UNREACH_CODE 2
NX_ICMP_REDIRECT_TYPE 5
NX_ICMP_SOURCE_ISOLATED_CODE 8
NX_ICMP_SOURCE_QUENCH_TYPE 4
NX_ICMP_SOURCE_ROUTE_CODE 5
NX_ICMP_TIME_EXCEEDED_TYPE 11
NX_ICMP_TIMESTAMP_REP_TYPE 14
NX_ICMP_TIMESTAMP_REQ_TYPE 13
NX_IGMP_DEBUG_LOG_SIZE 100
NX_IGMP_HOST_RESPONSE_TYPE 0x02000000
NX_IGMP_MAX_UPDATE_TIME 10

386 NetX User Guide

User Guide

NX_IGMP_PACKET 36
NX_IGMP_ROUTER_QUERY_TYPE 0x01000000
NX_IGMP_TYPE_MASK 0x0F000000
NX_IGMP_VERSION 0x10000000
NX_IGMP_VERSION_MASK 0xF0000000
NX_IN_PROGRESS 0x37
NX_INIT_PACKET_ID 1
NX_NOT_IMPLEMENTED 0x4A
NX_NOT_SUPPORTED 0x4B
NX_INVALID_INTERFACE 0x4C
NX_INVALID_PACKET 0x12
NX_INVALID_PORT 0x46
NX_INVALID_RELISTEN 0x47
NX_INVALID_SOCKET 0x13
NX_IP_ADDRESS_ERROR 0x21
NX_IP_ADDRESS_RESOLVED 0x0002
NX_IP_ALIGN_FRAGS 8
NX_IP_ALL_EVENTS 0xFFFFFFFF
NX_IP_ARP_ENABLED 0x0008
NX_IP_ARP_REC_EVENT 0x00000010
NX_IP_CLASS_A_HOSTID 0x00FFFFFF
NX_IP_CLASS_A_MASK 0x80000000
NX_IP_CLASS_A_NETID 0x7F000000
NX_IP_CLASS_A_TYPE 0x00000000
NX_IP_CLASS_B_HOSTID 0x0000FFFF
NX_IP_CLASS_B_MASK 0xC0000000
NX_IP_CLASS_B_NETID 0x3FFF0000
NX_IP_CLASS_B_TYPE 0x80000000
NX_IP_CLASS_C_HOSTID 0x000000FF
NX_IP_CLASS_C_MASK 0xE0000000
NX_IP_CLASS_C_NETID 0x1FFFFF00

NetX Constants 387

Express Logic, Inc.

NX_IP_CLASS_C_TYPE 0xC0000000
NX_IP_CLASS_D_GROUP 0x0FFFFFFF
NX_IP_CLASS_D_HOSTID 0x00000000
NX_IP_CLASS_D_MASK 0xF0000000
NX_IP_CLASS_D_TYPE 0xE0000000
NX_IP_DEBUG_LOG_SIZE 100
NX_IP_DONT_FRAGMENT 0x00004000
NX_IP_DRIVER_DEFERRED_EVENT 0x00000800
NX_IP_DRIVER_PACKET_EVENT 0x00000200
NX_IP_FRAGMENT_MASK 0x00003FFF
NX_IP_ICMP 0x00010000
NX_IP_ICMP_EVENT 0x00000004
NX_IP_ID 0x49502020
NX_IP_IGMP 0x00020000
NX_IP_IGMP_ENABLE_EVENT 0x00000400
NX_IP_IGMP_ENABLED 0x0040
NX_IP_IGMP_EVENT 0x00000040
NX_IP_INITIALIZE_DONE 0x0001
NX_IP_INTERNAL_ERROR 0x20
NX_IP_LENGTH_MASK 0x0F000000
NX_IP_LIMITIED_BROADCAST 0xFFFFFFFF
NX_IP_LINK_ENABLED 0x0004
NX_IP_LOOPBACK_FIRST 0x7F000000
NX_IP_LOOPBACK_LAST 0x7FFFFFFF
NX_IP_MAX_DATA 0x00080000
NX_IP_MAX_RELIABLE 0x00040000
NX_IP_MIN_COST 0x00020000
NX_IP_MIN_DELAY 0x00100000
NX_IP_MORE_FRAGMENT 0x00002000
NX_IP_MULTICAST_LOWER 0x5E000000
NX_IP_MULTICAST_MASK 0x007FFFFF

388 NetX User Guide

User Guide

NX_IP_MULTICAST_UPPER 0x00000100
NX_IP_NORMAL 0x00000000
NX_IP_NORMAL_LENGTH 5
NX_IP_OFFSET_MASK 0x00001FFF
NX_IP_PACKET 36
NX_IP_PACKET_SIZE_MASK 0x0000FFFF
NX_IP_PERIODIC_EVENT 0x00000001
NX_IP_PERIODIC_RATE 100
NX_IP_PROTOCOL_MASK 0x00FF0000
NX_IP_RARP_COMPLETE 0x0080
NX_IP_RARP_REC_EVENT 0x00000020
NX_IP_RECEIVE_EVENT 0x00000008
NX_IP_TCP 0x00060000
NX_IP_TCP_CLEANUP_DEFERRED 0x00001000
NX_IP_TCP_ENABLED 0x0020
NX_IP_TCP_EVENT 0x00000080
NX_IP_TCP_FAST_EVENT 0x00000100
NX_IP_TIME_TO_LIVE 0x00000080
NX_IP_TIME_TO_LIVE_MASK 0xFF000000
NX_IP_TIME_TO_LIVE_SHIFT 24
NX_IP_TOS_MASK 0x00FF0000
NX_IP_UDP 0x00110000
NX_IP_UDP_ENABLED 0x0010
NX_IP_UNFRAG_EVENT 0x00000002
NX_IP_VERSION 0x45000000
NX_LINK_ARP_RESPONSE_SEND 6
NX_LINK_ARP_SEND 5
NX_LINK_DEFERRED_PROCESSING 18
NX_LINK_DISABLE 3
NX_LINK_ENABLE 2
NX_LINK_GET_ALLOC_ERRORS 16

NetX Constants 389

Express Logic, Inc.

NX_LINK_GET_DUPLEX_TYPE 12
NX_LINK_GET_ERROR_COUNT 13
NX_LINK_GET_RX_COUNT 14
NX_LINK_GET_SPEED 11
NX_LINK_GET_STATUS 10
NX_LINK_GET_TX_COUNT 15
NX_LINK_INITIALIZE 1
NX_LINK_INTERFACE_ATTACH 19
NX_LINK_MULTICAST_JOIN 8
NX_LINK_MULTICAST_LEAVE 9
NX_LINK_PACKET_BROADCAST 4
NX_LINK_PACKET_SEND 0
NX_LINK_RARP_SEND 7
NX_LINK_UNINITIALIZE 17
NX_LINK_USER_COMMAND 50
NX_LOWER_16_MASK 0x0000FFFF
NX_MAX_LISTEN 0x33
NX_MAX_LISTEN_REQUESTS 10
NX_MAX_MULTICAST_GROUPS 7
NX_MAX_PORT 0xFFFF
NX_MORE_FRAGMENTS 0x00002000
NX_NO_FREE_PORTS 0x45
NX_NO_MAPPING 0x04
NX_NO_MORE_ENTRIES 0x17
NX_NO_PACKET 0x01
NX_NO_RESPONSE 0x29
NX_NO_WAIT 0
NX_NOT_BOUND 0x24
NX_NOT_CLOSED 0x35
NX_NOT_CONNECTED 0x38
NX_NOT_CREATED 0x27

390 NetX User Guide

User Guide

NX_NOT_ENABLED 0x14
NX_NOT_IMPLEMENTED 0x4A
NX_NOT_LISTEN_STATE 0x36
NX_NOT_SUCCESSFUL 0x43
NX_NULL 0
NX_OPTION_ERROR 0x0a
NX_OVERFLOW 0x03
NX_PACKET_ALLOCATED 0xAAAAAAAA
NX_PACKET_DEBUG_LOG_SIZE 100
NX_PACKET_ENQUEUED 0xEEEEEEEE
NX_PACKET_FREE 0xFFFFFFFF
NX_PACKET_POOL_ID 0x5041434B
NX_PACKET_READY 0xBBBBBBBB
NX_PHYSICAL_HEADER 16
NX_PHYSICAL_TRAILER 4
NX_POOL_DELETED 0x30
NX_POOL_ERROR 0x06
NX_PORT_UNAVAILABLE 0x23
NX_PTR_ERROR 0x07
NX_RARP_DEBUG_LOG_SIZE 100
NX_RARP_HARDWARE_SIZE 0x06
NX_RARP_HARDWARE_TYPE 0x0001
NX_RARP_MESSAGE_SIZE 28
NX_RARP_OPTION_REQUEST 0x0003
NX_RARP_OPTION_RESPONSE 0x0004
NX_RARP_PROTOCOL_SIZE 0x04
NX_RARP_PROTOCOL_TYPE 0x0800
NX_RECEIVE_PACKET 0
NX_RESERVED_CODE0 0x19
NX_RESERVED_CODE1 0x25
NX_RESERVED_CODE2 0x32

NetX Constants 391

Express Logic, Inc.

NX_ROUTE_TABLE_MASK 0x1F
NX_ROUTE_TABLE_SIZE 32
NX_SEARCH_PORT_START 30000
NX_SHIFT_BY_16 16
NX_SIZE_ERROR 0x09
NX_SOCKET_UNBOUND 0x26
NX_SOCKETS_BOUND 0x28
NX_STILL_BOUND 0x42
NX_SUCCESS 0x00
NX_TCP_ACK_BIT 0x00100000
NX_TCP_ACK_TIMER_RATE 5
NX_TCP_CLIENT 1
NX_TCP_CLOSE_WAIT 6
NX_TCP_CLOSED 1
NX_TCP_CLOSING 9
NX_TCP_CONTROL_MASK 0x00170000
NX_TCP_DEBUG_LOG_SIZE 100
NX_TCP_EOL_KIND 0x00
NX_TCP_ESTABLISHED 5
NX_TCP_FAST_TIMER_RATE 10
NX_TCP_FIN_BIT 0x00010000
NX_TCP_FIN_WAIT_1 7
NX_TCP_FIN_WAIT_2 8
NX_TCP_HEADER_MASK 0xF0000000
NX_TCP_HEADER_SHIFT 28
NX_TCP_HEADER_SIZE 0x50000000
NX_TCP_ID 0x54435020
NX_TCP_KEEPALIVE_INITIAL 7200
NX_TCP_KEEPALIVE_RETRIES 10
NX_TCP_KEEPALIVE_RETRY 75
NX_TCP_LAST_ACK 11

392 NetX User Guide

User Guide

NX_TCP_LISTEN_STATE 2
NX_TCP_MAXIMUM_RETRIES 10
NX_TCP_MAXIMUM_TX_QUEUE 20
NX_TCP_MSS_KIND 0x02
NX_TCP_MSS_OPTION 0x02040000
NX_TCP_MSS_SIZE 16384
NX_TCP_NOP_KIND 0x01
NX_TCP_OPTION_END 0x01010402
NX_TCP_PACKET 56
NX_TCP_PORT_TABLE_MASK 0x1F
NX_TCP_PORT_TABLE_SIZE 32
NX_TCP_PSH_BIT 0x00080000
NX_TCP_RETRY_SHIFT 0
NX_TCP_RST_BIT 0x00040000
NX_TCP_SERVER 2
NX_TCP_SYN_BIT 0x00020000
NX_TCP_SYN_HEADER 0x70000000
NX_TCP_SYN_RECEIVED 4
NX_TCP_SYN_SENT 3
NX_TCP_TIMED_WAIT 10
NX_TCP_TRANSMIT_TIMER_RATE 1
NX_TCP_URG_BIT 0x00200000
NX_TRUE 1
NX_TX_QUEUE_DEPTH 0x49
NX_UDP_DEBUG_LOG_SIZE 100
NX_UDP_ID 0x55445020
NX_UDP_PACKET 44
NX_UDP_PORT_TABLE_MASK 0x1F
NX_UDP_PORT_TABLE_SIZE 32
NX_UNDERFLOW 0x02
NX_UNHANDLED_COMMAND 0x44

NetX Constants 393

Express Logic, Inc.

NX_WAIT_ABORTED 0x1A
NX_WAIT_ERROR 0x08
NX_WAIT_FOREVER 0xFFFFFFFF
NX_WINDOW_OVERFLOW 0x39

Listings by
Value

NX_ANY_PORT 0
NX_ARP_EXPIRATION_RATE 0
NX_FALSE 0
NX_ICMP_ECHO_REPLY_TYPE 0
NX_ICMP_NETWORK_UNREACH_CODE 0
NX_LINK_PACKET_SEND 0
NX_NO_WAIT 0
NX_NULL 0
NX_RECEIVE_PACKET 0
NX_TCP_RETRY_SHIFT 0
NX_SUCCESS 0x00
NX_TCP_EOL_KIND 0x00
NX_FRAGMENT_OKAY 0x00000000
NX_IP_CLASS_A_TYPE 0x00000000
NX_IP_CLASS_D_HOSTID 0x00000000
NX_IP_NORMAL 0x00000000
NX_FOREVER 1
NX_ICMP_HOST_UNREACH_CODE 1
NX_INIT_PACKET_ID 1
NX_LINK_INITIALIZE 1
NX_TCP_CLIENT 1
NX_TCP_CLOSED 1
NX_TCP_TRANSMIT_TIMER_RATE 1
NX_TRUE 1
NX_IP_PERIODIC_EVENT 0x00000001

394 NetX User Guide

User Guide

NX_ARP_HARDWARE_TYPE 0x0001
NX_ARP_OPTION_REQUEST 0x0001
NX_IP_INITIALIZE_DONE 0x0001
NX_RARP_HARDWARE_TYPE 0x0001
NX_NO_PACKET 0x01
NX_TCP_NOP_KIND 0x01
NX_ICMP_PROTOCOL_UNREACH_CODE 2
NX_LINK_ENABLE 2
NX_TCP_LISTEN_STATE 2
NX_TCP_SERVER 2
NX_IP_UNFRAG_EVENT 0x00000002
NX_ARP_OPTION_RESPONSE 0x0002
NX_IP_ADDRESS_RESOLVED 0x0002
NX_TCP_MSS_KIND 0x02
NX_UNDERFLOW 0x02
NX_ICMP_DEST_UNREACHABLE_TYPE 3
NX_ICMP_PORT_UNREACH_CODE 3
NX_LINK_DISABLE 3
NX_TCP_SYN_SENT 3
NX_RARP_OPTION_REQUEST 0x0003
NX_OVERFLOW 0x03
NX_ARP_MAX_QUEUE_DEPTH 4
NX_ICMP_FRAMENT_NEEDED_CODE 4
NX_ICMP_SOURCE_QUENCH_TYPE 4
NX_LINK_PACKET_BROADCAST 4
NX_PHYSICAL_TRAILER 4
NX_TCP_SYN_RECEIVED 4
NX_IP_ICMP_EVENT 0x00000004
NX_IP_LINK_ENABLED 0x0004
NX_RARP_OPTION_RESPONSE 0x0004
NX_ARP_PROTOCOL_SIZE 0x04

NetX Constants 395

Express Logic, Inc.

NX_NO_MAPPING 0x04
NX_RARP_PROTOCOL_SIZE 0x04
NX_NOT_IMPLEMENTED 0x4A
NX_NOT_SUPPORTED 0x4B
NX_INVALID_INTERFACE 0x4C
NX_ICMP_REDIRECT_TYPE 5
NX_ICMP_SOURCE_ROUTE_CODE 5
NX_IP_NORMAL_LENGTH 5
NX_LINK_ARP_SEND 5
NX_TCP_ACK_TIMER_RATE 5
NX_TCP_ESTABLISHED 5
NX_DELETED 0x05
NX_ICMP_NETWORK_UNKNOWN_CODE 6
NX_LINK_ARP_RESPONSE_SEND 6
NX_TCP_CLOSE_WAIT 6
NX_ARP_HARDWARE_SIZE 0x06
NX_POOL_ERROR 0x06
NX_RARP_HARDWARE_SIZE 0x06
NX_ICMP_HOST_UNKNOWN_CODE 7
NX_LINK_RARP_SEND 7
NX_MAX_MULTICAST_GROUPS 7
NX_TCP_FIN_WAIT_1 7
NX_PTR_ERROR 0x07
NX_ICMP_ECHO_REQUEST_TYPE 8
NX_ICMP_SOURCE_ISOLATED_CODE 8
NX_IP_ALIGN_FRAGS 8
NX_LINK_MULTICAST_JOIN 8
NX_TCP_FIN_WAIT_2 8
NX_IP_RECEIVE_EVENT 0x00000008
NX_IP_ARP_ENABLED 0x0008
NX_WAIT_ERROR 0x08

396 NetX User Guide

User Guide

NX_ICMP_NETWORK_PROHIBIT_CODE 9
NX_LINK_MULTICAST_LEAVE 9
NX_TCP_CLOSING 9
NX_SIZE_ERROR 0x09
NX_ARP_UPDATE_RATE 10
NX_ICMP_HOST_PROHIBIT_CODE 10
NX_IGMP_MAX_UPDATE_TIME 10
NX_LINK_GET_STATUS 10
NX_MAX_LISTEN_REQUESTS 10
NX_TCP_FAST_TIMER_RATE 10
NX_TCP_KEEPALIVE_RETRIES 10
NX_TCP_MAXIMUM_RETRIES 10
NX_TCP_TIMED_WAIT 10
NX_OPTION_ERROR 0x0a
NX_ICMP_NETWORK_SERVICE_CODE 11
NX_ICMP_TIME_EXCEEDED_TYPE 11
NX_LINK_GET_SPEED 11
NX_TCP_LAST_ACK 11
NX_ICMP_HOST_SERVICE_CODE 12
NX_ICMP_PARAMETER_PROB_TYPE 12
NX_LINK_GET_DUPLEX_TYPE 12
NX_ICMP_TIMESTAMP_REQ_TYPE 13
NX_LINK_GET_ERROR_COUNT 13
NX_ICMP_TIMESTAMP_REP_TYPE 14
NX_LINK_GET_RX_COUNT 14
NX_LINK_GET_TX_COUNT 15
NX_LINK_GET_ALLOC_ERRORS 16
NX_PHYSICAL_HEADER 16
NX_SHIFT_BY_16 16
NX_IP_ARP_REC_EVENT 0x00000010
NX_IP_UDP_ENABLED 0x0010

NetX Constants 397

Express Logic, Inc.

NX_DELETE_ERROR 0x10
NX_ICMP_ADDRESS_MASK_REQ_TYPE 17
NX_LINK_UNINITIALIZE 17
NX_CALLER_ERROR 0x11
NX_ARP_MAXIMUM_RETRIES 18
NX_ICMP_ADDRESS_MASK_REP_TYPE 18
NX_LINK_DEFERRED_PROCESSING 18
NX_INVALID_PACKET 0x12
NX_INVALID_SOCKET 0x13
NX_LINK_INTERFACE_ATTACH 19
NX_TCP_MAXIMUM_TX_QUEUE 20
NX_NOT_ENABLED 0x14
NX_ALREADY_ENABLED 0x15
NX_ENTRY_NOT_FOUND 0x16
NX_NO_MORE_ENTRIES 0x17
NX_IP_TIME_TO_LIVE_SHIFT 24
NX_ARP_TIMER_ERROR 0x18
NX_RESERVED_CODE0 0x19
NX_WAIT_ABORTED 0x1A
NX_ARP_MESSAGE_SIZE 28
NX_RARP_MESSAGE_SIZE 28
NX_TCP_HEADER_SHIFT 28
NX_ROUTE_TABLE_MASK 0x1F
NX_TCP_PORT_TABLE_MASK 0x1F
NX_UDP_PORT_TABLE_MASK 0x1F
NX_ROUTE_TABLE_SIZE 32
NX_TCP_PORT_TABLE_SIZE 32
NX_UDP_PORT_TABLE_SIZE 32
NX_IP_RARP_REC_EVENT 0x00000020
NX_IP_TCP_ENABLED 0x0020
NX_IP_INTERNAL_ERROR 0x20

398 NetX User Guide

User Guide

NX_IP_ADDRESS_ERROR 0x21
NX_ALREADY_BOUND 0x22
NX_PORT_UNAVAILABLE 0x23
NX_ICMP_PACKET 36
NX_IGMP_PACKET 36
NX_IP_PACKET 36
NX_NOT_BOUND 0x24
NX_RESERVED_CODE1 0x25
NX_SOCKET_UNBOUND 0x26
NX_NOT_CREATED 0x27
NX_SOCKETS_BOUND 0x28
NX_NO_RESPONSE 0x29
NX_UDP_PACKET 44
NX_POOL_DELETED 0x30
NX_ALREADY_RELEASED 0x31
NX_LINK_USER_COMMAND 50
NX_RESERVED_CODE2 0x32
NX_MAX_LISTEN 0x33
NX_DUPLICATE_LISTEN 0x34
NX_NOT_CLOSED 0x35
NX_NOT_LISTEN_STATE 0x36
NX_IN_PROGRESS 0x37
NX_TCP_PACKET 56
NX_NOT_CONNECTED 0x38
NX_WINDOW_OVERFLOW 0x39
NX_IP_IGMP_EVENT 0x00000040
NX_IP_IGMP_ENABLED 0x0040
NX_ALREADY_SUSPENDED 0x40
NX_DISCONNECT_FAILED 0x41
NX_STILL_BOUND 0x42
NX_NOT_SUCCESSFUL 0x43

NetX Constants 399

Express Logic, Inc.

NX_UNHANDLED_COMMAND 0x44
NX_NO_FREE_PORTS 0x45
NX_INVALID_PORT 0x46
NX_INVALID_RELISTEN 0x47
NX_CONNECTION_PENDING 0x48
NX_TX_QUEUE_DEPTH 0x49
NX_TCP_KEEPALIVE_RETRY 75
NX_ARP_DEBUG_LOG_SIZE 100
NX_ICMP_DEBUG_LOG_SIZE 100
NX_IGMP_DEBUG_LOG_SIZE 100
NX_IP_DEBUG_LOG_SIZE 100
NX_IP_PERIODIC_RATE 100
NX_PACKET_DEBUG_LOG_SIZE 100
NX_RARP_DEBUG_LOG_SIZE 100
NX_TCP_DEBUG_LOG_SIZE 100
NX_UDP_DEBUG_LOG_SIZE 100
NX_IP_TCP_EVENT 0x00000080
NX_IP_TIME_TO_LIVE 0x00000080
NX_IP_RARP_COMPLETE 0x0080
NX_NOT_IMPLEMENTED 0x80
NX_IP_CLASS_C_HOSTID 0x000000FF
NX_IP_MULTICAST_UPPER 0x00000100
NX_IP_TCP_FAST_EVENT 0x00000100
NX_IP_DRIVER_PACKET_EVENT 0x00000200
NX_IP_IGMP_ENABLE_EVENT 0x00000400
NX_IP_DRIVER_DEFERRED_EVENT 0x00000800
NX_ARP_PROTOCOL_TYPE 0x0800
NX_RARP_PROTOCOL_TYPE 0x0800
NX_IP_TCP_CLEANUP_DEFERRED 0x00001000
NX_TCP_KEEPALIVE_INITIAL 7200
NX_FRAG_OFFSET_MASK 0x00001FFF

400 NetX User Guide

User Guide

NX_IP_OFFSET_MASK 0x00001FFF
NX_IP_MORE_FRAGMENT 0x00002000
NX_MORE_FRAGMENTS 0x00002000
NX_IP_FRAGMENT_MASK 0x00003FFF
NX_TCP_MSS_SIZE 16384
NX_DONT_FRAGMENT 0x00004000
NX_IP_DONT_FRAGMENT 0x00004000
NX_SEARCH_PORT_START 30000
NX_IP_CLASS_B_HOSTID 0x0000FFFF
NX_IP_PACKET_SIZE_MASK 0x0000FFFF
NX_LOWER_16_MASK 0x0000FFFF
NX_MAX_PORT 0xFFFF
NX_IP_ICMP 0x00010000
NX_TCP_FIN_BIT 0x00010000
NX_CARRY_BIT 0x10000
NX_IP_IGMP 0x00020000
NX_IP_MIN_COST 0x00020000
NX_TCP_SYN_BIT 0x00020000
NX_IP_MAX_RELIABLE 0x00040000
NX_TCP_RST_BIT 0x00040000
NX_IP_TCP 0x00060000
NX_IP_MAX_DATA 0x00080000
NX_TCP_PSH_BIT 0x00080000
NX_IP_MIN_DELAY 0x00100000
NX_TCP_ACK_BIT 0x00100000
NX_IP_UDP 0x00110000
NX_TCP_CONTROL_MASK 0x00170000
NX_TCP_URG_BIT 0x00200000
NX_IP_MULTICAST_MASK 0x007FFFFF
NX_IP_PROTOCOL_MASK 0x00FF0000
NX_IP_TOS_MASK 0x00FF0000

NetX Constants 401

Express Logic, Inc.

NX_IGMP_ROUTER_QUERY_TYPE 0x01000000
NX_TCP_OPTION_END 0x01010402
NX_IGMP_HOST_RESPONSE_TYPE 0x02000000
NX_TCP_MSS_OPTION 0x02040000
NX_IGMP_TYPE_MASK 0x0F000000
NX_IP_LENGTH_MASK 0x0F000000
NX_IP_CLASS_A_HOSTID 0x00FFFFFF
NX_IP_CLASS_D_GROUP 0x0FFFFFFF
NX_IGMP_VERSION 0x10000000
NX_IP_CLASS_C_NETID 0x1FFFFF00
NX_IP_CLASS_B_NETID 0x3FFF0000
NX_IP_VERSION 0x45000000
NX_IP_ID 0x49502020
NX_TCP_HEADER_SIZE 0x50000000
NX_PACKET_POOL_ID 0x5041434B
NX_TCP_ID 0x54435020
NX_UDP_ID 0x55445020
NX_IP_MULTICAST_LOWER 0x5E000000
NX_IP_CLASS_A_NETID 0x7F000000
NX_TCP_SYN_HEADER 0x70000000
NX_IP_LOOPBACK_FIRST 0x7F000000
NX_IP_LOOPBACK_LAST 0x7FFFFFFF
NX_IP_CLASS_A_MASK 0x80000000
NX_IP_CLASS_B_TYPE 0x80000000
NX_PACKET_ALLOCATED 0xAAAAAAAA
NX_PACKET_READY 0xBBBBBBBB
NX_IP_CLASS_B_MASK 0xC0000000
NX_IP_CLASS_C_TYPE 0xC0000000
NX_DRIVER_TX_DONE 0xDDDDDDDD
NX_IP_CLASS_C_MASK 0xE0000000
NX_IP_CLASS_D_TYPE 0xE0000000

402 NetX User Guide

User Guide

NX_PACKET_ENQUEUED 0xEEEEEEEE
NX_IGMP_VERSION_MASK 0xF0000000
NX_IP_CLASS_D_MASK 0xF0000000
NX_TCP_HEADER_MASK 0xF0000000
NX_ALL_HOSTS_ADDRESS 0xFE000001
NX_IP_TIME_TO_LIVE_MASK 0xFF000000
NX_IP_ALL_EVENTS 0xFFFFFFFF
NX_IP_LIMITIED_BROADCAST 0xFFFFFFFF
NX_PACKET_FREE 0xFFFFFFFF
NX_WAIT_FOREVER 0xFFFFFFFF

User Guide

A P P E N D I X C

NetX Data Types

1 NX_ARP 404

1 NX_INTERFACE 404

1 NX_IP 407

1 NX_IP_DRIVER 407

1 NX_IP_ROUTING_ENTRY 407

1 NX_PACKET 407

1 NX_PACKET_POOL 407

1 NX_TCP_LISTEN 408

1 NX_TCP_SOCKET 409

1 NX_UDP_SOCKET 409

404 NetX User Guide

User Guide

typedef struct NX_ARP_STRUCT
{

UINT nx_arp_route_static;
UINT nx_arp_entry_next_update;
UINT nx_arp_retries;
struct NX_ARP_STRUCT *nx_arp_pool_next,
 *nx_arp_pool_previous;
struct NX_ARP_STRUCT *nx_arp_active_next,
 *nx_arp_active_previous,
 **nx_arp_active_list_head;
ULONG nx_arp_ip_address;
ULONG nx_arp_physical_address_msw;
ULONG nx_arp_physical_address_lsw;
struct NX_INTERFACE_STRUCT *nx_arp_ip_interface;
struct NX_PACKET_STRUCT *nx_arp_packets_waiting;

} NX_ARP;

typedef struct NX_INTERFACE_STRUCT
{
 CHAR *nx_interface_name;
 UCHAR nx_interface_valid;
 UCHAR nx_interface_mapping_needed;
 UCHAR nx_interface_link_up;
 UCHAR nx_interface_reserved;
 struct NX_IP_STRUCT *nx_interface_ip_instance;
 ULONG nx_interface_physical_address_msw;
 ULONG nx_interface_physical_address_lsw;
 ULONG nx_interface_ip_address;
 ULONG nx_interface_ip_network_mask;
 ULONG nx_interface_ip_network;
 ULONG nx_interface_ip_mtu_size;
 VOID *nx_interface_additional_link_info;
 VOID (*nx_interface_link_driver_entry)(struct NX_IP_DRIVER_STRUCT *);
} NX_INTERFACE;

typedef struct NX_IP_STRUCT
{

ULONG nx_ip_id;
CHAR *nx_ip_name;
ULONG nx_ip_gateway_address;
struct NX_INTERFACE_STRUCT *nx_ip_gateway_interface;
ULONG nx_ip_total_packet_send_requests;
ULONG nx_ip_total_packets_sent;
ULONG nx_ip_total_bytes_sent;
ULONG nx_ip_total_packets_received;
ULONG nx_ip_total_packets_delivered;
ULONG nx_ip_total_bytes_received;
ULONG nx_ip_packets_forwarded;
ULONG nx_ip_packets_reassembled;
ULONG nx_ip_reassembly_failures;
ULONG nx_ip_invalid_packets;
ULONG nx_ip_invalid_transmit_packets;
ULONG nx_ip_invalid_receive_address;
ULONG nx_ip_unknown_protocols_received;
ULONG nx_ip_transmit_resource_errors;
ULONG nx_ip_transmit_no_route_errors;
ULONG nx_ip_receive_packets_dropped;
ULONG nx_ip_receive_checksum_errors;
ULONG nx_ip_send_packets_dropped;
ULONG nx_ip_total_fragment_requests;
ULONG nx_ip_successful_fragment_requests;
ULONG nx_ip_fragment_failures;
ULONG nx_ip_total_fragments_sent;
ULONG nx_ip_total_fragments_received;
ULONG nx_ip_arp_requests_sent;
ULONG nx_ip_arp_requests_received;
ULONG nx_ip_arp_responses_sent;
ULONG nx_ip_arp_responses_received;

405

Express Logic, Inc.

ULONG nx_ip_arp_aged_entries;
ULONG nx_ip_arp_invalid_messages;
ULONG nx_ip_arp_static_entries;
ULONG nx_ip_udp_packets_sent;
ULONG nx_ip_udp_bytes_sent;
ULONG nx_ip_udp_packets_received;
ULONG nx_ip_udp_bytes_received;
ULONG nx_ip_udp_invalid_packets;
ULONG nx_ip_udp_no_port_for_delivery;
ULONG nx_ip_udp_receive_packets_dropped;
ULONG nx_ip_udp_checksum_errors;
ULONG nx_ip_tcp_packets_sent;
ULONG nx_ip_tcp_bytes_sent;
ULONG nx_ip_tcp_packets_received;
ULONG nx_ip_tcp_bytes_received;
ULONG nx_ip_tcp_invalid_packets;
ULONG nx_ip_tcp_receive_packets_dropped;
ULONG nx_ip_tcp_checksum_errors;
ULONG nx_ip_tcp_connections;
ULONG nx_ip_tcp_passive_connections;
ULONG nx_ip_tcp_active_connections;
ULONG nx_ip_tcp_disconnections;
ULONG nx_ip_tcp_connections_dropped;
ULONG nx_ip_tcp_retransmit_packets;
ULONG nx_ip_tcp_resets_received;
ULONG nx_ip_tcp_resets_sent;
ULONG nx_ip_icmp_total_messages_received;
ULONG nx_ip_icmp_checksum_errors;
ULONG nx_ip_icmp_invalid_packets;
ULONG nx_ip_icmp_unhandled_messages;
ULONG nx_ip_pings_sent;
ULONG nx_ip_ping_timeouts;
ULONG nx_ip_ping_threads_suspended;
ULONG nx_ip_ping_responses_received;
ULONG nx_ip_pings_received;
ULONG nx_ip_pings_responded_to;
ULONG nx_ip_igmp_invalid_packets;
ULONG nx_ip_igmp_reports_sent;
ULONG nx_ip_igmp_queries_received;
ULONG nx_ip_igmp_checksum_errors;
ULONG nx_ip_igmp_groups_joined;

#ifndef NX_DISABLE_IGMPV2
ULONG nx_ip_igmp_router_version;

#endif
ULONG nx_ip_rarp_requests_sent;
ULONG nx_ip_rarp_responses_received;
ULONG nx_ip_rarp_invalid_messages;
VOID (*nx_ip_forward_packet_process)(struct NX_IP_STRUCT *, NX_PACKET *);
ULONG nx_ip_packet_id;
struct NX_PACKET_POOL_STRUCT *nx_ip_default_packet_pool;
TX_MUTEX nx_ip_protection;
UINT nx_ip_initialize_done;
NX_PACKET *nx_ip_driver_deferred_packet_head,
 *nx_ip_driver_deferred_packet_tail;
VOID (*nx_ip_driver_deferred_packet_handler)(struct NX_IP_STRUCT *, NX_PACKET *);
NX_PACKET *nx_ip_deferred_received_packet_head,
 *nx_ip_deferred_received_packet_tail;
VOID (*nx_ip_raw_ip_processing)(struct NX_IP_STRUCT *, NX_PACKET *);
NX_PACKET *nx_ip_raw_received_packet_head,
 *nx_ip_raw_received_packet_tail;
ULONG nx_ip_raw_received_packet_count;
TX_THREAD *nx_ip_raw_packet_suspension_list;
ULONG nx_ip_raw_packet_suspended_count;
TX_THREAD nx_ip_thread;
TX_EVENT_FLAGS_GROUP nx_ip_events;
TX_TIMER nx_ip_periodic_timer;
VOID (*nx_ip_fragment_processing)(struct NX_IP_DRIVER_STRUCT *);
VOID (*nx_ip_fragment_assembly)(struct NX_IP_STRUCT *);
VOID (*nx_ip_fragment_timeout_check)(struct NX_IP_STRUCT *);
NX_PACKET *nx_ip_timeout_fragment;

406 NetX User Guide

User Guide

NX_PACKET *nx_ip_received_fragment_head,
 *nx_ip_received_fragment_tail;
NX_PACKET *nx_ip_fragment_assembly_head,
 *nx_ip_fragment_assembly_tail;
VOID (*nx_ip_address_change_notify)(struct NX_IP_STRUCT *, VOID *);
VOID *nx_ip_address_change_notify_additional_info;
ULONG nx_ip_igmp_join_list[NX_MAX_MULTICAST_GROUPS];
NX_INTERFACE *nx_ip_igmp_join_interface_list[NX_MAX_MULTICAST_GROUPS];
ULONG nx_ip_igmp_join_count[NX_MAX_MULTICAST_GROUPS];
ULONG nx_ip_igmp_update_time[NX_MAX_MULTICAST_GROUPS];
UINT nx_ip_igmp_group_loopback_enable[NX_MAX_MULTICAST_GROUPS];
UINT nx_ip_igmp_global_loopback_enable;
void (*nx_ip_igmp_packet_receive)(struct NX_IP_STRUCT *, struct NX_PACKET_STRUCT *);
void (*nx_ip_igmp_periodic_processing)(struct NX_IP_STRUCT *);
void (*nx_ip_igmp_queue_process)(struct NX_IP_STRUCT *);
NX_PACKET *nx_ip_igmp_queue_head;

 ULONG nx_ip_icmp_sequence;
void (*nx_ip_icmp_packet_receive)(struct NX_IP_STRUCT *, struct NX_PACKET_STRUCT *);
void (*nx_ip_icmp_queue_process)(struct NX_IP_STRUCT *);
NX_PACKET *nx_ip_icmp_queue_head;
TX_THREAD *nx_ip_icmp_ping_suspension_list;
ULONG nx_ip_icmp_ping_suspended_count;
struct NX_UDP_SOCKET_STRUCT *nx_ip_udp_port_table[NX_UDP_PORT_TABLE_SIZE];
struct NX_UDP_SOCKET_STRUCT *nx_ip_udp_created_sockets_ptr;
ULONG nx_ip_udp_created_sockets_count;
void (*nx_ip_udp_packet_receive)(struct NX_IP_STRUCT *, struct NX_PACKET_STRUCT *);
UINT nx_ip_udp_port_search_start;
struct NX_TCP_SOCKET_STRUCT *nx_ip_tcp_port_table[NX_TCP_PORT_TABLE_SIZE];
struct NX_TCP_SOCKET_STRUCT *nx_ip_tcp_created_sockets_ptr;
ULONG nx_ip_tcp_created_sockets_count;
void (*nx_ip_tcp_packet_receive)(struct NX_IP_STRUCT *, struct NX_PACKET_STRUCT *);
void (*nx_ip_tcp_periodic_processing)(struct NX_IP_STRUCT *);
void (*nx_ip_tcp_fast_periodic_processing)(struct NX_IP_STRUCT *);
void (*nx_ip_tcp_queue_process)(struct NX_IP_STRUCT *);
NX_PACKET *nx_ip_tcp_queue_head,
 *nx_ip_tcp_queue_tail;
ULONG nx_ip_tcp_received_packet_count;
struct NX_TCP_LISTEN_STRUCT nx_ip_tcp_server_listen_reqs[NX_MAX_LISTEN_REQUESTS];
struct NX_TCP_LISTEN_STRUCT *nx_ip_tcp_available_listen_requests;
struct NX_TCP_LISTEN_STRUCT *nx_ip_tcp_active_listen_requests;
UINT nx_ip_tcp_port_search_start;
TX_TIMER nx_ip_tcp_fast_periodic_timer;
struct NX_ARP_STRUCT *nx_ip_arp_table[NX_ROUTE_TABLE_SIZE];
struct NX_ARP_STRUCT *nx_ip_arp_static_list;
struct NX_ARP_STRUCT *nx_ip_arp_dynamic_list;
ULONG nx_ip_arp_dynamic_active_count;
NX_PACKET *nx_ip_arp_deferred_received_packet_head,
 *nx_ip_arp_deferred_received_packet_tail;
UINT (*nx_ip_arp_allocate)(struct NX_IP_STRUCT *, struct NX_ARP_STRUCT **);
void (*nx_ip_arp_periodic_update)(struct NX_IP_STRUCT *);
void (*nx_ip_arp_queue_process)(struct NX_IP_STRUCT *);
void (*nx_ip_arp_packet_send)(struct NX_IP_STRUCT *,

ULONG destination_ip), NX_INTERFACE *nx_interface);
void (*nx_ip_arp_gratuitous_response_handler)(struct NX_IP_STRUCT *, NX_PACKET *);
void (*nx_ip_arp_collision_notify_response_handler)(void *);
void *nx_ip_arp_collision_notify_parameter;
ULONG nx_ip_arp_collision_notify_ip_address;
struct NX_ARP_STRUCT *nx_ip_arp_cache_memory;
ULONG nx_ip_arp_total_entries;
void (*nx_ip_rarp_periodic_update)(struct NX_IP_STRUCT *);
void (*nx_ip_rarp_queue_process)(struct NX_IP_STRUCT *);
NX_PACKET *nx_ip_rarp_deferred_received_packet_head,
 *nx_ip_rarp_deferred_received_packet_tail;
struct NX_IP_STRUCT *nx_ip_created_next,
 *nx_ip_created_previous;
void *nx_ip_reserved_ptr;
void (*nx_tcp_deferred_cleanup_check)(struct NX_IP_STRUCT *);
NX_INTERFACE nx_ip_interface[NX_MAX_IP_INTERFACES];

#ifndef NX_DISABLE_IP_STATIC_ROUTING
NX_IP_ROUTING_ENTRY nx_ip_routing_table[NX_IP_ROUTING_TABLE_SIZE];
ULONG nx_ip_routing_table_entry_count;

#endif

407

Express Logic, Inc.

} NX_IP;

typedef struct NX_IP_DRIVER_STRUCT
{

UINT nx_ip_driver_command;
UINT nx_ip_driver_status;
ULONG nx_ip_driver_physical_address_msw;
ULONG nx_ip_driver_physical_address_lsw;
NX_PACKET *nx_ip_driver_packet;
ULONG *nx_ip_driver_return_ptr;
struct NX_IP_STRUCT *nx_ip_driver_ptr;

} NX_IP_DRIVER;

typedef struct NX_IP_ROUTING_ENTRY_STRUCT
{

ULONG nx_ip_routing_entry_destination_ip;
ULONG nx_ip_routing_entry_net_mask;
ULONG nx_ip_routing_entry_next_hop_address;
struct NX_INTERFACE_STRUCT *nx_ip_routing_entry_ip_interface;

} NX_IP_ROUTING_ENTRY;

typedef struct NX_PACKET_STRUCT
{

struct NX_PACKET_POOL_STRUCT *nx_packet_pool_owner;
struct NX_PACKET_STRUCT *nx_packet_queue_next;
struct NX_PACKET_STRUCT *nx_packet_tcp_queue_next;
struct NX_PACKET_STRUCT *nx_packet_next;
struct NX_PACKET_STRUCT *nx_packet_last;
struct NX_PACKET_STRUCT *nx_packet_fragment_next;
ULONG nx_packet_length;
struct NX_INTERFACE_STRUCT *nx_packet_ip_interface;
ULONG nx_packet_next_hop_address
UCHAR *nx_packet_data_start;
UCHAR *nx_packet_data_end;
UCHAR *nx_packet_prepend_ptr;
UCHAR *nx_packet_append_ptr;

#ifdef NX_PACKET_HEADER_PAD
ULONG nx_packet_pad;

#endif
} NX_PACKET;

typedef struct NX_PACKET_POOL_STRUCT
{

ULONG nx_packet_pool_id;
CHAR *nx_packet_pool_name;
ULONG nx_packet_pool_available;
ULONG nx_packet_pool_total;
ULONG nx_packet_pool_empty_requests;
ULONG nx_packet_pool_empty_suspensions;
ULONG nx_packet_pool_invalid_releases;
struct NX_PACKET_STRUCT *nx_packet_pool_available_list;
CHAR *nx_packet_pool_start;
ULONG nx_packet_pool_size;
ULONG nx_packet_pool_payload_size;
TX_THREAD *nx_packet_pool_suspension_list;
ULONG nx_packet_pool_suspended_count;
struct NX_PACKET_POOL_STRUCT *nx_packet_pool_created_next,
 *nx_packet_pool_created_previous;

} NX_PACKET_POOL;

typedef struct NX_TCP_LISTEN_STRUCT
{

UINT nx_tcp_listen_port;
VOID (*nx_tcp_listen_callback)(NX_TCP_SOCKET *socket_ptr, UINT port);
NX_TCP_SOCKET *nx_tcp_listen_socket_ptr;

408 NetX User Guide

User Guide

ULONG nx_tcp_listen_queue_maximum;
ULONG nx_tcp_listen_queue_current;
NX_PACKET *nx_tcp_listen_queue_head,
 *nx_tcp_listen_queue_tail;
struct NX_TCP_LISTEN_STRUCT *nx_tcp_listen_next,

 *nx_tcp_listen_previous;
} NX_TCP_LISTEN;

typedef struct NX_TCP_SOCKET_STRUCT
{

ULONG nx_tcp_socket_id;
CHAR *nx_tcp_socket_name;
UINT nx_tcp_socket_client_type;
UINT nx_tcp_socket_port;
ULONG nx_tcp_socket_mss;
ULONG nx_tcp_socket_connect_ip;
UINT nx_tcp_socket_connect_port;
ULONG nx_tcp_socket_connect_mss;
struct NX_INTERFACE_STRUCT *nx_tcp_socket_connect_interface
ULONG nx_tcp_socket_next_hop_address
ULONG nx_tcp_socket_connect_mss2;
ULONG nx_tcp_socket_tx_slow_start_threshold;
UINT nx_tcp_socket_state;
ULONG nx_tcp_socket_tx_sequence;
ULONG nx_tcp_socket_rx_sequence;
ULONG nx_tcp_socket_rx_sequence_acked;
ULONG nx_tcp_socket_delayed_ack_timeout;
ULONG nx_tcp_socket_fin_sequence;
ULONG nx_tcp_socket_fin_received;
ULONG nx_tcp_socket_tx_window_advertised;
ULONG nx_tcp_socket_tx_window_congestion;
ULONG nx_tcp_socket_tx_outstanding_bytes;
ULONG nx_tcp_socket_ack_n_packet_counter;
ULONG nx_tcp_socket_rx_window_default;
ULONG nx_tcp_socket_rx_window_current;
ULONG nx_tcp_socket_rx_window_last_sent;
ULONG nx_tcp_socket_tx_window_current;
ULONG nx_tcp_socket_packets_sent;
ULONG nx_tcp_socket_bytes_sent;
ULONG nx_tcp_socket_packets_received;
ULONG nx_tcp_socket_bytes_received;
ULONG nx_tcp_socket_retransmit_packets;
ULONG nx_tcp_socket_checksum_errors;
struct NX_IP_STRUCT *nx_tcp_socket_ip_ptr;
ULONG nx_tcp_socket_type_of_service;
UINT nx_tcp_socket_time_to_live;
ULONG nx_tcp_socket_fragment_enable;
ULONG nx_tcp_socket_receive_queue_count;
NX_PACKET *nx_tcp_socket_receive_queue_head,
 *nx_tcp_socket_receive_queue_tail;
ULONG nx_tcp_socket_transmit_queue_maximum;
ULONG nx_tcp_socket_transmit_sent_count;
NX_PACKET *nx_tcp_socket_transmit_sent_head,
 *nx_tcp_socket_transmit_sent_tail;
ULONG nx_tcp_socket_timeout;
ULONG nx_tcp_socket_timeout_rate;
ULONG nx_tcp_socket_timeout_retries;
ULONG nx_tcp_socket_timeout_max_retries;
ULONG nx_tcp_socket_timeout_shift;
ULONG nx_tcp_socket_keepalive_timeout;
ULONG nx_tcp_socket_keepalive_retries;
struct NX_TCP_SOCKET_STRUCT *nx_tcp_socket_bound_next,
 *nx_tcp_socket_bound_previous;
TX_THREAD *nx_tcp_socket_bind_in_progress;
TX_THREAD *nx_tcp_socket_receive_suspension_list;
ULONG nx_tcp_socket_receive_suspended_count;
TX_THREAD *nx_tcp_socket_transmit_suspension_list;
ULONG nx_tcp_socket_transmit_suspended_count;
TX_THREAD *nx_tcp_socket_connect_suspended_thread;
TX_THREAD *nx_tcp_socket_disconnect_suspended_thread;

409

Express Logic, Inc.

TX_THREAD *nx_tcp_socket_bind_suspension_list;
ULONG nx_tcp_socket_bind_suspended_count;
struct NX_TCP_SOCKET_STRUCT *nx_tcp_socket_created_next,
 *nx_tcp_socket_created_previous;
VOID (*nx_tcp_urgent_data_callback)(struct NX_TCP_SOCKET_STRUCT *socket_ptr);
VOID (*nx_tcp_disconnect_callback)(struct NX_TCP_SOCKET_STRUCT *socket_ptr);
VOID (*nx_tcp_receive_callback)(struct NX_TCP_SOCKET_STRUCT *socket_ptr);
VOID (*nx_tcp_socket_window_update_notify)

(struct NX_TCP_SOCKET_STRUCT *socket_ptr);
void *nx_tcp_socket_reserved_ptr;
ULONG nx_tcp_socket_transmit_queue_maximum_default;

} NX_TCP_SOCKET;

typedef struct NX_UDP_SOCKET_STRUCT
{

ULONG nx_udp_socket_id;
CHAR *nx_udp_socket_name;
UINT nx_udp_socket_port;
struct NX_IP_STRUCT *nx_udp_socket_ip_ptr;
ULONG nx_udp_socket_packets_sent;
ULONG nx_udp_socket_bytes_sent;
ULONG nx_udp_socket_packets_received;
ULONG nx_udp_socket_bytes_received;
ULONG nx_udp_socket_invalid_packets;
ULONG nx_udp_socket_packets_dropped;
ULONG nx_udp_socket_checksum_errors;
ULONG nx_udp_socket_type_of_service;
UINT nx_udp_socket_time_to_live;
ULONG nx_udp_socket_fragment_enable;
UINT nx_udp_socket_disable_checksum;
ULONG nx_udp_socket_receive_count;
ULONG nx_udp_socket_queue_maximum;
NX_PACKET *nx_udp_socket_receive_head,
 *nx_udp_socket_receive_tail;
struct NX_UDP_SOCKET_STRUCT *nx_udp_socket_bound_next,
 *nx_udp_socket_bound_previous;
TX_THREAD *nx_udp_socket_bind_in_progress;
TX_THREAD *nx_udp_socket_receive_suspension_list;
ULONG nx_udp_socket_receive_suspended_count;
TX_THREAD *nx_udp_socket_bind_suspension_list;
ULONG nx_udp_socket_bind_suspended_count;
struct NX_UDP_SOCKET_STRUCT *nx_udp_socket_created_next,
 *nx_udp_socket_created_previous;
VOID (*nx_udp_receive_callback)(struct NX_UDP_SOCKET_STRUCT *socket_ptr);
void *nx_udp_socket_reserved_ptr;
struct NX_INTERFACE_STRUCT *nx_udp_socket_ip_interface;

} NX_UDP_SOCKET;

410

User Guide

User Guide

A P P E N D I X D

BSD-Compatible Socket API

412 NetX User Guide

User Guide

BSD-Compatible Socket API
The BSD-Compatible Socket API supports a subset
of the BSD Sockets API calls (with some limitations)
by utilizing NetX® primitives underneath. This BSD-
Compatible Sockets API layer should perform as fast
or slightly faster than typical BSD implementations
because this API utilizes internal NetX primitives and
bypasses unnecessary NetX error checking.

Configurable options allow the host application to
define the maximum number of sockets,
TCPmaximum window size, and depth of listen
queue.

Due to performance and architecture issues, this
BSD-Compatible Sockets API does not support all
BSD Sockets calls. In addition, not all BSD options
are available for the BSD services, specifically the
following:

• select() call works with only fd_set *readfds, other
arguments in this call e.g., writefds, exceptfds are
not supported.

• INT flags argument is not supported for send(),
recv(), sendto(), and recvfrom () calls.

• The BSD-Compatible Socket API supports only
limited set of BSD Sockets calls.

The source code is designed for simplicity and is
comprised of only two files, nx_bsd.c and nx_bsd.h.
Installation requires adding these two files to the
build project (not the NetX library) and creating the
host application which will use BSD Socket service
calls. The nx_bsd.h file must also be included in
your application source. Sample demo files are
included with the distribution which is freely available
with NetX. Further details are available in the help
and Readme files bundled with the BSD-Compatible
Socket API package.

NetX User Guide 413

Express Logic, Inc.

The BSD-Compatible Sockets API supports the
following BSD Sockets API calls:

INT getpeername(INT sockID, struct sockaddr
*remoteAddress, INT *addressLength);

INT getsockname(INT sockID, struct sockaddr
*localAddress, INT *addressLength);

INT recvfrom(INT sockID, CHAR *buffer, INT
buffersize, INT flags,struct sockaddr *fromAddr, INT
*fromAddrLen);

INT recv(INT sockID, VOID *rcvBuffer, INT
bufferLength, INT flags);

INT sendto(INT sockID, CHAR *msg, INT
msgLength, INT flags, struct sockaddr *destAddr, INT
destAddrLen);

INT send(INT sockID, const CHAR *msg, INT
msgLength, INT flags);

INT accept(INT sockID, struct sockaddr
*ClientAddress, INT *addressLength);

INT listen(INT sockID, INT backlog);

INT bind (INT sockID, struct sockaddr
*localAddress, INT addressLength);

INT connect(INT sockID, struct sockaddr
*remoteAddress, INT addressLength);

INT socket(INT protocolFamily, INT type, INT
protocol);

INT soc_close (INT sockID);

INT select(INT nfds, fd_set *readfds, fd_set
*writefds, fd_set *exceptfds, struct timeval *timeout);

414 NetX User Guide

User Guide

VOID FD_SET(INT fd, fd_set *fdset);

VOID FD_CLR(INT fd, fd_set *fdset);

INT FD_ISSET(INT fd, fd_set *fdset);

VOID FD_ZERO(fd_set *fdset);

User Guide

A P P E N D I X E

ASCII Character Codes

416 NetX User Guide

User Guide

ASCII Character Codes in HEX

0_ 1_ 2_ 3_ 4_ 5_ 6_ 7_
_0 NUL DLE SP 0 @ P ' p
_1 SOH DC1 ! 1 A Q a q
_2 STX DC2 " 2 B R b r
_3 ETX DC3 # 3 C S c s
_4 EOT DC4 $ 4 D T d t
_5 ENQ NAK % 5 E U e u
_6 ACK SYN & 6 F V f v
_7 BEL ETB ' 7 G W g w
_8 BS CAN (8 H X h x
_9 HT EM) 9 I Y i y
_A LF SUB * : J Z j z
_B VT ESC + ; K [K }
_C FF FS , < L \ l |
_D CR GS - = M] m }
_E SO RS . > N ^ n ~
_F SI US / ? O _ o DEL

most significant nibble

le
as

t s
ig

ni
gi

ca
nt

 n
ib

bl
e

User Guide

I N D E X

Index

Symbols

_nx_arp_packet_deferred_receive 47,
359, 361

_nx_ip_driver_deferred_processing 48,
356

_nx_ip_packet_deferred_receive 48, 359
_nx_ip_packet_receive 47, 359, 361
_nx_ip_thread_entry 46
_nx_rarp_packet_deferred_receive 47,

359, 361
_nx_version_id 39

Numerics

16-bit checksum 86, 93
16-bit identification 62
48-bit address support 71

A

accelerated software development process
 20

accepting a TCP server connection 250
access functions 47
ACK 53

returned 101
adding deferred packet logic to the NetX IP

helper thread 360
adding static route 198
Address Resolution Protocol (see ARP) 71
address specifications

broadcast 60
multicast 60
unicast 60

all hosts address 81
allocating a packet from specified pool 204

allocating memory packets 49
allocation of packets for ARP, RARP,

ICMP, IGMP 67
ANSI C 17, 21
appending data to end of packet 208
application development area 26
application interface calls 45
application migration path 21
application source and link 27
application specific modifications 17
application threads 27, 44
ARP 27

periodic processing 46
processing 72

ARP aging 74
disabled 75

ARP cache 72
ARP dynamic entries 72
ARP Enable 72
ARP enable service 72
ARP entry from dynamic ARP entry list 72
ARP entry setup 72
ARP information gathering

disabling 30
ARP messages 73

Ethernet destination address 73
Ethernet source address 73
frame type 74
hardware size 74
hardware type 74
operation code 74
protocol size 74
protocol type 74
sender Ethernet address 74
sender IP address 74
target Ethernet address 74
target IP address 74

418 NetX User Guide

User Guide

ARP packets 28
format 76
processing 46

ARP request information in the ARP cache
30

ARP request message 73
ARP requests 72, 73
ARP response 73
ARP response send 350
ARP response send request 350
ARP send 349
ARP send packet request 350
ARP static entries 72
ARP statistics and errors 75
ARP timeout 47
array of internal ARP mapping data

structures 72
ASCII

character codes in HEX 416
format 24

asynchronous events 47
attach interface 352
attach interface request 352
attaching network interface to IP instance

182
automatic invalidation of dynamic ARP

entries 74

B

backing up NetX distribution disk 26
basic structure for NetX physical media

drivers 361
big endian 61, 74, 77, 79, 84, 85, 93
binary version of NetX C library 26
binding client TCP socket to TCP port 234
binding UDP socket to UDP port 314
black box 17
broadcast addresses 60
BSD-compatible socket API 18
buffering packets 47
building a NetX application 27
building a TCP header 100
building a valid NetX packet 359
building the NetX runtime library 26

bypassing changes to see if problem
changes 28

byte swapping on little endian environments
 30

C

C compilers 11
C header files 25
C include files 26
calculation of capacity of pool 55
callback function 46
calling thread’s context 45
causing IP instance to leave specified

multicast group 150
chaining fixed size packet structures 55
characteristics of IP instance found in

control block 68
characteristics of packet memory pool 58
checking status of an IP instance 202
checking status of attached IP interface

186
checksum 35, 45
checksum calculation 100
checksum logic

disabling 35
checksum logic on IP packets sent

disabling 32
checksum logic on received TCP packets

disabling 35
checksum processing in lower-priority

threads 45
Class D IP address 81
Class D multicast addresses 82
classes of IP addresses 58
client binding 102
client connection requests 100
commercial network stacks 17
compatibility with legacy NetX Ethernet

drivers 65
compilation 27
complete NetX source code 25
complex protocols 48
configuration 28

Index 419

Express Logic, Inc.

configuring socket’s transmit parameters
302

connecting a client TCP socket 236
connection events 94
connection management 49
connection request to a TCP server 95
connection service 102
connectionless protocols 60
connectionless sending and receiving of

data 49
contents of distribution disk 25
copying packet 206
CRC logic 32
CRC processing 35
create services 45
creating a packet pool in specified memory

area 216
creating a static IP to hardware mapping in

ARP cache 128
creating a TCP client or server socket 272
creating a UDP socket 322
creating an IP instance 158
creating IP instance with IP address of zero

 76
creating IP instances 66
Customer Support Center 12

D

data encapsulation 49
data structures 25
data transfer between network members

85
datagram

definition 62
debug packet dumping 29
debugging 24
default packet pool 44, 66, 67
deferred driver packet handling 29
deferred IP packet reception 46
deferred processing event 357
deferred processing queue 48
deferred receive packet handling 360
deferring interrupt processing 48

deleting a previously created IP instance
160

deleting a previously created packet pool
218

deleting a static IP to hardware mapping in
the ARP cache 130

deleting a TCP socket 276
deleting a UDP socket 324
deleting all static ARP entries 126
deleting static route 200
delivering packet to first suspended thread

101
demo application 25, 27
demo_netx.c 25
demonstration system 27
destination address of the packet 71
destination IP address 64
development investment protection 21
development process 20
development tool environment 26
development tool options 38
development tool specific data definitions

25
development tools 25
disabling checksum for the UDP socket

318
disabling error checking 29
disabling IGMP loopback 142
disabling IP packet forwarding 164
disabling IP packet fragmenting 168
disabling link 347
disabling listening for client connection on

TCP port 266
disabling raw packet sending/receiving 188
disabling Reverse Address Resolution

Protocol (RARP) 226
disabling the UDP checksum logic 87
disconnect callbacks 46
disconnect processing 99
disconnecting client and server socket

connections 278
disconnection services 102
distribution disk 38
distribution disk contents 25
driver deferred processing 356

420 NetX User Guide

User Guide

driver entry 345
driver initialization 46, 67, 346, 360
driver input 359
driver introduction 344
driver output 358
driver output function 348
driver request data structure 345
driver requests 345
DSP 16
duplex type request 354
dynamic ARP entries 72
dynamically mapping 32-bit IP addresses

71

E

ease of use 20
easy-to-use interface 20
embedded development 24
embedded network applications 19
enable link 347
enable services 45
enabling Address Resolution Protocol

(ARP) 116
enabling checksum for the UDP socket 320
enabling ICMP processing 78
enabling IGMP loopback 144
enabling Internet Control Message Protocol

(ICMP) component 132
enabling Internet Group Management

Protocol (IGMP) component 138
enabling IP packet forwarding 166
enabling IP packet fragmenting 170
enabling listening for client connection on

TCP port 254
enabling raw packet sending/receiving 190
enabling Reverse Address Resolution

Protocol (RARP) 228
enabling TCP component of NetX 242
enabling UDP component of NetX 306
ensuring driver supplies ARP and IP

packets 28
entry point of internal IP thread 46
Ethernet 71
Ethernet ARP requests formats 73

examining default packet pool 28
examining NX_IP structure 28
external ping request 80
extracting data from packet via an offset

210
extracting IP and sending port from UDP

datagram 340
extracting network parameters from UDP

packet 312

F

fast response 19
files common to product distributions 25
finding next available TCP port 244
finding next available UDP port 308
first packet of next separate packet 53
fixed-size memory blocks 50
fixed-size packet pools 50
flow control for data transfer 100
fragment timeout processing 47
fragmentation 50
fragmented IP packets 65
freeing up processor cycles 16
function prototype for registration of the

deferred packet handler 360
function prototype for the deferred receive

function 360
functional components of NetX 41

G

gateway IP address 60
getting allocation errors 356
getting duplex type 354
getting error count 354
getting length of packet data 214
getting link speed 353
getting link status 353
getting MSS of socket 284
getting MSS of socket peer 286
getting port number bound to client TCP

socket 238
getting receive packet count 355
getting transmit packet count 355

Index 421

Express Logic, Inc.

global data structures 25
guide conventions 10

H

handling
periodic processing 67

handling connection and disconnection
actions 101

handling deferred packet processing 67
head and tail pointers of the transmit queue

 358
headers 49
headers in the TCP/IP implementation 61,

93
higher-level protocols 61
high-speed Internet connectivity 19
host system considerations 24
hosts with multiple interfaces 65

I

I/O 44
IBM-PC hosts 24
ICMP 48
ICMP debug log 31
ICMP enable 78
ICMP header format 79
ICMP information gathering

disabling 31
ICMP ping message format 79
ICMP statistics and errors 80
IGMP 48
IGMP debug log 32
IGMP enable 81
IGMP header 83
IGMP header format 83
IGMP initialization 81
IGMP periodic processing 46
IGMP processing 46, 81
IGMP query messages 84

format 84
IGMP report 82
IGMP report message 83
IGMP report message format 83

IGMP statistics and errors 84
IGMP timeout 47
IGMP v2 support disabled 32
image download to target 27
implemented as a C library 16
improved responsiveness 19
incoming IP packets 47, 54
increased throughput 20
increasing stack size during the IP create

67
initial execution 44
initial IP address 66
initialization 44, 45, 66, 102

NetX system 27
of driver 46

initializing NetX system 232
initiating ARP requests 64
in-line processing 16
instruction image requirements 16
integrated with 21
interface and next hop address 94
interface control block 66
interface control block assigned to the

packet 54
internal component function calls 16
internal IP send processing 348
internal IP send routine 100
Internal IP thread 45
internal IP thread 44, 46, 48, 65
internal IP thread calls 46
internal transmit sent queue 101
Internet Control Message Protocol (see

ICMP) 78
Internet Group Management Protocol (see

IGMP) 81, 377
Internet Protocol (see IP) 58
interrupt routine 48
interrupt service routine 47
invalidating all dynamic entries in ARP

cache 112
IP address 58, 68

13-bit fragment offset 63
16-bit checksum 63
16-bit total length 62
32-bit destination IP address 63

422 NetX User Guide

User Guide

32-bit source IP address 63
3-bit flags 62
4-bit header length 62
4-bit version 62
8-bit protocol 63
8-bit time to live (TTL) 63
8-bit type of service (TOS) 62
gateway 60

IP address structure 59
IP checksum 64

logic 32
IP control block

NX_IP 68
IP create call 46
IP create service 67
IP data structure 44
IP datagram 62
IP debug log 33
IP fragment assembly timeouts 46
IP fragmentation 63

disabling 64
IP fragmentation logic

disabling 32
IP header 60, 64
IP header format 61
IP helper thread 67, 101, 347
IP information gathering

disabling 32
IP instance 27, 67

control blocks 68
creation 44

IP packet fragment assembly 46
IP packets 28, 47, 48
IP periodic timers 47
IP pseudo header 86, 93
IP receive 65
IP receive processing 65
IP resources 44
IP send 64
IP send function 45
IP send processing 64
IP statistics and errors 68
IP version 4 62
IP_ADDRESS 60
ISR processing time 48

issuing a command to the network driver
162

J

joining IP interface to specified multicast
group 146

joining the specified multicast group 148

L

last packet within the same network packet
 53

layering 49
least significant 32-bits of physical address

 348, 350
least significant 32-bits of physical multicast

address 351, 352
line speed request 353
link 27
link allocation error count request 356
link enable call 46
link error count request 355
link level 48
link receive packet count request 355
link status request 353
link transmit packet count request 356
linked-list manipulation 50
linked-list processing 50
Linus (Unix) development platforms 26
listen callbacks 46
listening for packets with the Ethernet

address 82
locating a physical hardware address given

an IP address 120
locating an IP address given a physical

address 124
logical connection point in the TCP protocol

 94
logical loopback interface 69
long-word alignment 55
long-word boundary 55
loopback packet out the logical interface 70
low packet overhead path 87
lowest layer protocol 48

Index 423

Express Logic, Inc.

M

maintaining relationship between IP
address and physical hardware address
 72

management
Internet Control Message Protocol

(ICMP) 376
Internet Protocol (IP) 377
Reverse Address Resolution Protocol

(RARP) 379
Transmission Control Protocol (TCP)

379
management-type protocols 48
managing the flow of data 48
maximum number of ARP retries without

ARP response 31
maximum number of multicast groups that

can be joined 32
media driver 66
memory and priority of the internal IP thread

 66
memory areas

NetX objects 57
ThreadX 57

microprocessors 19
minimal source code 25
minimizing dropped packets 360
minimizing ISR processing 360
most significant 32-bits of physical address

 348, 350
most significant 32-bits of physical multicast

address 351, 352
multicast addresses 60
multicast group 81
multicast group join 82, 351
multicast group join request 351
multicast group leave 82, 351
multicast group leave request 352
multicast groups on the primary network 82
multicast IP addresses 81
multicast routers 84
multihome devices 94
multihome host 70
multihome host application 66

multihome hosts 46, 47, 75, 77, 82, 95,
 361

multihome support 69
multihome support service

nx_igmp_multicast_interface_join 70
nx_ip_interface_address_get 70
nx_ip_interface_address_set 70
nx_ip_interface_attach 70
nx_ip_interface_info_get 70
nx_ip_interface_status_check 70
nx_ip_raw_packet_interface_send 70
nx_udp_socket_interface_send 70

multiple interfaces 70
multiple linked lists 72
multiple network interface support 69
multiple physical network interfaces 69
multiple pools of fixed-size network packets

 50
multiple thread suspension 57

N

naming convention 26
network data packets 49
network destination IP addresses 70
network driver 17, 44, 46, 47, 48, 63, 64
network hardware 20
network layer 48
network mask 66, 68
network packets on a queue 55
network stack 17
network traffic 20
NetX architecture 20
NetX ARP software 75
NetX benefits 19
NetX callback functions 46
NetX constants 383

alphabetic listings 384
NetX data structures 27
NetX data types 403
NetX distribution 26
NetX error checking API

removal 29
NetX IGMP software 84
NetX installation 26

424 NetX User Guide

User Guide

NetX IP send routine 17
NetX IP software 68
NetX library 27
NetX library file 26
NetX packet management software 57
NetX packet pool create 56
NetX physical media drivers 343
NetX port 25, 27
NetX protocol stack 19, 25
NetX RARP software 78
NetX runtime library 27
NetX services 27, 105, 375
NetX source code 24
NetX system initialization 27
NetX unique features 16
NetX Version ID 39
netx.txt 39
new application threads 28
new processor architecture 21
next packet within same network packet 53
notifying application if IP address changes

152
notifying application of each received

packet 334
notifying application of received packets

294
notifying application of window size updates

 304
number of bytes in entire network packet

54
number of bytes in the memory area 55
number of keepalive retries before

connection is broken 36
number of packets queued while waiting for

an ARP response 31
number of seconds ARP entries remain

valid 31
number of seconds between ARP retries

31
number of ThreadX timer ticks in one

second 33
nx_api.h 25, 26, 27, 31, 32, 33, 35, 36,

 58, 60, 68, 90, 103
NX_ARP_DISABLE_AUTO_ARP_ENTRY

30

nx_arp_dynamic_entries_invalidate 112
nx_arp_dynamic_entry_set 114
nx_arp_enable 72, 116
NX_ARP_EXPIRATION_RATE 31, 75
nx_arp_gratuitous_send 118
nx_arp_hardware_address_find 120
nx_arp_info_get 75, 122
nx_arp_ip_address_find 124
NX_ARP_MAX_QUEUE_DEPTH 31, 64
NX_ARP_MAXIMUM_RETRIES 31, 73
nx_arp_static_entries_delete 126
nx_arp_static_entry_create 72, 128
nx_arp_static_entry_delete 130
NX_ARP_UPDATE_RATE 31, 73
NX_DEBUG 29
NX_DEBUG_PACKET 29
NX_DISABLE_ARP_INFO 30
NX_DISABLE_ERROR_CHECKING 29
NX_DISABLE_FRAGMENTATION 32, 64
NX_DISABLE_ICMP_INFO 31
NX_DISABLE_IGMP_INFO 32
NX_DISABLE_IGMPV2 32
NX_DISABLE_IP_INFO 32
NX_DISABLE_IP_RX_CHECKSUM 32
NX_DISABLE_IP_TX_CHECKSUM 32
NX_DISABLE_LOOPBACK_INTERFACE

33, 69, 70
NX_DISABLE_PACKET_INFO 34
NX_DISABLE_RARP_INFO 34
NX_DISABLE_RESET_DISCONNECT 34
NX_DISABLE_RX_SIZE_CHECKING 33
NX_DISABLE_TCP_INFO 34
NX_DISABLE_TCP_RX_CHECKSUM 35
NX_DISABLE_TCP_TX_CHECKSUM 35
NX_DISABLE_UDP_INFO 38
NX_DRIVER_DEFERRED_PROCESSING

 29, 360
NX_ENABLE_IP_STATIC_ROUTING 33,

71
nx_icmp_enable 78, 132
NX_ICMP_ENABLE_DEBUG_LOG 31
nx_icmp_info_get 81, 134
nx_icmp_ping 136
nx_igmp_enable 81, 138
NX_IGMP_ENABLE_DEBUG_LOG 32

Index 425

Express Logic, Inc.

nx_igmp_info_get 84, 140
nx_igmp_loopback_disable 142
nx_igmp_loopback_enable 144
nx_igmp_multicast_interface_join 82, 146,

 351
nx_igmp_multicast_join 82, 148, 351
nx_igmp_multicast_leave 82, 150, 351
NX_INTERFACE 344, 347, 357
nx_interface_additional_link_info 357
nx_interface_ip_mtu_size 63
nx_interface_link_up 347, 353
NX_IP structure 344
nx_ip_address_change_notifiy 152
nx_ip_address_get 152, 154
nx_ip_address_set 156
nx_ip_create 45, 47, 66, 67, 69, 71, 75,

 158, 346
nx_ip_delete 160, 347
NX_IP_DRIVER 345, 346, 347, 348, 349,

 350, 352, 353, 355, 356, 357
nx_ip_driver_commad 345
nx_ip_driver_command 346, 347, 348,

349, 350, 351, 352, 353, 354, 355,
356, 357

nx_ip_driver_direct_command 162, 353,
354, 355, 356, 357

nx_ip_driver_interface 346, 347, 348,
349, 350, 351, 352, 353, 354, 355,
356, 357

nx_ip_driver_packet 348, 349, 350
nx_ip_driver_physical_address_lsw 348,

349, 350, 351, 352
nx_ip_driver_physical_address_msw 348,

349, 350, 351, 352
nx_ip_driver_ptr 346, 347, 348, 349, 350,

 351, 352, 353, 354, 355, 356, 357
nx_ip_driver_return_ptr 353, 354, 355,

356, 357
nx_ip_driver_status 345, 352
NX_IP_ENABLE_DEBUG_LOG 33
nx_ip_forwarding_disable 164
nx_ip_forwarding_enable 166
nx_ip_fragment_disable 168
nx_ip_fragment_enable 170
nx_ip_gateway_address_set 172

nx_ip_info_get 68, 174
nx_ip_interface 54
nx_ip_interface_address_get 178
nx_ip_interface_address_set 180
nx_ip_interface_attach 66, 69, 75, 182,

346, 352
nx_ip_interface_info_get 184
nx_ip_interface_status_check 77, 186,

353
NX_IP_PERIODIC_RATE 33, 35
nx_ip_raw_packet_disable 188
nx_ip_raw_packet_enable 190
nx_ip_raw_packet_enabled 65
nx_ip_raw_packet_interface_send 65,

192
nx_ip_raw_packet_receive 66, 194
nx_ip_raw_packet_send 65, 196
NX_IP_ROUTING_TABLE_SIZE 33
nx_ip_socket_send 87
nx_ip_static_route_add 71, 198
nx_ip_static_route_delete 71, 200
nx_ip_status_check 45, 77, 202, 353
NX_LINK_ARP_RESPONSE_SEND 350
NX_LINK_ARP_SEND 349
NX_LINK_DISABLE 348
NX_LINK_ENABLE 347
NX_LINK_GET_ALLOC_ERRORS 356
NX_LINK_GET_DUPLEX_TYPE 354
NX_LINK_GET_ERROR_COUNT 355
NX_LINK_GET_RX_COUNT 355
NX_LINK_GET_SPEED 353
NX_LINK_GET_STATUS 353
NX_LINK_GET_TX_COUNT 356
NX_LINK_INITIALIZE 346
NX_LINK_MULTICAST_JOIN 351
NX_LINK_MULTICAST_LEAVE 352
NX_LINK_PACKET_BROADCAST 349
NX_LINK_PACKET_SEND 348
NX_LINK_RARP_SEND 350
NX_LINK_USER_COMMAND 357
NX_LITTLE_ENDIAN 30
NX_MAX_IP_INTERFACES 33, 69
NX_MAX_LISTEN_REQUESTS 35
NX_MAX_MULTICAST_GROUPS 32

426 NetX User Guide

User Guide

NX_MAX_PHYSICAL_INTERFACES 30,
69

nx_next_hop_address 54
NX_PACKET 54, 55, 101
nx_packet_allocate 204
NX_PACKET_ALLOCATED 53
nx_packet_append_ptr 55
nx_packet_copy 206
nx_packet_data_append 208
nx_packet_data_end 54
nx_packet_data_extract_offset 210
nx_packet_data_retrieve 212
nx_packet_data_start 54
NX_PACKET_ENABLE_DEBUG_LOG 34
nx_packet_fragment_next 54
NX_PACKET_FREE 53
nx_packet_last 53
nx_packet_length 54
nx_packet_length_get 214
nx_packet_next 53
nx_packet_pool_create 54, 216
nx_packet_pool_delete 218
nx_packet_pool_info_get 58, 220
nx_packet_prepend_ptr 55
nx_packet_queue_next 53, 358
nx_packet_release 222
nx_packet_tcp_queue_next 53
nx_packet_transmit_release 53, 224, 358
NX_PHYSICAL_HEADER 30
NX_PHYSICAL_TRAILER 30
nx_port.h 11, 25, 26, 33
nx_rarp_disable 226
nx_rarp_enable 228
NX_RARP_ENABLE_DEBUG_LOG 34
nx_rarp_info_get 78, 230
NX_RARP_UPDATE_RATE 77
nx_rnd.c 361
NX_SUCCESS 345
nx_system_initialize 27, 44, 232
NX_TCP_ACK_EVERY_N_PACKETS 35
NX_TCP_ACK_TIMER_RATE 35
nx_tcp_client_socket_bind 95, 234
nx_tcp_client_socket_connect 95, 236
nx_tcp_client_socket_port_get 238
nx_tcp_client_socket_unbind 97, 240

nx_tcp_enable 91, 242
NX_TCP_ENABLE_DEBUG_LOG 35
NX_TCP_ENABLE_KEEPALIVE 35
NX_TCP_FAST_TIMER_RATE 36
nx_tcp_free_port_find 244
NX_TCP_IMMEDIATE_ACK 36
nx_tcp_info_get 103, 246
NX_TCP_KEEPALIVE_INITIAL 36
NX_TCP_KEEPALIVE_RETRIES 36
NX_TCP_KEEPALIVE_RETRY 36
NX_TCP_MAXIMUM_RETRIES 37
NX_TCP_MAXIMUM_TX_QUEUE 37
NX_TCP_RETRY_SHIFT 38
nx_tcp_server_socket_accept 98, 99, 250
nx_tcp_server_socket_listen 98, 100, 254
nx_tcp_server_socket_relisten 98, 100,

258
nx_tcp_server_socket_unaccept 99, 262
nx_tcp_server_socket_unlisten 100, 266
NX_TCP_SOCKET 103
nx_tcp_socket_bytes_available 270
nx_tcp_socket_create 95, 97, 102, 272
nx_tcp_socket_delete 97, 276
nx_tcp_socket_disconnect 95, 99, 278
nx_tcp_socket_info_get 103, 280
nx_tcp_socket_mss_get 284
nx_tcp_socket_mss_peer_get 286
nx_tcp_socket_mss_set 288
nx_tcp_socket_peer_info_get 290
nx_tcp_socket_receive 292
nx_tcp_socket_receive_notify 101, 294
nx_tcp_socket_send 100, 296
nx_tcp_socket_state_wait 300
nx_tcp_socket_transmit_configure 302
nx_tcp_socket_window_update_notify 304
NX_TCP_TRANSMIT_TIMER_RATE 38
nx_tcp.h 35, 36, 38
nx_udp_enable 85, 306
NX_UDP_ENABLE_DEBUG_LOG 38
nx_udp_free_port_find 308
nx_udp_info_get 90, 310
nx_udp_packet_info_extract 312
NX_UDP_SOCKET 90
nx_udp_socket_bind 314
nx_udp_socket_bytes_available 316

Index 427

Express Logic, Inc.

nx_udp_socket_checksum_disable 87,
318

nx_udp_socket_checksum_enable 320
nx_udp_socket_create 89, 322
nx_udp_socket_delete 324
nx_udp_socket_info_get 90, 326
nx_udp_socket_interface_send 328
nx_udp_socket_port_get 330
nx_udp_socket_receieve_notify 89
nx_udp_socket_receive 45, 88, 332
nx_udp_socket_receive_notify 334
nx_udp_socket_send 17, 45, 87, 336
nx_udp_socket_unbind 338
nx_udp_source_extract 340
NX_UNHANDLED_COMMAND 358
nx.a (or nx.lib) 27
nx.lib 26
nxd_udp_socket_extract 146, 193

O

optimal packet payload size 50
outgoing fragmentation 64
overwriting memory

IP helper thread 67

P

packet allocation 50
packet broadcast 348
packet broadcast request 349
packet deallocation 50
packet destination IP address 70
packet header 56
packet interface 70
packet memory pool 57
packet memory pools 49
packet payload 57
packet pool control block

NX_PACKET_POOL 58
packet pool control blocks 58
packet pool creation 44
packet pool information gathering

disabling 34
packet pool memory area 57

packet pools 50
packet reception 47
packet send 348
packet send processing 348
packet size 55
packet transmission 47, 53
packet transmission completion 47
packet_ptr 361
packet-receive processing 17
packets

fast processing of 20
packets requiring IP address resolution 64
partitioning network aspect 20
passing error and control information

between IP network members 78
path for the development tools 26
payload size 54, 55
payload size for packets in pool 58
performance advantages 16
periodic RARP request 77
periodic timers 47
physical address mapping 82
physical Ethernet addresses 82
physical layer header removed 359
physical media 71
physical media driver 53, 57
physical media header 348
physical packet header size 30
picking up port number bound to UDP

socket 330
Piconet™ architecture 16
ping processing 46
ping request 78
ping response 79, 80
ping response message 80
placing a raw packet on an IP instance 29
placing packets with receive data on TCP

socket receive queue 101
pointer to IP instance 346, 347, 348, 349,

 350, 351, 352, 353, 354, 355, 356,
357

pointer to the destination to place the
allocation error count 356

pointer to the destination to place the
duplex type 354

428 NetX User Guide

User Guide

pointer to the destination to place the error
count 355

pointer to the destination to place the line
speed 354

pointer to the destination to place the
receive packet count 355

pointer to the destination to place the status
 353

pointer to the destination to place the
transmit packet count 356

Pointer to the packet to send 349
pointer to the packet to send 348, 349,

350
pointer to the physical network interface

346, 347, 348, 349, 350, 351, 352,
353, 354, 355, 356, 357

pool capacity 55
pool statistics and errors 57
portability 11, 17
pre-defined multicast addresses 81
preemption 46
premium NetX 25
premium package 26
prepend pointer 65
prepend pointer in the packet 64
prevention of stalling network requests 45
primary interface 69
print debug information 29
priority and stack size of internal IP thread

45
processing needs 25
processing packet and periodic requests

67
processing requirements on a single packet

 20
processor isolation 20
processor-independent interface 20
product distribution 25
program execution overview 44
protecting software investment 21
public domain network stacks 18

Q

queue network packets 53

queue packets 53
queued client connection request packets

100

R

RAM driver example 361
RARP debug log 34
RARP enable 76
RARP information gathering

disabling 34
RARP packets 47
RARP reply 77
RARP reply messages 77
RARP reply packet 77
RARP request 76
RARP request packet format 76
RARP send 350
RARP send request 350
RARP statistics and errors 78
raw IP packet processing 66
raw IP packets 65
raw IP receive 66
raw IP send 65
readme_netx.txt 24, 25, 26, 27, 29, 38
ready-to-execute mode 45
real-time network software 19
receive functions 361
receive packet callback 89
receive packet callback function 101
receive packet dispatched 359
receive packet interrupt processing 56
receive packet processing 360
received packet 45
receiving a raw IP packet 194
receiving data from a TCP socket 292
receiving datagram from UDP socket 332
recompiling NetX library with debug options

 28
recompiling the NetX library 28
releasing a previously allocated packet 222
releasing a transmitted packet 224
reliable data path 49
re-listening for client connection on TCP

port 258

Index 429

Express Logic, Inc.

removing association between server
socket and server port 262

retransmit timeout period changes between
retries 38

retrieving data from packet 212
retrieving information

ARP activities 122
ICMP activities 134
IGMP activities 140

retrieving information about IP activities
174

retrieving information about packet pool
220

retrieving information about peer TCP
socket 290

retrieving information about RARP activities
 230

retrieving information about TCP activities
246

retrieving information about TCP socket
activities 280

retrieving information about UDP activities
310

retrieving information about UDP socket
activities 326

retrieving interface IP address 178
retrieving network interface parameters

184
retrieving number of bytes available for

retrieval 270, 316
retrieving the IP address and network mask

 154
Reverse Address Resolution Protocol (see

RARP) 75
RFC

1112 81
768 85
791 58
792 78
793 91
826 71

RFC 903 75
RFCs Supported by NetX

RFC 1112 18
RFC 2236 18

RFC 768 18
RFC 791 18
RFC 792 18
RFC 793 18
RFC 826 18
RFC 903 18

RISC 16
runtime by application threads 66
runtime image 16

S

scaling 16
seconds between retries of the keepalive

timer 36
seconds of inactivity before the keepalive

timer activates
defining 36

send packet request 348, 350
sending a raw IP packet 196
sending a UDP packet 85
sending and receiving of data 49
sending and receiving simple packets 48
sending and receiving TCP, UDP, ICMP,

and IGMP messages 58
sending and receiving UDP packets 85
sending data through a TCP socket 296
sending datagram through UDP socket

328, 336
sending gratuitous ARP request 118
sending or receiving UDP data 87
sending ping request to specified IP

address 136
sending raw IP packet out specified

network interface 192
sending request to unmapped IP address

72
server listen requests

defining 35
service call data type 11

CHAR 11
UINT 11
ULONG 11
VOID 11

service call interface 11, 20

430 NetX User Guide

User Guide

service prototypes 25
setting dynamic ARP entry 114
setting Gateway IP address 172
setting interface IP address and network

mask 180
setting MSS of socket 288
setting the IP address and network mask

156
setup and data transfer phase of a

connection 100
simulated network driver 27
size in bytes of the physical packet trailer

30
size of

NetX 16
socket interface 70
socket output queue 53
socket receive function 88
socket receive queue 88
socket transmit queue 99
socket waiting for a connection 100
sockets 27
software maintenance 20
source code

ANSI C 17
specification of IP addresses 60
stack sizes 28
standard NetX 25
standard package 26
start of the physical payload area 54
static ARP mapping 72
static IP routing 70
static routing table 71
statistics 57

free packets in pool 57
invalid packet releases 58
pool empty allocation requests 58
pool empty allocation suspensions 58
TCP socket bytes received 102
TCP socket bytes sent 102
TCP socket checksum errors 103
TCP socket packet retransmits 103
TCP socket packets queued 103
TCP socket packets received 102
TCP socket packets sent 102

TCP socket receive window size 103
TCP socket state 103
TCP socket transmit queue depth 103
TCP socket transmit window size 103
total ARP aged entries 75
total ARP dynamic entries 75
total ARP invalid messages 75
total ARP requests received 75
total ARP requests sent 75
total ARP responses received 75
total ARP responses sent 75
total ARP static entries 75
total ICMP checksum errors 80
total ICMP ping responses received 80
total ICMP ping threads suspended 80
total ICMP ping timeouts 80
total ICMP pings received 80
total ICMP pings responsed to 80
total ICMP pings sent 80
total ICMP unhandled messages 80
total IGMP checksum errors 84
total IGMP current groups joined 84
total IGMP queries received 84
total IGMP reports sent 84
total IP bytes received 68
total IP bytes sent 68
total IP fragments received 68
total IP fragments sent 68
total IP invalid packets 68
total IP packets received 68
total IP packets sent 68
total IP receive checksum errors 68
total IP receive packets dropped 68
total IP send packets dropped 68
total packet allocations 58
total packets in pool 57
total RARP invalid messages 78
total RARP requests sent 78
total RARP responses received 78
total TCP bytes received 102
total TCP bytes sent 102
total TCP connections 102
total TCP connections dropped 102
total TCP disconnections 102
total TCP invalid packets 102

Index 431

Express Logic, Inc.

total TCP packet retransmits 102
total TCP packets received 102
total TCP packets sent 102
total TCP receive checksum errors

102
total TCP receive packets dropped

102
total UDP bytes received 90
total UDP bytes sent 90
total UDP invalid packets 90
total UDP packets received 90
total UDP packets sent 90
total UDP receive checksum Errors 90
total UDP receive packets dropped 90
UDP socket bytes received 90
UDP socket bytes sent 90
UDP socket checksum errors 90
UDP socket packets queued 90
UDP socket packets received 90
UDP socket packets sent 90
UDP socket receive packets dropped

90
status and control requests 47
status changes 47
status information 345
stop listening on a server port 100
stream data transfer between two network

members 91
system configuration options 29
system equates 25
system initialization 44
system management 379
system tic division to calculate

fast TCP timer rate 36
timer rate for TCP transmit retry

processing 38
timer rate for TCP-delayed ACK

processing 35

T

target address space 57
target considerations 24
target hardware 24
target processor 25

target RAM 25
target ROM 24
TCP 49
TCP checksum 93
TCP checksum logic 35
TCP client connection 95
TCP client disconnection 95
TCP debug log 35
TCP disconnect protocol 97, 99
TCP enable 91
TCP for data transfer 94
TCP header 91

16-bit destination port number 91
16-bit source port number 91
16-bit TCP checksum 93
16-bit urgent pointer 93
16-bit window 93
32-bit acknowledgement number 92
32-bit sequence number 92
4-bit header length 92
6-bit code bits 93

TCP header control bits 93
TCP header format 91
TCP immediate ACK response processing

enabling 36
TCP information gathering

disabling 34
TCP keepalive timer

enabling 35
TCP output queue 53
TCP packet header 91
TCP packet queue processing 46
TCP packet receive 101
TCP packet retransmit 101
TCP packet send 100
TCP periodic processing 46
TCP ports 94
TCP queue 53
TCP receive notify 101
TCP receive packet processing 101
TCP server connection 97
TCP server disconnection 99
TCP socket control block

NX_TCP_SOCKET 103
TCP socket create 102

432 NetX User Guide

User Guide

TCP socket state machine 94
TCP socket statistics and errors 102
TCP sockets

number of in application 102
TCP transmit queue depth before

suspended or rejected TCP send
request 37

TCP window size 100
thread protection 25
thread stack 25
thread stack and priority 67
thread suspension 57, 67, 80, 89, 102
ThreadX 11, 19, 21, 26, 44
ThreadX context switches 17
ThreadX mutex object 25
ThreadX RTOS 45
ThreadX support 17
ThreadX supported processors 21
ThreadX timer 25
time constraints 19
time-to-market improvement 20
total number of physical network interfaces

on the host device 30
Transmission Control Protocol (TCP) 91
transmission logic 54
transmit acknowledge processing 101
transmit packet 101
transmit retries allowed before connection

is broken 37
transmitting packets 348
transport layer 48
troubleshooting 27
tx_application_define 27, 44, 45
tx_port.h 11
type of ICMP message

ping request 78
ping response 80

U

UDP 49
UDP checksum 17, 86
UDP checksum calculation 45, 86
UDP checksum logic 86
UDP debug log 38

UDP enable 85
UDP Fast Path 87
UDP Fast Path Technology 17
UDP Fast Path technology 87
UDP header 85, 87

16-bit destination port number 86
16-bit source port number 86
16-bit UDP checksum 86
16-bit UDP length 86

UDP header format 85
UDP information gathering

disabling 38
UDP packet data 86
UDP packet delivery to multiple network

members 81
UDP packet receive 88
UDP packet reception 87
UDP packet send 87
UDP packet transmission 85
UDP packet transmissions 88
UDP packets 48
UDP ports and binding 87
UDP receive notify 89
UDP receive packet processing 88
UDP socket 17, 87
UDP socket characteristics 90
UDP socket checksum logic 87
UDP socket control block

TX_UDP_SOCKET 90
UDP socket create 89
UDP socket receive queue 17
UDP socket statistics and errors 89
UDP socket’s receive queue 88
UDP utilization of IP protocol for sending

and receiving packets 85
unbinding a TCP client socket from a TCP

port 240
unbinding UDP socket from UDP port 338
unfragmented packets 54
unicast addresses 60
unimplemented commands 358
unique 32-bit Internet address 58
Unix host 24
upper layer protocol services 69
upper layer protocols 69

Index 433

Express Logic, Inc.

user command request 357
user commands 357
User Datagram Protocol (see UDP) 85
user-defined pointer 357
using deferred packet handling 360
using NetX 27
utilizing underlying physical media driver

58

V

version history 39

W

waiting for TCP socket to enter specific
state 300

while-forever loop 46
window size 100
window size adjusted dynamically 100

Z

zero copy implementation 16
zero copy performance 55

434

User Guide

	Title Page
	Contents
	Figures
	About This Guide
	Organization
	Guide Conventions
	NetX Data Types
	Customer Support Center
	Latest Product Information
	What We Need From You
	Where to Send Comments About This Guide

	Introduction to NetX
	NetX Unique Features
	Piconet™ Architecture
	Zero-copy Implementation
	UDP Fast Path™ Technology
	ANSI C Source Code
	Not A Black Box
	BSD-Compatible Socket API

	RFCs Supported by NetX
	Embedded Network Applications
	Real-time Network Software

	NetX Benefits
	Improved Responsiveness
	Software Maintenance
	Increased Throughput
	Processor Isolation
	Ease of Use
	Improve Time to Market
	Protecting the Software Investment

	Installation and Use of NetX
	Host Considerations
	Target Considerations
	Product Distribution
	NetX Installation
	Using NetX
	Troubleshooting
	Configuration Options
	System Configuration Options
	ARP Configuration Options
	ICMP Configuration Options
	IGMP Configuration Options
	IP Configuration Options
	Packet Configuration Options
	RARP Configuration Options
	TCP Configuration Options
	UDP Configuration Options

	NetX Version ID

	Functional Components of NetX
	Execution Overview
	Initialization
	Application Interface Calls
	Internal IP Thread
	IP Periodic Timers
	Network Driver

	Protocol Layering
	Packet Memory Pools
	Creating Packet Pools
	Packet Header NX_PACKET
	Pool Capacity
	Packet Pool Memory Area
	Thread Suspension
	Pool Statistics and Errors
	Packet Pool Control Block NX_PACKET_POOL

	Internet Protocol (IP)
	IP Addresses
	Gateway IP Address
	IP Header
	IP Fragmentation
	IP Send
	IP Receive
	Raw IP Send
	Raw IP Receive
	Creating IP Instances
	Default Packet Pool
	IP Helper Thread
	Thread Suspension
	IP Statistics and Errors
	IP Control Block NX_IP
	Multiple Network Interface (Multihome) Support
	Static IP Routing

	Address Resolution Protocol (ARP)
	ARP Enable
	ARP Cache
	ARP Dynamic Entries
	ARP Static Entries
	ARP Messages
	ARP Aging
	ARP Statistics and Errors

	Reverse Address Resolution Protocol (RARP)
	RARP Enable
	RARP Request
	RARP Reply
	RARP Statistics and Errors

	Internet Control Message Protocol (ICMP)
	ICMP Enable
	Ping Request
	Ping Response
	Thread Suspension
	ICMP Statistics and Errors

	Internet Group Management Protocol (IGMP)
	IGMP Enable
	Multicast IP Addresses
	Physical Address Mapping
	Multicast Group Join
	Multicast Group Leave
	IGMP Report Message
	IGMP Statistics and Errors

	User Datagram Protocol (UDP)
	UDP Enable
	UDP Header
	UDP Checksum
	UDP Ports and Binding
	UDP Fast Path™
	UDP Packet Send
	UDP Packet Receive
	UDP Receive Notify
	UDP Socket Create
	Thread Suspension
	UDP Socket Statistics and Errors
	UDP Socket Control Block TX_UDP_SOCKET

	Transmission Control Protocol (TCP)
	TCP Enable
	TCP Header
	TCP Checksum
	TCP Ports
	Client Server Model
	TCP Socket State Machine
	TCP Client Connection
	TCP Client Disconnection
	TCP Server Connection
	TCP Server Disconnection
	Stop Listening on a Server Port
	TCP Window Size
	TCP Packet Send
	TCP Packet Retransmit
	TCP Packet Receive
	TCP Receive Notify
	TCP Socket Create
	Thread Suspension
	TCP Socket Statistics and Errors
	TCP Socket Control Block NX_TCP_SOCKET

	Description of NetX Services
	NetX Network Drivers
	Driver Introduction
	Driver Entry
	Driver Requests
	Initialize
	Enable Link
	Disable Link
	Packet Send
	Packet Broadcast
	ARP Send
	ARP Response Send
	RARP Send
	Multicast Group Join
	Multicast Group Leave
	Attach Interface
	Get Link Status
	Get Link Speed
	Get Duplex Type
	Get Error Count
	Get Receive Packet Count
	Get Transmit Packet Count
	Get Allocation Errors
	Driver Deferred Processing
	User Commands
	Unimplemented Commands

	Driver Output
	Driver Input
	Deferred Receive Packet Handling

	Example RAM Ethernet Network Driver

	NetX Services
	Address Resolution Protocol (ARP)
	Internet Control Message Protocol (ICMP)
	Internet Group Management Protocol (IGMP)
	Internet Protocol (IP)
	Packet Management
	Reverse Address Resolution Protocol (RARP)
	System Management
	Transmission Control Protocol (TCP)
	User Datagram Protocol (UDP)
	Alphabetic Listing
	Listings by Value

	NetX Constants
	NetX Data Types
	BSD-Compatible Socket API
	BSD-Compatible Socket API
	ASCII Character Codes in HEX

	ASCII Character Codes
	Index

