DNS (Domain Name System) Client

User Guide

Express Logic, Inc.
858.613.6640
Toll Free 888. THREADX
FAX 858.521.4259

wWww.expresslogic.com

http://www.expresslogic.com/

©2002-2016 by Express Logic, Inc.

All rights reserved. This document and the associated NetX software are the sole property of Express Logic,
Inc. Each contains proprietary information of Express Logic, Inc. Reproduction or duplication by any means of
any portion of this document without the prior written consent of Express Logic, Inc. is expressly forbidden.
Express Logic, Inc. reserves the right to make changes to the specifications described herein at any time and
without notice in order to improve design or reliability of NetX. The information in this document has been
carefully checked for accuracy; however, Express Logic, Inc. makes no warranty pertaining to the correctness
of this document.

Trademarks

NetX, Piconet, and UDP Fast Path are trademarks of Express Logic, Inc. ThreadX is a registered trademark of
Express Logic, Inc.

All other product and company names are trademarks or registered trademarks of their respective holders.

Warranty Limitations

Express Logic, Inc. makes no warranty of any kind that the NetX products will meet the USER’s requirements,
or will operate in the manner specified by the USER, or that the operation of the NetX products will operate
uninterrupted or error free, or that any defects that may exist in the NetX products will be corrected after the
warranty period. Express Logic, Inc. makes no warranties of any kind, either expressed or implied, including but
not limited to the implied warranties of merchantability and fitness for a particular purpose, with respect to the
NetX products. No oral or written information or advice given by Express Logic, Inc., its dealers, distributors,
agents, or employees shall create any other warranty or in any way increase the scope of this warranty, and
licensee may not rely on any such information or advice.

Part Number: 000-1051
Revision 5.9

Contents

Chapter 1 Introduction to the NetX DNS CHent........c.ccoevviieiieiicicsecce e 4
DINS CHENE SEUD.....eetitiitieii ittt ettt 4
DINS IMBSSAGES ...ttt ittt ettt ettt ettt ettt et e bbbt e nab e e e nbb e e e nbb e e s nbb e e e nnbeeennreeans 5
Extended DNS ReSOUrce RECOIT TYPESooveiiiiiieiiieieriesie sttt 6
DINS CACNE.....eeiiieie bbb bbbttt sb bbb 7
DINS CHENt LIMITATIONS ...vviiviiieeie ettt eeenee e 8
DINS RFCS ..ottt bbb bbbt b bbb 8

Chapter 2 Installation and Use of NetX DNS ClHENtcoooiiiiiiiiiiniccecec e 9
Product DiStFDULION. ..ottt e 9
DINS CHent INStAlIAtION........cvoiiieiie e 9
USING the DNS CHENL ..o 9
Small Example System for DNS CHENt.........coooveiiiiiiiereeeeee e 10
Configuration OPLIONScceeiuiiieiieii et beeste e sreesreenne e 20

Chapter 3 Description of NetX DNS Client SEIVICES........cccoocviiririniiieieiese e 23
NX_dns_authority Zone Start get.........ccccveieiieie e 25
NX_ANS_CaChe_INITIAIIZEcceeiiee e 29
NX_dns_cache _NOtIfY CIEAT..........cccooiiiiei e 30
NX_ANS_CACNE_NOTITY SBL.....iiiiiiiii et 31
NX_ANS_CNAME_JBL....euieiieie ettt ettt et et e e n e s e teesbe e e e sreeneenne e 32
NX_ANS_CIBALE ..eevveeeiesieeieeie s tee sttt e et e s e st e be et esseenteesaeene e beenaeaneesaeeneenree e 34
NX_ANS_AEIELE ...ttt be et e e saeeeeere e 35
NX_dNS_dOmain_Name_SEIVEI GEL........ceiveiurrrerieeieseesteeieseesteeeesreesseeeesreesreeseesseens 36
nx_dns_domain_mail_exchange get.........cccoviiiiiiiccee e 39
NX_ANS_AOMAIN_SEIVICE _JBL....ciuieiieiieiieieeie e sie e stee e e et te e neesneeeeeree e 42
NX_ANS_ gt SEIVEITIST SIZE ...veiiieeii et 45
NX_dNS_INFO_DY NAME_QBL......coiee e 46
nx_dns_ipv4_address by Name gtcccceiiiiiiic i 48
NX_dNS_hoSt_DY addreSS_GeLcouveieiieece e 50
NX_dNS_hOSt_ DY NAME_GEL......ciiiie et 52
NX_ANS_NOSE TEXE QBL .o 54
NX_ANS_PACKEL POOI SBL......ocviiiieiecc e 56
Do RS =T AV - Vo o SR 58
Do YT AV o =) AU SRS 59
NX_ANS_SEIVEN _TEIMOVEeevviiieviesieeteesteestesseesseeeeeseesseesseaseesseesseessesseesseessesseesseessessennns 60

NX_ANS_Server_remMoVe_allcccvoiiiiiiiiie e 62

Chapter 1

Introduction to the NetX DNS Client

The DNS provides a distributed database that contains mapping between
domain names and physical IP addresses. The database is referred to as
distributed because there is no single entity on the Internet that contains the
complete mapping. An entity that maintains a portion of the mapping is called
a DNS Server. The Internet is composed of numerous DNS Servers, each of
which contains a subset of the database. DNS Servers also respond to DNS
Client requests for domain name mapping information, only if the server has
the requested mapping.

The DNS Client protocol for NetX provides the application with services to
request mapping information from one or more DNS Servers.

DNS Client Setup

In order to function properly, the DNS Client package requires that a NetX IP
instance has already been created.

After creating the DNS Client, the application must add one or more DNS
servers to the server list maintained by the DNS Client. To add DNS servers,
the application uses the nx_dns_server_add service.

If the NX_DNS_IP_GATEWAY_SERVER option is enabled, and the IP instance
gateway address is non zero, the IP instance gateway is automatically added
as the primary DNS server. If DNS server information is not statically known,
it may also be derived through the Dynamic Host Configuration Protocol
(DHCP) for NetX. Please refer to the NetX DHCP User Guide for more
information.

The DNS Client requires a packet pool for transmitting DNS messages. By
default, the DNS Client creates this packet pool when the nx_dns_create
service is called. The configuration options NX_DNS_PACKET_PAYLOAD and
NX_DNS_PACKET_PooL_SIZE allow the application to determine the packet
payload and packet pool size (e.g. number of packets) of this packet pool
respectively. These options are described in section “Configuration Options”
in Chapter Two.

An alternative to the DNS Client creating its own packet pool is for the
application to create the packet pool and set it as the DNS Client’s packet
pool using the nx_dns_packet _pool_set service. To do so, the
NX_DNS_CLIENT_USER_CREATE_PACKET_POOL option must be defined. This
option also requires a previously created packet pool using
nx_packet_pool_create as the packet pool pointer input to
nx_dns_packet_pool_set. When the DNS Client instance is deleted, the
application is responsible for deleting the DNS Client packet pool if
NX_DNS_CLIENT_USER_CREATE_PACKET_POOL is enabled if it is no longer
needed.

Note: For applications choosing to provide its own packet pool using the
NX_DNS_CLIENT_USER_CREATE_PACKET_POOL option, the packet size needs
to be able to hold the DNS maximum massage size (512 bytes) plus rooms
for UDP header, IPv4 header, and the MAC header.

DNS Messages

The DNS has a very simple mechanism for obtaining mapping between host
names and IP addresses. To obtain a mapping, the DNS Client prepares a
DNS query message containing the name or the IP address that needs to be
resolved. The message is then sent to the first DNS server in the server list. If
the server has such a mapping, it replies to the DNS Client using a DNS
response message that contains the requested mapping information. If the
server does not respond, the DNS Client queries the next server on its list
until all its DNS servers have been queried. If no response from all its DNS
servers is received, the DNS Client has retry logic to retransmit the DNS
message. On resending a DNS query, the retransmission timeout is doubled.
This process continues until the maximum transmission timeout (defined as
NX_DNS_MAX_RETRANS_TIMEOUT in nxd_dns.h) is reached or until a
successful response is received from that server is obtained.

NetX DNS Client can perform IPv4 address lookups (type A) by calling
nx_dns_host_by name_get or nx_dns_ipv4_address_by name_get. The
DNS Client can perform reverse lookups of IP addresses (type PTR queries)
to obtain web host names using nx_dns_host_by address_get.

DNS messaging utilizes the UDP protocol to send requests and field
responses. A DNS Server listens on port number 53 for queries from clients.
Therefore UDP services must be enabled in NetX using the nx_udp_enable
service on a previously created IP instance (nx_ip_create).

At this point, the DNS Client is ready to accept requests from the application
and send out DNS queries.

Extended DNS Resource Record Types

If NX_DNS_ENABLE_EXTENDED_RR_TYPES is enabled, NetX DNS Client
also supports the following record type queries:

CNAME contains the canonical name for an alias

TXT contains a text string

NS contains an authoritative name server

SOA contains the start of a zone of authority

MX used for mail exchange

SRV contains information on the service offered by the domain

With the exception of CNAME and TXT record types, the application must
supply a 4-byte aligned buffer to receive the DNS data record.

In NetX DNS Client, record data is stored in such a way to make most
efficient use of buffer space.

For those queries whose record types have variable data length, such as NS
records whose host names are of variable length, NetX DNS Client saves the
data as follows. The buffer supplied in the DNS Client query is organized into
an area of fixed length data and an area of unstructured memory. The top of
the memory buffer is organized into 4-byte aligned record entries. Each
record entry contains the IP address and a pointer to the variable length data
for that IP address. The variable length data for each IP address are stored
in the unstructured area memory starting at the end of the memory buffer.
The variable length data for each successive record entry is saved in the next
area memory adjacent to the previous record entries variable data. Hence,
the variable data ‘grows’ towards the structured area of memory containing
the record entries until there is insufficient memory to store another record
entry and variable data.

This is shown in the figure below:

beginning of record
buffer memory

~L

0 64 bits
entry 0 | MUK KK AN Pointer to host name string |
entry 1 | XX.XX.XX.XX Pointer to host name string |
enfry 2 | XXX XK.XX Pointer to host name string |

XX XK XK. XX i i
entry n ‘ Pointer to host name string ‘

| hest name n |

[ioaee- host name 2 |

host name 1 hostname 0 |

end of record T‘
buffer memory

The example of the DNS domain name (NS) data storage is shown above.

NetX DNS Client queries using the record storage format return the number
of records saved to the record buffer. This information enables the
application to extract NS records from the record buffer.

An example of a DNS Client query that stores variable length DNS data using
this record storage format is shown below:

UINT _nx_dns_domain_name_server_get(NX_DNS *dns_ptr,
UCHAR *host_name, VOID *record_buffer,
UINT buffer_size, UINT *record_count,
ULONG wait_option)

More details are available in Chapter 3, “Description of DNS Client Services”.

DNS Cache

If NX_DNS_CACHE_ENABLE is enabled, NetX DNS Client supports the DNS
Cache feature. After creating the DNS Client, the application can call the API
nx_dns_cache_initialize() to set the special DNS Cache. If enable DNS
Cache feature, DNS Client will find the available answer from DNS Cache

before starts to send DNS query, if find the available answer, directly return
the answer to application, otherwise DNS Client sends out query message to
DNS server and waits for the reply. When DNS Client gets the response
message and there is free cache available, DNS Client returns the answer to
the application and also adds the answer as resource record into DNS cache.

Each answer a data structure NX_DNS_RR (Resource Record) in the cache.
Strings (resource record name and data) in Records are variable length,
therefore are not stored in the NX_DNS_RR structure. The Record contains
pointers to the actual memory location where the strings are stored. The
string table and the Records share the cache. Records are stored from the
beginning of the cache, and grow towards the end of the cache. The string
table starts from the end of the cache and grows towards the beginning of the
cache. Each string in the string table has a length field and a counter field.
When a string is added to the string table, if the same string is already
present in the table, the counter value is incremented and no memory is
allocated for the string. The cache is considered full if no more resource
records or new strings can be added to the cache.

DNS Client Limitations

The DNS Client supports one DNS request at a time. Threads attempting to
make another DNS request are temporarily blocked until the previous DNS
request is complete.

The NetX DNS Client does not use data from authoritative answers to forward
additional DNS queries to other DNS servers.

DNS RFCs

NetX DNS is compliant with the following RFCs:

RFC1034 DOMAIN NAMES - CONCEPTS AND FACILITIES

RFC1035 DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION
RFC1480 The US Domain

RFC 2782 A DNS RR for specifying the location of services (DNS SRV)

Chapter 2

Installation and Use of NetX DNS Client

This chapter contains a description of various issues related to installation,
setup, and usage of the NetX DNS Client.

Product Distribution

NetX DNS Client is shipped on a single CD-ROM compatible disk. The
package includes two source files and a PDF file that contains this document,

as follows:

nx_dns.h Header file for NetX DNS Client
nx_dns.c C Source file for NetX DNS Client
nx_dns.pdf PDF description of NetX DNS Client

DNS Client Installation

To use NetX DNS Client, copy the source code files nx_dns.c and nx_dns.h
to the same directory where NetX is installed. For example, if NetX is installed
in the directory “\threadx\arm7\green” then the nx_dns.h and nx_dns.c files
should be copied into this directory.

Using the DNS Client

Using NetX DNS Client is easy. Basically, the application code must include
nx_dns.h after it includes tx_api.h and nx_api.h, in order to use ThreadX and
NetX, respectively. Once nx_dns.h is included, the application code is then
able to make the DNS function calls specified later in this guide. The
application must also add nx_dns.c to the build process. This file must be
compiled in the same manner as other application files and its object form
must be linked along with the files of the application. This is all that is required
to use NetX DNS.

Note that since DNS utilizes NetX UDP services, UDP must be enabled with
the nx_udp_enable call prior to using DNS.

10

Small Example System for DNS Client

In the example DNS application program provided in this section, nx_dns.h is
included at line 6. NX_DNS_CLIENT_USER_CREATE_PACKET_PooL, which allows
the DNS Client application to create the packet pool for the DNS Client, is
declared on lines 21-23. This packet pool is used for allocating packets for
sending DNS messages. If NX_DNS_CLIENT_USER_CREATE_PACKET_POOL IS
defined, a packet pool is created in lines 71-91. If this option is not enabled,
the DNS Client creates its own packet pool as per the packet payload and
pool size set by configuration parameters in nx_dns.h and described
elsewhere in this chapter.

Another packet pool is created in lines 93-105 for the Client IP instance which
is used for internal NetX operations. Next the IP instance is created using the
nx_ip_create call in line 107-119. Itis possible for the IP task and the DNS
Client to share the same packet pool, but since the DNS Client typically sends
out larger messages than the control packets sent by the IP task, using
separate packet pools makes more efficient use of memory.

ARP and UDP (which is used by IPv4 networks) are enabled in lines 122 and
134 respectively.

Note this demo uses the ‘ram’ driver declared on line 37 and used in the
nx_ip_create call. This ram driver is distributed with the NetX source code.
To actually run the DNS Client the application must supply an actual physical
network driver to transmit and receive packets from the DNS server.

The Client thread entry function thread_client_entry is defined below the
tx_application_define function. It initially relinquishes control to the system to
allow the IP task thread to be initialized by the network driver.

It then creates the DNS Client on lines 176-187, initializes the cache on lines
189-200, and sets the packet pool previously created to the DNS Client
instance on lines 202-217. It then adds an IPv4 DNS server on lines 220-
229.

The remainder of the example program uses the DNS Client services to make
DNS queries. Host IP address lookups are performed on lines 240 and 262.
The difference between these two services, nx_dns_host_by name_get and
nx_dns_ipv4_address_by name_get, is that the former only saves one IP
address, while the latter saves multiple addresses if DNS Server replied.

Reverse lookups (host name from IP address) are performed on lines 354
(nx_dns_host_by address_get).

11

Two more services for DNS lookups, CNAME and TXT, are demonstrated on
lines 375 and 420 respectively, to discover CNAME and TXT for the input
domain name. NetX DNS Client as similar services for other record types,
e.g. NS, MX, SRV and SOA. See Chapter 3 for detailed descriptions of all
record type lookups available in NetX DNS Client.

When the DNS Client is deleted on line 594, using the nx_dns_delete service,
the packet pool for the DNS Client is not deleted unless the DNS Client
created its own packet pool. Otherwise, it is up to the application to delete
the packet pool if it has no further use for it.

l//* This is a small demo of DNS Client for the high-performance Netx TCP/IP stack.

2

3 #include "tx_api.h
4 #include "nx_api.h
5 #include "nx_udp.h
9 #incTlude "nx_dns.h"
8
9

#define DEMO_STACK_SIZE 4096
10
11 #define NX_PACKET_PAYLOAD 1536
12 #define NX_PACKET_POOL_SIZE 30 * NX_PACKET_PAYLOAD
13 #define LOCAL_CACHE_SIZE 2048
14
15 /* Define the ThreadX and NetX object control blocks... */
16
17 NX_DNS client_dns;
18 TX_THREAD client_thread;
19 NX_IP client_ip;
20 NX_PACKET_POOL main_pool;
21 #ifdef NX_DNS_CLIENT_USER_CREATE_PACKET_POOL
22 NX_PACKET_POOL client_pool;
23 #endif
24 UCHAR local_cache[LOCAL_CACHE_SIZE];
25
26 UINT error_counter = 0;
27
28
29 #define CLIENT_ADDRESS IP_ADDRESS(192,168,0,11)
30 #define DNS_SERVER_ADDRESS IP_ADDRESS(192,168,0,1)
31
32 /* Define thread prototypes. */
33
34 void thread_client_entry(ULONG thread_input);
35

36 /***** substitute your ethernet driver entry function here #*¥w¥#¥¥iix/
37 extern VOID _nx_ram_network_driver(NX_IP_DRIVER *driver_req_ptr);

39

40 /* Define main entry point. */

41

42 int mainQ)

43 {

44

45 /* Enter the ThreadX kernel. */

46 tx_kernel_enter(Q);

47 }

48

49

52 /* Define what the initial system looks 1like. */
5

52 ¥oid tx_application_define(void *first_unused_memory)
53

54

55 CHAR *pointer;

56 UINT status;

57

58

59 /* Setup the working pointer. */

60 pointer = (CHAR *) first_unused_memory;

12

62 /* Create the main thread. */

63 tx_thread_create(&client_thread, "Client thread", thread_client_entry, O,
64 pointer, DEMO_STACK_SIZE, 4, 4, TX_NO_TIME_SLICE, TX_AUTO_START);
65

66 pointer = pointer + DEMO_STACK_SIZE;

67

68 /* Initialize the NetX system. */

69 nx_system_initialize(Q);

70

71 #ifdef NX_DNS_CLIENT_USER_CREATE_PACKET_POOL

72

73 /* Create the packet pool for the DNS Client to send packets.

74

75 If the DNS Client is configured for letting the host application create
76 the DNS packet pool, (see NX_DNS_CLIENT_USER_CREATE_PACKET_POOL option),
see

77 nx_dns_create() for guidelines on packet payload size and pool size.
78 packet traffic for NetX processes.

79

80 status = nx_packet_pool_create(&client_pool, "DNS Client Packet Pool",
NX_DNS_PACKET_PAYLOAD, pointer, NX_DNS_PACKET_POOL_SIZE);

81

82 pointer = pointer + NX_DNS_PACKET_POOL_SIZE;

83

84 /* Check for pool creation error. */

85 if (status)

86 {

87

88 error_counter++;

89 return;

90 }

91 #endif

92 . .

93 /* Create the packet pool which the IP task will use to send packets. Also

available to the host

application to send packet. */

95 status = nx_packet_pool_create(&main_pool, "Main Packet Pool",
NEEPACKET_PAYLOAD, pointer, NX_PACKET_POOL_SIZE);

97 pointer = pointer + NX_PACKET_POOL_SIZE;

98

99 /* Check for pool creation error. */

100 if (status)

101 {

102

103 error_counter++;

104 return;

105

106

107 /* Create an IP instance for the DNS Client.

108 status = nx_ip_create(&client_ip, "DNS Client IP Instance", CLIENT_ADDRESS,
OXFFFFFFOOUL,

%gg &main_pool, _nx_ram_network_driver, pointer, 2048, 1);
111 pointer = pointer + 2048;

112

113 /* Check for IP create errors. */

114 if (status)

115 {
116
117 error_counter++;
118 return;
119
120
121 /* Enable ARP and supply ARP cache memory for the DNS Client IP. */
122 status = nx_arp_enable(&client_ip, (void *) pointer, 1024);
123 pointer = pointer + 1024;
124
125 /* Check for ARP enable errors. */
126 if (status)
127 {
128
129 error_counter++;
130 return;
131
132
133 /* Enable UDP traffic because DNS is a UDP based protocol. */
134 status = nx_udp_enable(&client_ip);
135
136 /* Check for UDP enable errors. */
137 if (status)

13

138 {

139

140 error_counter++;

141 return;

142

143 }

144

145 #define BUFFER_SIZE 200

%46 #define RECORD_COUNT 10

47

%ig /* Define the Client thread. */

%gg goid thread_client_entry(ULONG thread_input)

152

153 UCHAR record_buffer[200];

154 UINT record_count;

155 UINT status;

156 ULONG host_ip_address;

157 UINT i;

158 ULONG *ipv4_address_ptr[RECORD_COUNT];

159 #ifdef NX_DNS_ENABLE_EXTENDED_RR_TYPES

160 NX_DNS_NS_ENTRY

161 *nx_dns_ns_entry_ptr[RECORD_COUNT];

162 NX_DNS_MX_ENTRY

163 *nx_dns_mx_entry_ptr[RECORD_COUNT];

164 NX_DNS_SRV_ENTRY

165 *nx_dns_srv_entry_ptr[RECORD_COUNT];

166 NX_DNS_SOA_ENTRY

167 *nx_dns_soa_entry_ptr;

168 ULONG host_address;

169 USHORT host_port;

170 #endif

171

172 /* Give NetX IP task a chance to get initialized . */
173 tx_thread_sleep(100);

174

175

176 /* Create a DNS instance for the Client. Note this function will create
177 the DNS Client packet pool for creating DNS message packets intended
178 for querying its DNS server. */

1;8 status = nx_dns_create(&client_dns, &client_ip, (UCHAR *)"DNS Client");
1

181 /* Check for DNS create error. */

182 if (status)

183 {

184

185 error_counter++;

186 return;

187

188

189 #ifdef NX_DNS_CACHE_ENABLE

190 /* Initialize the cache. *

13% status = nx_dns_cache_initialize(&client_dns, local_cache, LOCAL_CACHE_SIZE);
1

193 /* Check for DNS cache error. */

194 if (status)

195 {

196

197 error_counter++;

198 return;

199 }

200 #endif

201

2021? //* Is the DNS client configured for the host application to create the pecket
pool? *

203 #ifdef NX_DNS_CLIENT_USER_CREATE_PACKET_POOL

204

205 /* Yes, use the packet pool created above which has appropriate payload size
206 for DNS messages. */

%8; status = nx_dns_packet_pool_set(&client_dns, &client_pool);
209 /* Check for set DNS packet pool error. */

210 if (status)

211 {

212

213 error_counter++;

214 return;

215

216

217 #endif /* NX_DNS_CLIENT_USER_CREATE_PACKET_POOL */

218
219
220 /* Add an IPv4 server address to the Client list. */

221 status = nx_dns_server_add(&client_dns, DNS_SERVER_ADDRESS);
222

223 /* Check for DNS add server error. */

224 if (status)

225 {

226

227 error_counter++;

228 return;

229 }

230
231
232
233
234

*********************/

235 / Type A

236 /% Send A type DNS Query to its DNS server and get the IPv4 address.
237
**/
238

239 /* Look up an IPv4 address over IPv4. */

240 status = nx_dns_host_by_name_get(&client_dns, (UCHAR *)"www.my_example.com",

&host_ip_address, 400);

241

242 /* Check for DNS query error. */

243 if (status != NX_SUCCESS)

244

245 error_counter++;

246 }

247

248 else

249 {

250

251 printf(M-————m e \n");

252 printf("Test A: \n");

253 printf("IP address: %lu.%lu.%lu.%lu\n",

254 host_ip_address >> 24,

255 host_ip_address >> 16 & OxFF,

256 host_ip_address >> 8 & OxFF,

257 host_ip_address & OxFF);

258 }

259

260

261 /* Look up IPv4 addresses to record multiple IPv4 addresses in record_buffer

and return the IPv4 address count. *

262 status = nx_dns_ipv4_address_by_name_get(&client_dns, (UCHAR

;%;www.my_examp1e.com", &record_buffer[0], BUFFER_SIZE, &record_count, 400);

264 /* Check for DNS query error. */

265 if (status != NX_SUCCESS)

266 {

267 error_counter++;

268 }

269

270 else

271 {

272

273 printf(M-mmm o \n");
274 printf("Test A: ");

%72 ; printf("record_count = %d \n", record_count);

7

277

278 /* Get the IPv4 addresses of host. */

279 for(i =0; i< record_count; i++)

280

281 ipv4_address_ptr[i] = (ULONG *)(record_buffer + i * sizeof(ULONG));
282 printf("record %d: IP address: %lu.%lu.%lu.%lu\n", 1,
283 *ipv4_address_ptr[i] >> 24,

284 *ipv4_address_ptr[i] >> 16 & OXFF,

285 *ipv4_address_ptr[i] >> 8 & OxFF,

286 *ipv4_address_ptr[i] & OxFF);

287 }

288

289

/**/

15

291 /% Type A + CNAME response
232 /% Send A type DNS Query to its DNS server and get the IPv4 address.
293

B SR ROROROOROROROROROROR

*********************/

294 /* Look up an IPv4 address over IPv4 */

295 status = nx_dns_host_by_name_get(&client_dns, (UCHAR *)'"www.my_example.com",
%ggst_ip_address, 400);

297 /* Check for DNS query error. */

298 if (status != NX_SUCCESS)

299 {

300 error_counter++;

301

302

303 else

304 {

305

306 printf("-———-—m - \n");
307 pr1ntf("Test A + CNAME response: \n");

308 printf("IP address: %Tu.%lu.%lu. /1u\n"

309 host_ip_address >> 24,

310 host_ip_address >> 16 & OXxFF,

311 host_ip_address >> 8 & OxFF,

312 host_ip_address & OxFF);

313 }

314

315

316 /* Look up IPv4 addresses to record multiple IPv4 addresses in record_buffer
and return the IPv4 address count. */

317 status = nx_ dns 1pv4 address_by_name_get(&client_dns, (UCHAR

*) www . my_ examp1e com", &record_buffer[0], BUFFER_SIZE, &record count, 400);
318

319 /* Check for DNS query error. */
320 if (status != NX_SUCCESS)
321 {
322 error_counter++;
323
324
325 else
326 {
327
328 printf(M - - \n");
329 pr1ntf("Test Test A + CNAME response: ");
ggg printf("record_count = %d \n", record_count);
332
333 /* Get the IPv4 addresses of host. */
334 for(i =0; i< record_count; i++)
5
336 ipv4_address_ptr[i] = (ULONG *)(record_buffer + i * sizeof(ULONG));
337 printf("record %d: IP address: %lu.%lu.%lu.%lu\n", 1,
338 *ipv4_address_ptr[i] >> 24,
339 *ipv4_address_ptr[i] >> 16 & OxFF,
340 *ipv4_address_ptr[i] >> 8 & OxFF,
341 *ipv4_address_ptr[i] & OXFF);
342 }
343

***************************/

346 /* “Type PTR

3?7 /% Send PTR type DNS Query to its DNS server and get the host name.
348

/¥ e de e e dede e de e de e dede e s de e e s e de e s e e de e de e de de e e de e s e e s e e e e de de e s e e e e e de e e de e s e de e e de e st de e /
349

350

351

352 /* Look up host name over IPv4. */

353 host_ip_address = IP_ADDRESS(74, 125, 71, 106);

354 status = nx_dns_host_by_address_get(&client_dns, host_ip_address,
&record_buffer[0], BUFFER_SIZE, 450);

355

356 /* Check for DNS query error. */

357 if (status != NX_SUCCESS)

358 {

359 error_counter++;

360

361

362 else
363
364 printf("--------m \n");
365 printf("Test PTR: %s\n", record_buffer);
366 }
367
ggg #ifdef NX_DNS_ENABLE_EXTENDED_RR_TYPES
/-k-k T d R X
?70 /% Type CNAME
§;1 /* Send CNAME type DNS Query to its DNS server and get the canonical name .
372
/**/
373
374 /* Send CNAME type to record the canonical name of host in record_buffer.
375 status = nx_dns_cname_get(&client_dns, (UCHAR *)"www.my_example.com",
&grgcord_buffer[O], BUFFER_SIZE, 400);
7
377 /* Check for DNS query error. */
378 if (status != NX_SUCCESS)
379 {
380 error_counter++;
381
382
383 else
384 {
385
386 printf(M-————m e - \n");
387 printf("Test CNAME: %s\n", record_buffer);
388 }
389
390
391
**/
392 /* Type TXT
?93 /% Send TXT type DNS Query to its DNS server and get descriptive text.
394
**/
395
396 /* Send TXT type to record the descriptive test of host in record_buffer.
397 status = nx_dns_host_text_get(&client_dns, (UCHAR *)"www.my_example.com",
%ggcord_buffer[O], BUFFER_SIZE, 400);
399 /* Check for DNS query error. */
400 if (status != NX_SUCCESS)
401 {
402 error_counter++;
403 }
404
405 else
406 {
407
408 printf(M—mmmmmm \n");
409 printf("Test TXT: %s\n", record_buffer);
410 }
411
412
413
**/
414 /* Type NS
415 /* Send NS type DNS Query to its DNS server and get the domain name server.
416
Yk el :‘::‘:/
417
418 /* Send NS type to record multiple name servers in record_buffer and return
the name server count.
419 If the DNS response includes the IPv4 addresses of name server, record it
similarly in record_buffer. *
420 status = nx_dns_domain_name_server_get(&client_dns, (UCHAR

*) "www.my_example.com", &record_buffer[0], BUFFER_SIZE, &record_count, 400);
421
422 /* Check for DNS query error. */

17

423 if (status != NX_SUCCESS)

424 {

425 error_counter++;

426

427

428 else

429 {

430

431 printf(M-———-m - \n");
432 printf("Test NS: ");

433 printf("record_count = %d \n", record_count);

434 }

435

436 /* Get the name server. */

43; for(i =0; i< record_count; i++)

4

439 nx_dns_ns_entry_ptr[i] = (NX_DNS_NS_ENTRY *)(record_buffer + i *
si éeof(NX_DNS_NS_ENTRY)) ;

44

441 printf("record %d: IP address: %d.%d.%d.%d\n", i,

442 nx_dns_ns_entry_ptr[i] -> nx_dns_ns_ipv4_address >> 24,
443 nx_dns_ns_entry_ptr[i] -> nx_dns_ns_ipv4_address >> 16 & OxFF,
444 nx_dns_ns_entry_ptr[i] -> nx_dns_ns_ipv4_address >> 8 & OxFF,
445 nx_dns_ns_entry_ptr[i] -> nx_dns_ns_ipv4_address & OxFF);
446 if(nx_dns_ns_entry_ptr[i] -> nx_dns_ns_hostname_ptr)

447 printf("hostname = %s\n", nx_dns_ns_entry_ptr[i] ->
nx_dns_ns_hostname_ptr);

448 else

449 printf("hostname is not set\n");

450 }

451

§53 /* Type MX

454 /* Send MX type DNS Query to its DNS server and get the domain mail exchange.
455

**/

456

457 /* Send MX DNS query type to record multiple mail exchanges in record_buffer
and return the mail exchange count.

458 If the DNS response includes the IPv4 addresses of mail exchange, record
it similarly in record_buffer. *

459 status = nx_dns_domain_mail_exchange_get(&client_dns, (UCHAR

*) "www.my_example.com", &record_buffer[0], BUFFER_SIZE, &record_count, 400);

461 /* Check for DNS query error. */

462 if (status != NX_SUCCESS)

463 {

464 error_counter++;

465

466

467 else

468 {

469

470 printf(M-mmm o \n");
471 printf("Test MX: ");

47% printf("record_count = %d \n", record_count);

47

474

475 /* Get the mail exchange. */

476 for(i =0; i< record_count; i++)

477

478 nx_dns_mx_entry_ptr[i] = (NX_DNS_MX_ENTRY *)(record_buffer + i *
sizeof (NX_DNS_MX_ENTRY)) ;

479

480 printf("record %d: IP address: %d.%d.%d.%d\n", i,

481 nx_dns_mx_entry_ptr[i] -> nx_dns_mx_ipv4_address >> 24,
482 nx_dns_mx_entry_ptr[i] -> nx_dns_mx_ipv4_address >> 16 & OxFF,
483 nx_dns_mx_entry_ptr[i] -> nx_dns_mx_ipv4_address >> 8 & OxFF,
484 nx_dns_mx_entry_ptr[i] -> nx_dns_mx_ipv4_address & OxFF);
485 printf("preference = %d \n ", nx_dns_mx_entry_ptr[i] ->
nx_dns_mx_preference) ;

486 if(nx_dns_mx_entry_ptr[i] -> nx_dns_mx_hostname_ptr)

487 printf("hostname = %s\n", nx_dns_mx_entry_ptr[i] ->
nx_dns_mx_hostname_ptr);

488 else

489 printf("hostname is not set\n");

490 }

491

18

492

***************************************'*"“"'*********************************/

493 /* Type SRV
434 /* Send SRV type DNS Query to its DNS server and get the location of services.
495

496

497 /* Send SRV DNS query type to record the location of services in
record_buffer and return count.

498 If the DNS response includes the IPv4 addresses of service name, record
it similarly in record_buffer. */

499 status = nx_dns_domain_service_get(&client_dns, (UCHAR
*%8www.my_examp1e.com", &record_buffer[0], BUFFER_SIZE, &record_count, 400);

5

**********************/

501 /* Check for DNS query error. */

502 if (status != NX_SUCCESS)

503 {

504 error_counter++;

505

506

507 else

508 {

509

510 printf(M-————m - \n");
511 printf("Test SRv: ");

g%% printf("record_count = %d \n", record_count);

514

515 /* Get the Tocation of services. */

g%? for(i =0; i< record_count; i++)

518 nx_dns_srv_entry_ptr[i] = (NX_DNS_SRV_ENTRY *)(record_buffer + i *
gigeof(NX_DNS_SRV_ENTRY));

520 printf("record %d: IP address: %d.%d.%d.%d\n", i,

521 nx_dns_srv_entry_ptr[i] -> nx_dns_srv_ipv4_address >> 24,
522 nx_dns_srv_entry_ptr[i] -> nx_dns_srv_ipv4_address >> 16 & OxFF,
523 nx_dns_srv_entry_ptr[i] -> nx_dns_srv_ipv4_address >> 8 & OXxFF,
524 nx_dns_srv_entry_ptr[i] -> nx_dns_srv_ipv4_address & OxFF);
525 printf("port number = %d\n", nx_dns_srv_entry_ptr[i] ->
nx_dns_srv_port_number);

526 printf("priority = %d\n", nx_dns_srv_entry_ptr[i] ->
nx_dns_srv_priority);

527 printf("weight = %d\n", nx_dns_srv_entry_ptr[i] -> nx_dns_srv_weight);
528 if(nx_dns_srv_entry_ptr[i] -> nx_dns_srv_hostname_ptr)

529 printf("hostname = %s\n", nx_dns_srv_entry_ptr[i] ->
nx_dns_srv_hostname_ptr);

530 else

531 printf("hostname is not set\n");

532 }

533

534 /* Get the service info, NetX old API.*/

535 status = nx_dns_info_by_name_get(&client_dns, (UCHAR *)"www.my_example.com",

&ggst_address, &host_port, 200);

5

537 /* Check for DNS add server error. */

538 if (status != NX_SUCCESS)

539 {

540 error_counter++;

541

542

543 else

544 {

545

546 printf("--------— \n");
547 printf("Test SRV: ");

548 printf("IP address: %d.%d.%d.%d\n",

549 host_address >> 24,

550 host_address >> 16 & OxFF,

551 host_address >> 8 & OxFF,

552 host_address & OxFF);

553 printf("port number = %d\n", host_port);

554 }

555

556
**/
557 /* Type SOA

/

558 /* Send SOA type DNS Query to its DNS server and get zone of start of
authority.*/
559

/7’:-,'r-,'r-,'r-,'r-,'r-,'r****7“:*-.'r-.':-.':-.':i:f:*************************7‘:**7‘:*:':7':7'::':7':7'::':7':7‘:7‘:7‘:7‘:7‘:7‘:7‘:7‘:7‘:7‘:7‘:7‘:7’:7’:7’:7’:7’:7‘:7‘:7‘:7‘:7‘:7‘:
560

561 /* Send SOA DNS query type to record the zone of start of authority in
record_buffer. *

562 status = nx_dns_authority_zone_start_get(&client_dns, (UCHAR

*)"www.my_example.com", &record_buffer[0], BUFFER_SIZE, 400);

564 /* Check for DNS query error. */

565 if (status != NX_SUCCESS)

566 {

567 error_counter++;

568 }

569

570 /* Get the Tloc*/

571 nx_dns_soa_entry_ptr = (NX_DNS_SOA_ENTRY *) record_buffer;

572 printf("-------- \n");
573 printf("Test SOA: \n");

574 printf("serial = %d\n", nx_dns_soa_entry_ptr -> nx_dns_soa_serial);
575 printf("refresh = %d\n", nx_dns_soa_entry_ptr -> nx_dns_soa_refresh);
576 printf("retry = %d\n", nx_dns_soa_entry_ptr -> nx_dns_soa_retry);
577 printf("expire = %d\n", nx_dns_soa_entry_ptr -> nx_dns_soa_expire);
578 printf("minmum = %d\n", nx_dns_soa_entry_ptr -> nx_dns_soa_minmum);
579 if(nx_dns_soa_entry_ptr -> nx_dns_soa_host_mname_ptr)

580 printf("host mname = %s\n", nx_dns_soa_entry_ptr ->
nx_dns_soa_host_mname_ptr) ;

581 else

582 printf("host mame is not set\n");

583 if(nx_dns_soa_entry_ptr -> nx_dns_soa_host_rname_ptr)

584 printf("host rname = %s\n", nx_dns_soa_entry_ptr ->
nx_dns_soa_host_rname_ptr);

585 else

gg? printf("host rname is not set\n");

588

589 #endif

590

591 /* Shutting down...*/

592

593 /* Terminate the DNS Client thread. */

ggg status = nx_dns_delete(&client_dns);

596 return;

597 }

598

599

19

20

Configuration Options

There are several configuration options for building DNS for NetX. These
options can be redefined in nx_dns.h. The following list describes each in

detail:

Define

NX_DNS_TYPE_OF SERVICE

NX_DNS_TIME_TO_LIVE

NX_DNS_MAX_SERVERS

NX_DNS_MESSAGE_MAX

NX_DNS_PACKET _PAYLOAD

NX_DNS_PACKET POOL_SIZE

NX_DNS_MAX_RETRIES

Meaning

Type of service required for the

DNS UDP requests. By default, this
value is defined as NX_IP_NORMAL
for normal IP packet service.

Specifies the maximum number

of routers a packet can pass before it
is discarded. The default value is
0x80.

Specifies the maximum number
of DNS Servers in the Client server
list.

The maximum DNS message size
for sending DNS queries. The
default value is 512, which is also
the maximum size specified in RFC
1035 Section 2.3.4.

Size of the Client packet payload
which includes the Ethernet, IP, and
UDP headers plus the maximum
DNS message size specified by
NX_DNS_MESSAGE_MAX, and is
4-byte aligned.

Size of the Client packet pool for
sending DNS queries if
NX_DNS_CLIENT_USER_CREATE_PACK
ET_POOL is not defined. The default
value is large enough for 6 packets
of payload size defined by
NX_DNS_PACKET_PAYLOAD, and is
4-byte aligned.

The maximum number of times

21

the DNS Client will query the current
DNS server before trying another
server or aborting the DNS query.

NX_ DNS_MAX_RETRANS_TIMEOUT The maximum retransmission
timeout on a DNS query to a specific
DNS server. The default value is 64
seconds.

NX_DNS_IP_GATEWAY_AND_DNS_SERVER
If defined and the Client IPv4
gateway address is non zero, the
DNS Client sets the IPv4 gateway as
the Client’s primary DNS server. The
default value is disabled.

NX_ DNS_PACKET_ALLOCATE_TIMEOUT
This sets the timeout option for
allocating a packet from the DNS
client packet pool in timer ticks. The
default value is 200.

NX_DNS_CLIENT_USER_CREATE_PACKET_POOL
This enables the DNS Client to let
the application create and set the
DNS Client packet pool. By default
this option is disabled, and the DNS
Client creates its own packet pool in
nx_dns_create.

22

NX_DNS_CLIENT CLEAR_QUEUE

This enables the DNS Client to
retrieve multiple DNS server
responses off the DNS Client queue
until it finds a response that matches
the current query. Older packets
from previous DNS queries are
discarded to prevent the DNS Client
socket from overflowing and
dropping valid packets.

NX_DNS_ENABLE_EXTENDED_RR_TYPES

NX_DNS_CACHE_ENABLE

This enables the DNS Client to query
on additional DNS record types in
(e.g. CNAME, NS, MX, SOA, SRV
and TXT).

This enables the DNS Client to store
the answer records into DNS cache.

23

Chapter 3

Description of NetX DNS Client Services

This chapter contains a description of all NetX DNS services (listed below) in
alphabetic order.

In the “Return Values” section in the following API descriptions, values in
BOLD are not affected by the NX_DISABLE_ERROR_CHECKING define
that is used to disable API error checking, while non-bold values are
completely disabled.

nx_dns_authority_zone_start_get
Look up the start of a zone of authority associated with
the specified host name

nx_dns_cache_initialize
Initialize a DNS Cache.

nx_dns_cache_notify clear
Clear the cache full notify function.

nx_dns_cache_notify_set
Set the cache full notify function.

nx_dns_chame_get
Look up the canonical domain name for the input domain
name alias

nx_dns_create
Create a DNS Client instance

nx_dns_delete
Delete a DNS Client instance

nx_dns_domain_name_server_get
Look up the authoritative name servers for the input
domain zone

nx_dns_domain_mail_exchange get
Look up the mail exchange associated
the specified host name.

nx_dns_domain_service_get

24

Look up the service(s) associated with
the specified host name

nx_dns_get_serverlist_size
Return the size of the DNS Client server list

nx_dns_info_by name_get
Return IP address, port querying on input host name

nx_dns_ipv4_address_by name_get
Look up the IPv4 address from the specified host name

nx_dns_host_by address get
Look up a host name from a specified IP address

nx_dns_host_by name_get
Look up the IPv4 address from the specified host name

nx_dns_host_text_get
Look up the text data for the input domain name

nx_dns_packet pool_set
Set the DNS Client packet pool

nx_dns_server_add
Add a DNS Server at the specified address
to the Client list

nx_dns_server_get
Return the DNS Server in the Client list

nx_dns_server_remove
Remove a DNS Server from the Client list

nx_dns_server_remove_all
Remove all DNS Servers from the Client list

25

nx_dns_authority _zone_start_get
Look up the start of the zone of authority for the input host

Prototype

UINT nx_dns_authority_zone_start_get (NX_DNS *dns_ptr, UCHAR *host_name,
VOID *record_buffer,
UINT buffer_size,
UINT *record_count,
ULONG wait_option);

Description

If NX_DNS_ENABLE_EXTENDED_RR_TYPES is defined, this service sends a query
of type SOA with the specified domain name to obtain the start of the zone of
authority for the input domain name. The DNS Client copies the SOA
record(s) returned in the DNS Server response into the record_buffer memory
location. Note that record_buffer must be 4-byte aligned to receive the data.

In NetX DNS Client, the SOA record type, NX_DNS_SOA_ENTRY, is saved as
seven 4 byte parameters, totaling 28 bytes:

nx_dns_soa_host_mname_ptr Pointer to primary source of

data for this zone
nx_dns_soa_host_rname_ptr Pointer to mailbox responsible for this zone
nx_dns_soa_serial Zone version number
nx_dns_soa_refresh Refresh interval
nx_dns_soa_retry Interval between SOA query retries
nx_dns_soa_expire Time duration when SOA expires
nx_dns_soa_minmum Minimum TTL field in SOA

hostname DNS reply messages

The storage of a two SOA records is shown below. The SOA records
containing fixed length data are entered starting at the top of the buffer. The
pointers MNAME and RNAME point to the variable length data (host names)
which are stored at the bottom of the buffer. Additional SOA records are
entered after the first record (“additional SOA records...”) and their variable
length data is stored above the last entry’s variable length data (“additional
SOA variable length data”):

26

If the input record_buffer cannot hold all the SOA data in the server reply, the
the record_buffer holds as many records as will fit and returns the number of
records in the buffer.

With the number of SOA records returned in *record_count, the application
can parse the data from record_buffer and extract the start of zone authority
host name strings.

27

Input Parameters

dns_ptr Pointer to DNS Client.

host_name Pointer to host name to obtain SOA data for
record_buffer Pointer to location to extract SOA data into
buffer_size Size of buffer to hold SOA data

record_count Pointer to the number of SOA records retrieved
wait_option Wait option to receive DNS Server response

Return Values

NX_SUCCESS (0Ox00) Successfully obtained SOA data
NX_DNS_NO_SERVER (0xAl) Client server list is empty
NX_DNS_QUERY_FAILED

(OxA3) No valid DNS response received
NX_DNS_NEED _MORE_RECORD_BUFFER

(OxB4) The input buffer is not large enough

to hold the minimum data

NX_PTR_ERROR (0x07) Invalid IP or DNS pointer
NX_CALLER_ERROR (Ox11) Invalid caller of this service

Allowed From
Threads

Example

UCHAR record buffer[50];
UINT record count;
NX DNS SOA ENTRY *nx dns_soa entry ptr;

/* Request the start of authority zone(s) for the specified host. */

status = nx_dns_authority zone_start get(&client dns, (UCHAR *)"www.my example.com",
record buffer, sizeof (record buffer),
&record_count, 500);

/* Check for DNS query error. */
if (status != NX SUCCESS)
{
error_counter++;
}
else
{
/* If status is NX_SUCCESS a DNS query was successfully completed and SOA data is
returned in soa buffer. *

/* Set a local pointer to the SOA buffer. */

nx dns soa entry ptr = (NX DNS SOA ENTRY *) record buffer;

pPrintf (M———mm e \n") ;
printf ("Test SOA: \n");

printf ("serial = %d\n", nx dns soa entry ptr -> nx dns soa serial);
printf ("refresh = $d\n", nx dns soa entry ptr -> nx dns soa refresh);
printf ("retry = $d\n", nx dns_soa_entry ptr -> nx dns_soa_ retry);

28

printf ("expire = %d\n", nx_dns_soa_entry ptr -> nx dns_soa_expire);
printf ("minmum = $d\n", nx dns_soa_entry ptr -> nx dns_soa minmum);

if (nx _dns soa entry ptr -> nx dns soa host mname ptr)
{

printf ("host mname = %s\n",

nx dns soa entry ptr -> nx dns soa host mname ptr);

}
else
{

printf ("host mame is not set\n");
}

if (nx_dns_soa _entry ptr -> nx dns_soa host rname ptr)
{
printf ("host rname = %s\n",
nx_dns_soa_entry ptr -> nx dns_soa host rname ptr);
}
else
{

printf ("host rname is not set\n");

}
[output]

Test SOA:

serial = 2012111212

refresh = 7200

retry = 1800

expire = 1209600

minmum = 300

host mname

nsl.www.my_example.com
host rname

dns-admin.www.my_example.com

29

nx_dns_cache initialize
Initialize the DNS Cache

Prototype

UINT nx_dns_cache_initialize(NX_DNS *dns_ptr,
VOID *cache_ptr, UINT cache_size);

Description

This service creates and initializes a DNS Cache.

Input Parameters

dns_ptr Pointer to DNS control block.
cache_ptr Pointer to DNS Cache.
cache_size Size of DNS Cache, in bytes.

Return Values

NX_SUCCESS (0x00) DNS Cache successfully
initialized
NX_DNS_ERROR (OxA0) Cache is not 4-byte aligned.
NX_DNS_PARAM_ERROR (OxA8) Invalid DNS ID.
NX_DNS_CACHE_ERROR (OxB7) Invalid Cache pointer.
NX_PTR_ERROR (0x07) Invalid DNS pointer.
NX_CALLER_ERROR (Ox11) Invalid caller of this service

Allowed From
Threads

Example

UCHAR dns cache [2048];

/* Initialize the DNS Cache. */
status = nx_dns_cache_initialize (&émy_dns, dns_cache, 2048);

/* If status is NX SUCCESS DNS Cache was successfully initialized. */

30

nx_dns_cache _notify clear

Prototype

UINT nx_dns_cache_notify_clear (NX_DNS *dns_ptr);

Description

Clear the DNS Cache full notify function

This service clears the cache full notify function.

Input Parameters

dns_ptr

Return Values
NX_SUCCESS
NX_DNS_PARAM_ERROR
NX_PTR_ERROR
NX_CALLER_ERROR
Allowed From

Threads

Example

Pointer to DNS control block.

(0x00)

(0xA8)
(0x07)
(Ox11)

/* Clear the DNS Cache full notify function.
status = nx_dns_cache notify clear (&émy dns);

DNS cache notify successfully
set

Invalid DNS ID.

Invalid DNS pointer.

Invalid caller of this service

/* If status is NX SUCCESS DNS Cache full notify function was successfully cleared. */

31
nx_dns_cache notify_set
Set the DNS Cache full notify function

Prototype

UINT nx_dns_cache_notify_set(NX_DNS *dns_ptr,
VOID (*cache_full_notify_cb) (NX_DNS *dns_ptr));

Description

This service sets the cache full notify function.

Input Parameters
dns_ptr Pointer to DNS control block.
cache_full_notify_cb The callback function to be invoked

when cache become full.

Return Values

NX_SUCCESS (0x00) DNS cache notify successfully
set

NX_DNS_ PARAM_ERROR (OxA8) Invalid DNS ID.

NX_PTR_ERROR (0x07) Invalid DNS pointer.

NX_CALLER_ERROR (Ox11) Invalid caller of this service

Allowed From
Threads

Example

/* Set the DNS Cache full notify function. */
status = nx_dns_cache notify set(&my_dns, cache full notify cb);

/* If status is NX SUCCESS DNS Cache full notify function was successfully set. */

32

nx_dns_cname_get
Look up the canonical name for the input hostname

Prototype

UINT nx_dns_cname_get(NX_DNS *dns_ptr, UCHAR *host_name,
UCHAR *record_buffer, UINT buffer_size,
ULONG wait_option);

Description

If NX_DNS_ENABLE_EXTENDED_RR_TYPES is defined in nx_dns.h, this service
sends a query of type CNAME with the specified domain hame to obtain the
canonical domain name. The DNS Client copies the CNAME string returned
in the DNS Server response into the record_buffer memory location.

Input Parameters

dns_ptr Pointer to DNS Client.

host_name Pointer to host name to obtain CNAME data for
record_buffer Pointer to location to extract CNAME data into
buffer_size Size of buffer to hold CNAME data

wait_option Wait option to receive DNS Server response

Return Values

NX_SUCCESS (0x00) Successfully obtained CNAME data
NX_DNS_NO_SERVER (0xAl) Client server list is empty
NX_DNS_QUERY_FAILED

(OxA3) No valid DNS response received
NX_PTR_ERROR (0x07) Invalid IP or DNS pointer
NX_CALLER_ERROR (Ox11) Invalid caller of this service

Allowed From

Threads
Example
CHAR record buffer[50];
/* Request the canonical name for the specified host. */
status = nx_dns_cname_get (&client_dns, (UCHAR *)"www.my example.com "

record buffer, sizeof (record buffer), 500);

/* Check for DNS query error. */
if (status != NX_ SUCCESS)
{

error counter++;

}

else

{

/* If status is NX SUCCESS a DNS query was successfully completed and the
canonical host name is returned in record buffer. */

printf("-------------

printf ("Test CNAME: $%$s\n", record buffer);
}

[output]

Test CNAME: my_example.com

33

34

nx_dns_create
Create a DNS Client instance

Prototype
UINT nx_dns_create(NX_DNS *dns_ptr, NX_IP *ip_ptr, CHAR *domain_name);

Description

This service creates a DNS Client instance for the previously created IP
instance.

Important Note: The application must ensure that the packet payload of the
packet pool used by the DNS Client is large enough for the maximum 512
byte DNS message, plus UDP, IP and Ethernet headers. If the DNS Client
creates its own packet pool, this is defined by Nx_DNs_PACKET_PAYLOAD If the
DNS Client application prefers to supply a previously created packet pool, the
payload for IPv4 DNS Client should be 512 bytes for the maximum DNS plus
20 bytes for the IP header, 8 bytes for the UDP header and 14 bytes for the
Ethernet header.

Input Parameters

dns_ptr Pointer to DNS Client.
ip_ptr Pointer to previously created IP instance.
domain_name Pointer to domain name for DNS instance.

Return Values

NX_SUCCESS (0x00) Successful DNS create

NX_DNS_ERROR (OxA0) DNS create error

status Completion status of internal NetX
and ThreadX calls

NX_PTR_ERROR (0x07) Invalid IP or DNS pointer

NX_CALLER_ERROR (Ox11) Invalid caller of this service

Allowed From

Threads
Example
/* Create a DNS Client instance. */
status = nx_dns_create (¢émy_dns, &my_ip, "My DNS");

/* If status is NX SUCCESS a DNS Client instance was successfully
created. */

35
nx_dns_delete
Delete a DNS Client instance

Prototype
UINT nx_dns_delete(NX_DNS *dns_ptr);

Description
This service deletes a previously created DNS Client instance and frees up its
resources. Note that if NX_DNS_CLIENT_USER_CREATE_PACKET_POOL is
defined and the DNS Client was assigned a user defined packet pool, it is up
to the application to delete the DNS Client packet pool if it no longer needs it.
Input Parameters

dns_ptr Pointer to previously created DNS Client instance.

Return Values

NX_SUCCESS (0x00) Successful DNS Client delete.
NX_DNS_ERROR (OxA0) Error during DNS Client delete
status Completion status of internal NetX

and ThreadX calls

NX_PTR_ERROR (0x07) Invalid IP or DNS Client pointer.
NX_CALLER_ERROR (Ox11) Invalid caller of this service.

Allowed From
Threads

Example

/* Delete a DNS Client instance. */
status = nx_dns_delete(&my_dns) ;

/* If status is NX SUCCESS the DNS Client instance was successfully
deleted. */

36

nx_dns_domain_name_server_get
Look up the authoritative name servers for the input domain zone

Prototype

UINT nx_dns_domain_name_server_get (NX_DNS *dns_ptr, UCHAR *host_name,
VOID *record_buffer, UINT buffer_size,
UINT *record_count, ULONG wait_option);

Description

If NX_DNS_ENABLE_EXTENDED_RR_TYPES is defined, this service sends a query
of type NS with the specified domain name to obtain the name servers for the
input domain name. The DNS Client copies the NS record(s) returned in the
DNS Server response into the record_buffer memory location. Note that
record_buffer must be 4-byte aligned to receive the data.

In NetX DNS Client the NS data type, NX_DNS_NS_ENTRY, is saved as two
4-byte parameters:

nx_dns_ns_ipv4_address Name server’s IPv4 address
nx_dns_ns_hostname_ptr Pointer to the name server’s hostname

The buffer shown below contains four NX_DNS_ NS _ENTRY records. The
pointer to host name string in each entry points to the corresponding host
name string in the bottom half of the buffer:

Record 0 | ip_address 0 | Pointer to host name 0 |
Record 1 1 ipadiress 1| pointer to host name 1 |
Recora 2 | ipadaress 2 | bointer to host name 2 |
Recora 3 | ip_adaress 3| bointer to host name 3 |

If the input record_buffer cannot hold all the NS data in the server reply, the
the record_buffer holds as many records as will fit and returns the number of
records in the buffer.

37

With the number of NS records returned in *record_count, the application can
parse the IP address and host name of each record in the record_buffer.

Input Parameters

dns_ptr Pointer to DNS Client.

host_name Pointer to host name to obtain NS data for
record_buffer Pointer to location to extract NS data into
buffer_size Size of buffer to hold NS data

record_count Pointer to the number of NS records retrieved
wait_option Wait option to receive DNS Server response

Return Values

NX_SUCCESS (0Ox00) Successfully obtained NS data
NX_DNS_NO_SERVER (0xAl) Client server list is empty
NX_DNS_QUERY_FAILED

(OxA3) No valid DNS response received
NX_DNS_NEED _MORE_RECORD_BUFFER

(OxB4) The input buffer is not large enough

to hold the minimum data

NX_PTR_ERROR (0x07) Invalid IP or DNS pointer
NX_CALLER_ERROR (Ox11) Invalid caller of this service

Allowed From
Threads

Example

#define RECORD_COUNT 10

ULONG record buffer[50];
UINT record count;
NX DNS NS ENTRY *nx dns ns entry ptr[RECORD COUNT];

/* Request the name server(s) for the specified host. */

status = nx_dns domain name_ server get(&client dns, (UCHAR *)" www.my example.com "
record buffer, sizeof (record buffer),
&record_count, 500);

/* Check for DNS query error. */
if (status != NX SUCCESS)
{

error_counter++;

}

else
{
/* If status is NX SUCCESS a DNS query was successfully completed and NS data is
returned in record buffer. */

38

printf("----------------—— \n");
printf ("Test NS: ");
printf ("record count = %d \n", record count);

/* Get the name server. */
for (i =0; i< record count; i++)
{
nx dns ns entry ptr[i] = (NX DNS NS ENTRY ¥*)
(record buffer + i * sizeof (NX DNS NS ENTRY));

printf ("record %d: IP address: %d.%d.%d.%d\n", i,
nx_dns_ns_entry ptr[i] -> nx dns_ns_ipv4_ address >> 24,
nx_dns_ns_entry ptr[i]
nx_dns_ns_entry ptr[i]
nx dns ns _entry ptr[i] -> nx dns ns ipv4 address & OxFF);
if (nx_dns_ns_entry ptr[i] -> nx_dns_ns_hostname ptr)

{

i
i
i

printf ("hostname = %s\n",
nx_dns_ns_entry ptr[i] -> nx_dns_ns_hostname ptr);
}
else
printf ("hostname is not set\n");

}

[Output]

Test NS: record count = 4

record 0: IP address: 192.2.2.10
hostname = ns2.www.my example.com
record 1: IP address: 192.2.2.11
hostname = nsl.www.my example.com
record 2: IP address: 192.2.2.12
hostname = ns3.www.my example.com
record 3: IP address: 192.2.2.13
hostname = ns4.www.my example.com

-> nx_dns_ns ipv4 address >> 16 & OxFF,
-> nx _dns_ns_ ipv4 address >> 8 & OxFF,

39

nx_dns_domain_mail_exchange_get
Look up the mail exchange(s) for the input host name

Prototype

UINT nx_dns_domain_mail_exchange_get(NX_DNS *dns_ptr, UCHAR *host_name,
VOID *record_buffer,
UINT buffer_size,
UINT *record_count,
ULONG wait_option);

Description

If NX_DNS_ENABLE_EXTENDED_RR_TYPES is defined, this service sends a query
of type MX with the specified domain name to obtain the mail exchange for
the input domain name. The DNS Client copies the MX record(s) returned in
the DNS Server response into the record_buffer memory location. Note that
record_buffer must be 4-byte aligned to receive the data.

In NetX DNS Client, the mail exchange record type,
NX_DNS_MAIL_EXCHANGE_ENTRY, is saved as four parameters, totaling

12 bytes:
nx_dns_mx_ipv4_address Mail exchange IPv4 address 4 bytes
nx_dns_mx_preference Preference 2 bytes
nx_dns_mx_reservedO Reserved 2 bytes
nx_dns_mx_hostname_ptr Pointer to mail exchange

server host name 4 bytes

A buffer containing four MX records is shown below. Each record contains
the fixed length data from the list above. The pointer to the mail exchange
server host name points to the corresponding host name at the bottom of the

buffer.
| |
|ip address 0 | preference | res | pointer to host name |
ip address 1 | preference | es | pointer to host name :
ip adaress 2 | preference | res | pointer co nost name :
ip address 3 | preference | res | pointer to host mame :
T (room for aaditional MK record entriess |
} (room for additional MX host name data) :
Cw host mame 31 menost name 2 |

40

If the input record_buffer cannot hold all the MX data in the server reply, the
the record_buffer holds as many records as will fit and returns the number of
records in the buffer.

With the number of MX records returned in *record_count, the application can

parse the MX parameters, including the mail host name of each record in the
record_buffer.

Input Parameters

dns_ptr Pointer to DNS Client.

host_name Pointer to host name to obtain MX data for
record_buffer Pointer to location to extract MX data into
buffer_size Size of buffer to hold MX data

record_count Pointer to the number of MX records retrieved
wait_option Wait option to receive DNS Server response

Return Values

NX_SUCCESS (0Ox00) Successfully obtained MX data
NX_DNS NO _SERVER (OxAl) Client server list is empty
NX_DNS_QUERY_FAILED

(OxA3) No valid DNS response received
NX_DNS_NEED _MORE_RECORD_BUFFER

(OxB4) The input buffer is not large enough

to hold the minimum data

NX_PTR_ERROR (0x07) Invalid IP or DNS pointer
NX_CALLER_ERROR (Ox11) Invalid caller of this service

Allowed From
Threads

Example

#define MAX RECORD_COUNT 10
ULONG record buffer[50];
UINT record count;

NX_DNS MX ENTRY *nx dns mx entry ptr[MAX RECORD COUNT];

/* Request the mail exchange data for the specified host. */
status = nx_dns domain mail_exchange_get(&client dns, (UCHAR *)" www.my example.com

record buffer, sizeof (record buffer),
&record_count, 500);

/* Check for DNS query error. */

if (status != NX_ SUCCESS)
{

error counter++;

}

else
{
/* If status is NX SUCCESS a DNS query was successfully completed and MX data
is returned in record buffer. */

Printf (M- \n") ;
printf ("Test MX: ");
printf ("record count = %d \n", record count);

/* Get the mail exchange. */
for (i =0; i< record count; i++)
{
nx_dns_mx_entry ptr[i] = (NX_DNS_MX ENTRY *)
(record buffer + i * sizeof (NX DNS MX ENTRY));

printf ("record %d: IP address: %d.%d.%d.%d\n", i,
nx_dns_mx_entry ptr[i] -> nx dns _mx ipv4 address >> 24,
nx dns mx entry ptr[i] -> nx dns mx ipv4 address >> 16 & OxFF,
nx dns mx entry ptr[i] -> nx dns mx ipv4 address >> 8 & OxFF,
nx_dns mx_entry ptr[i] -> nx dns mx ipv4 address & OxFF);

printf ("preference = %d \n ",

nx_dns_mx_entry ptr[i] -> nx dns_mx preference);
if (nx_dns _mx _entry ptr[i] -> nx dns mx hostname ptr)
printf ("hostname = %s\n",
nx dns mx entry ptr[i] -> nx dns mx hostname ptr);
else
printf ("hostname is not set\n");
}
[Output]
Test MX: record count = 5
record 0: IP address: 192.2.2.10
preference = 40

hostname = alt3.aspmx.l.www.my example.com
record 1: IP address: 192.2.2.11
preference = 50

hostname = alt4.aspmx.l.www.my example.com
record 2: IP address: 192.2.2.12

preference = 10

hostname = aspmx.l.www.my example.com
record 3: IP address: 192.2.2.13
preference = 20

hostname = altl.aspmx.l.www.my example.com
record 4: IP address: 192.2.2.14
preference = 30

hostname = alt2.aspmx.l.www.my example.com

42

nx_dns_domain_service get
Look up the service(s) provided by the input host name

Prototype

UINT nx_dns_domain_service_get (NX_DNS *dns_ptr, UCHAR *host_name,
VOID *record_buffer, UINT buffer_size,
UINT *record_count, ULONG wait_option);

Description

If NX_DNS_ENABLE_EXTENDED_RR_TYPES is defined, this service sends a query
of type SRV with the specified domain name to look up the service(s) and
their port number associated with the specified domain. The DNS Client
copies the SRV record(s) returned in the DNS Server response into the
record_buffer memory location. Note that record_buffer must be 4-byte
aligned to receive the data.

In NetX DNS Client, the service record type, NX DNS_SRV_ ENTRY, is
saved as six parameters, totaling 16 bytes. This enables variable length SRV
data to be stored in a memory efficient manner:

Server IPv4 address nx_dns_srv_ipv4_address 4 bytes
Server priority nx_dns_srv_priority 2 bytes
Server weight nx_dns_srv_weight 2 bytes
Service port number nx_dns_srv_port_number 2 bytes
Reserved for 4-byte alignment nx_dns_srv_reserved0 2 bytes
Pointer to server host name *nx_dns_srv_hostname_ptr 4 bytes

Four SRV records are stored in the supplied buffer. Each NX_DNS_SRV_ENTRY
record contains a pointer, nx_dns_srv_hostname_ptr, that points to the
corresponding host name string in the bottom of the record buffer:

| IPv4 address 0 | priority | weight | port | res | host name ptr |
|-—— - ———— |
| IPv4 address 1 | priority | weight | port | res | host name ptr |
| |
| IPv4 address 2 | priority | weight | port | res | host name ptr |

43

If the input record_buffer cannot hold all the SRV data in the server reply, the
the record_buffer holds as many records as will fit and returns the number of
records in the buffer.

With the number of SRV records returned in *record_count, the application

can parse the SRV parameters, including the server host name of each
record in the record_buffer.

Input Parameters

dns_ptr Pointer to DNS Client.

host_name Pointer to host name to obtain SRV data for
record_buffer Pointer to location to extract SRV data into
buffer_size Size of buffer to hold SRV data

record_count Pointer to the number of SRV records retrieved
wait_option Wait option to receive DNS Server response

Return Values

NX_SUCCESS (0x00) Successfully obtained SRV data
NX_DNS_NO_SERVER (0xAl) Client server list is empty
NX_DNS_QUERY_FAILED

(OxA3) No valid DNS response received
NX_DNS_NEED_MORE_RECORD_BUFFER

(OxB4) The input buffer is not large enough

to hold the minimum data

NX_PTR_ERROR (0x07) Invalid IP or DNS pointer
NX_CALLER_ERROR (Ox11) Invalid caller of this service

Allowed From
Threads

Example

#define MAX RECORD COUNT 10

UCHAR record buffer[50];
UINT record_count;
NX DNS_SRV_ENTRY *nx _dns_srv_entry ptr[MAX RECORD COUNT];

/* Request the service(s) provided by the specified host. */

status = nx_dns_domain_service_get(&client_dns, (UCHAR *)“www.my_ example.com "
record buffer, sizeof (record buffer),
&record count, 500);

/* Check for DNS query error. */
if (status != NX_ SUCCESS)
{

error counter++;

44

}

else
{
/* If status is NX SUCCESS a DNS query was successfully completed and SRV data is
returned in record buffer. */
Printf (M-—— e \n") ;
printf ("Test SRV: ");
printf ("record count = %d \n", record count);
/* Get the location of services. */

for (i =0; i< record count; i++)

{

}

nx dns_ srv_entry ptr[i] = (NX DNS SRV ENTRY *)
(record buffer + i * sizeof (NX DNS SRV _ENTRY));

printf ("record %d: IP address: %d.%d.%d.%d\n", i,
nx_dns_srv_entry ptr[i] -> nx dns_srv_ipv4 address >> 24,
nx_dns_srv_entry ptr[i] -> nx dns srv ipv4 address >> 16 & OxFF,
nx _dns_srv_entry ptr[i] -> nx dns srv ipv4 address >> 8 & OxFF,

nx dns_srv_entry ptr[i] -> nx dns srv ipv4 address & OxFF);

printf ("port number = %d\n",

nx _dns_srv_entry ptr[i] -> nx dns_srv port number);
printf ("priority = $d\n", nx dns srv_entry ptr[i] -> nx dns srv priority);

printf ("weight = %d\n", nx dns_srv_entry ptr[i] -> nx dns_srv_weight);

if (nx_dns_srv _entry ptr[i] -> nx dns srv_hostname ptr)
{
printf ("hostname = %$s\n",
nx dns_srv_entry ptr(i] -> nx dns srv hostname ptr);
}
else
printf ("hostname is not set\n");

[Output]

Test SRV: record count = 3
record 0: IP address: 192.2.2.10

port number
priority

weight

hostname

= 5222
= 20
=0

= altd.xmpp.l.www.my example.com

record 1: IP address: 192.2.2.11
port number = 5222

priority = 5
weight = 0
hostname = xmpp.l.www.my example.com

record 2: IP address: 192.2.2.12
port number = 5222

priority = 20
weight = 0
hostname = altl.xmpp.l.www.my example.com

45
nx_dns_get_serverlist_size
Return the size of the DNS Client’s Server list

Prototype
UINT nx_dns_get_serverlist_size (NX_DNS *dns_ptr, UINT *size);

Description

This service returns the number of valid DNS Servers in the Client list.
Input Parameters

dns_ptr Pointer to DNS control block

size Returns the number of servers in the list

Return Values

NX_SUCCESS (0Ox00) DNS Server list size
successfully returned

NX_PTR_ERROR (0OxQ7) Invalid IP or DNS pointer.

NX_CALLER_ERROR (Ox11) Invalid caller of this
service

Allowed From
Threads

Example

UINT my listsize;

/* Get the number of non null DNS Servers in the Client list. */
status = nx_dns get_ serverlist_size (&my dns, 5, &my listsize);

/* If status is NX SUCCESS the size of the DNS Server list was successfully
returned. */

46

nx_dns_info_by name get
Return ip address and port of DNS server by host name

Prototype

UINT nx_dns_info_by_name_get (NX_DNS *dns_ptr, UCHAR *host_name,
ULONG *host_address_ptr,))
USHORT *host_port_ptr, ULONG wait_option);

Description

This service returns the Server IP and port (service record) based on the
input host name by DNS query. If a service record is not found, this routine
returns a zero IP address in the input address pointer and a non-zero error
status return to signal an error.

Input Parameters

dns_ptr Pointer to DNS control block
host_name Pointer to host name buffer
host_address_ptr Pointer to address to return
host_port_ptr Pointer to port to return
wait_option Wait option for the DNS response

Return Values

NX_SUCCESS (0x00) DNS Server record
successfully returned

NX_DNS_NO_SERVER (OxA1) No DNS Server registered
with Client to send query on
hostname

NX_DNS_QUERY_FAILED (0XA3) DNS query failed; no

response from any DNS
servers in Client list or no
service record is available for
the input hostname.

NX_PTR_ERROR (0x07) Invalid IP or DNS pointer
NX_CALLER_ERROR (Ox11) Invalid caller of this
service

Allowed From

Threads

Example

ULONG ip address
USHORT port;

/* Attempt to resolve the IP address and ports for this host name. */
status nx_dns_info by name get (&my_dns, “www.abcl234.com”, &ip_address, é&port,
200) ;

/* If status is NX SUCCESS the DNS query was successful and the IP address and
report for the hostname are returned. */

a7

http://www.abc1234.com/

48

nx_dns_ipv4_address_by name_get
Look up the IPv4 address for the input host name

Prototype

UINT nx_ dns_ipv4_address_by_name_get (NX_DNS *dns_ptr,
UCHAR *host_name_ptr, VOID *buffer,
UINT buffer_size,
UINT *record_count,
ULONG wait_option);

Description

This service sends a query of Type A with the specified host name to obtain
the IP addresses for the input host name. The DNS Client copies the IPv4
address from the A record(s) returned in the DNS Server response into the
record_buffer memory location. Note that record_buffer must be 4-byte
aligned to receive the data.

Multiple IPv4 addresses are stored in the 4-byte aligned buffer as shown
below:

If the supplied buffer cannot hold all the IP address data, the remaining A
records are not stored in record_buffer. This enables the application to
retrieve one, some or all of the available IP address data in the server reply.

With the number of A records returned in *record_count the application can
parse the IPv4 address data from the record_buffer.

Input Parameters

dns_ptr Pointer to DNS Client.

host_name_ptr Pointer to host name to obtain IPv4 address
buffer Pointer to location to extract IPv4 data into
buffer_size Size of buffer to hold IPv4 data

wait_option Wait option to receive DNS Server response

Return Values

NX_SUCCESS (0x00) Successfully obtained IPv4 data
NX_DNS_NO_SERVER (0OxAl) Client server list is empty
NX_DNS_QUERY_FAILED

(OxA3) No valid DNS response received
NX_DNS_NEED_MORE_RECORD_BUFFER

(OxB4) Input buffer not large enough
to hold the minimum data

NX_PTR_ERROR (0x07) Invalid IP or DNS pointer

NX_CALLER_ERROR (Ox11) Invalid caller of this service
Allowed From

Threads
Example

#define MAX RECORD COUNT 20

ULONG record buffer[50];

UINT record count;

ULONG *ipv4igddressiptr[MAXiRECORD7COUNT];

/* Request the IPv4 address for the specified host. */
status = nx_dns_ipv4_address by name get(&client dns,
(UCHAR *) "www.my example.com",
record buffer,
sizeof (record buffer), &record count,
500) ;

/* Check for DNS query error. */
if (status != NX SUCCESS)
{

error counter++;

}

else
{
/* If status is NX SUCCESS a DNS query was successfully completed the IPv4
address (es) is returned in record buffer. */
printf("------------- - \n") ;
printf ("Test A: ");
printf ("record count = %d \n", record count);
/* Get the IPv4 addresses of host. */
for(i =0; i< record count; i++)
{
ipv4_address ptr[i] = (ULONG *) (record buffer + i * sizeof (ULONG)) ;
printf ("record %d: IP address: %d.%d.%d.%d\n", i,
*ipv4 address ptr[i] >> 24,
*ipv4 address ptr[i] >> 16 & OxFF,
*ipv4 address ptr[i] >> 8 & OxFF,
*ipv4 address ptr[i] & OxFF);
}
}
[Output]
Test A: record count = 5
record O0: IP address: 192.2.2.10
record 1: IP address: 192.2.2.11
record 2: IP address: 192.2.2.12
record 3: IP address: 192.2.2.13
record 4: IP address: 192.2.2.14

50

nx_dns_host by address_get
Look up a host name from an IP address

Prototype

UINT nx_dns_host_by_address_get (NX_DNS *dns_ptr, ULONG ip_address,
ULONG *host_name_ptr,
ULONG max_host_name_size,
ULONG wait_option);

Description

This service requests name resolution of the supplied IP address from one or
more DNS Servers previously specified by the application. If successful, the
NULL-terminated host name is returned in the string specified by
host_name_ptr.

Input Parameters

dns_ptr Pointer to previously created DNS instance.
ip_address IP address to resolve into a hame

host_name_ptr Pointer to destination area for host name
max_host_name_size Size of destination area for host name

wait_option Defines how long the service will wait in timer ticks

for a DNS server response after each DNS query
and query retry. The wait options are
defined as follows:

timeout value (0x00000001-0xFFFFFFFE)
TX_WAIT_FOREVER (0xFrrrrrFr)

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until a
DNS server responds to the request.

Selecting a numeric value (1-OxFFFFFFFE)
specifies the maximum number of timer-ticks
to stay suspended while waiting for the DNS

resolution.
Return Values
NX_SUCCESS (0Ox00) Successful DNS resolution
NX_DNS_TIMEOUT (0xA2) Timed out on obtaining DNS mutex
NX_DNS_NO_SERVER (0xAl) No DNS Server address specified

NX_DNS_QUERY_FAILED

(OxA3)
NX_DNS_BAD_ADDRESS ERROR

(OxA4)
NX_DNS_PARAM_ERROR

(OxA8)
NX_PTR_ERROR (0x07)
NX_CALLER_ERROR (Ox11)
NX_DNS_PARAM_ERROR

(OxA8)

Allowed From
Threads

Example

#define BUFFER _SIZE 200

UCHAR resolved name[200];

51

Received no response to query
Null input address

Invalid non pointer input

Invalid pointer input

Invalid caller of this service

Invalid non pointer input

/* Get the name associated with IP address 192.2.2.10. */

status = nx_dns _host by address_get (&my dns,

IP ADDRESS(192.2.2.10),

&resolved name[0], BUFFER SIZE, 450);

/* If status is NX SUCCESS the name associated with the IP address
can be found in the resolved name variable. */

52

nx_dns_host by name_get

Prototype

Look up an IP address from the host name

UINT nx_dns_host_by_name_get (NX_DNS *dns_ptr, ULONG *host_name,

Description

This service requests name resolution of the supplied name from one or more

ULONG *host_address_ptr, ULONG wait_option);

DNS Servers previously specified by the application. If successful, the
associated IP address is returned in the destination pointed to by

host_address_ptr.
Input Parameters

dns_ptr

host_name_ptr

host_address_ptr
wait_option

Return Values

NX_SUCCESS
NX_DNS_NO_SERVER

Pointer to previously created DNS instance.
Pointer to host name

Pointer to destination for IP address

Defines how long the service will wait for the
DNS resolution. The wait options are
defined as follows:

timeout value (0x00000001 through
OxFFFFFFFE)
TX_WAIT_FOREVER (OxFFFFFFFF)

Selecting TX_WAIT_FOREVER causes the
calling thread to suspend indefinitely until a
DNS server responds to the request.

Selecting a numeric value (1-OxFFFFFFFE)
specifies the maximum number of timer-ticks
to stay suspended while waiting for the DNS
resolution.

NX_DNS_QUERY_FAILED

NX_DNS_BAD_ADDRESS_ERROR

NX_PTR_ERROR
NX_CALLER_ERROR

(0x00) Successful DNS resolution.
(OxAl1) No DNS Server address specified
(OxA3) Received no response to query
(OxA4) Null input address

(0x07) Invalid IP or DNS pointer

(Ox11) Invalid caller of this service

NX_DNS_PARAM_ERROR

(OxA8) Invalid non pointer input
Allowed From
Threads
Example
ULONG ip address;
/* Get the IP address for the name “www.my example.com”. */
status = nx_dns host by name get (&¢my dns, “www.my example.com”, &ip_address, 4000);

/* Check for DNS query error. */
if (status != NX SUCCESS)
{

error counter++;

}

else

/* If status is NX SUCCESS the IP address for “www.my example.com” can be found
in the “ip address” variable. */

printf (M-—-——-mmm o \n") ;
printf ("Test A: \n");

printf ("IP address: %d.%d.%d.%d\n",

host ip address >> 24,

host ip address >> 16 & OxFF,

host ip address >> 8 & OxFF,

host ip address & OxFF);

[Output]

Test A:
IP address: 192.2.2.10

54

nx_dns_host_text get

Look up the text string for the input domain name

Prototype

UINT nx_dns_host_text_get(NX_DNS *dns_ptr, UCHAR *host_name,
UCHAR *record_buffer,]]
UINT buffer_size, ULONG wait_option);

Description

This service sends a query of type TXT with the specified domain name and

buffer to obtain the arbitrary string data.

The DNS Client copies the text string in the TXT record in the DNS Server
response into the record_buffer memory location. Note that record_buffer
does not need to be 4-byte aligned to receive the data.

Input Parameters

dns_ptr Pointer to DNS Client.

host_name Pointer to name of host to search on
record_buffer Pointer to location to extract TXT data into
buffer_size Size of buffer to hold TXT data

wait_option Wait option to receive DNS Server response

Return Values

NX_SUCCESS (0x00)
NX_DNS_NO_SERVER (0xAl)
NX_DNS_QUERY_FAILED
(0XA3)
NX_PTR_ERROR (0x07)
NX_CALLER_ERROR (0x11)
NX_DNS_PARAM_ERROR
(OXA8)

Allowed From

Threads

Successfully TXT string obtained
Client server list is empty

No valid DNS response received
Invalid pointer input
Invalid caller of this service

Invalid non pointer input

Example

CHAR record buffer[50];

/* Request the text string for the specified host. */

status = nx_dns _host_ text get(&client dns, (UCHAR *)"www.my example.com",
record buffer,
sizeof (record buffer), 500);

/* Check for DNS query error. */
if (status != NX SUCCESS)
{

error counter++;

}

else
{
/* If status is NX SUCCESS a DNS query was successfully completed and the text
string is returned in record buffer. */
printf (M---——-mm e \n");
printf ("Test TXT:\n %s\n", record buffer);
}
[Output]
Test TXT:

v=spfl include: www.my example.com ip4:192.2.2.10/31 ip4:192.2.2.11/31 ~all

55

56

nx_dns_packet pool_ set

Prototype

Set the DNS Client packet pool

UINT nx_dns_packet_pool_set(NX_DNS *dns_ptr, NX_PACKET_POOL *pool_ptr);

Description

This service sets a previously created packet pool as the DNS Client packet
pool. The DNS Client will use this packet pool to send DNS queries, so the
packet payload should be no less than NX_DNS_PACKET_PAYLOAD which
includes the IP and UDP headers and is defined in nx_dns.h. Note that when
the DNS Client is deleted, the packet pool is not deleted with it and it is the
responsibility of the application to delete the packet pool when it no longer

needs it.

Note: this service is only available if the configuration option
NX_DNS_CLIENT_USER_CREATE_PACKET_POOL is defined in nx_dns.h

Input Parameters

dns_ptr
pool_ptr

Return Values
NX_SUCCESS
NX_NOT_ENABLED
NX_PTR_ERROR
NX_CALLER_ERROR

Allowed From

Threads

Pointer to previously created DNS Client instance.
Pointer to previously created packet pool

(0x00)
(Ox14)
(0x07)
(Ox11)

Successful completion.

Client not configured for this option
Invalid IP or DNS Client pointer.
Invalid caller of this service.

Example

NX DNS my dns;
NX PACKET POOL client pool;

NX_IP *ip |

/* Create
status =

/* Create
status =

ptr;

the DNS Client. */
nx_dns_create(&my dns, ip ptr, “My DNS Client”);

a packet pool for the DNS Client. */

nx_packet pool create(&client pool, "DNS Client Packet Pool",
NX DNS_PACKET_ PAYLOAD, free mem pointer,
NX_DNS_PACKET POOL_SIZE) ;

/* Set the DNS Client packet pool. */

status =

/* If status is NX SUCCESS the DNS Client packet pool was successfully set.

nx_dns_packet pool_set(&my dns, &client pool);

*/

57

58
nx_dns_server_add
Add DNS Server IP Address

Prototype
UINT nx_dns_server_add (NX_DNS *dns_ptr, ULONG server_address);

Description
This service adds an IPv4 DNS Server to the server list.
Input Parameters
dns_ptr Pointer to DNS control block.

server_address IP address of DNS Server

Return Values

NX_SUCCESS (0Ox00) Server successfully added
NX_DNS_BAD_ADDRESS ERROR

(OxA4) Null server address input
NX_DNS_DUPLICATE_ENTRY
NX_NO_MORE_ENTRIES (0x17) No more DNS Servers

Allowed (list is full)

NX_PTR_ERROR (0x07) Invalid pointer input
NX_DNS_PARAM_ERROR (OxA8) Invalid non pointer input
NX_CALLER_ERROR (Ox11) Invalid caller of this service

Allowed From
Threads

Example

/* Add a DNS Server at IP address 202.2.2.13. */
status = nx_dns_server_ add(&my dns, IP_ADDRESS(202,2,2,13));

/* If status is NX SUCCESS a DNS Server was successfully added. */

59

nx_dns_server_get
Return an IPv4 DNS Server from the Client list

Prototype

UINT nx_dns_server_get(NX_DNS *dns_ptr, UINT index,
ULONG *dns_server_address);

Description

This service returns the IPv4 DNS Server address from the server list at the
specified index. Note that the index is zero based. If the input index exceeds
the size of the DNS Client list, an error is returned. The
nx_dns_get_serverlist_size service may be called first obtain the number of
DNS servers in the Client list.

Input Parameters

dns_ptr Pointer to DNS control block
index Index into DNS Client’s list of servers
dns_server_address Pointer to IP address of DNS Server

Return Values

NX_SUCCESS (0x00) Successful server returned
NX_DNS_SERVER_NOT_FOUND

(OxA9) Index points to empty slot
NX_DNS_BAD_ADDRESS ERROR

(OxA4) Index points to Null address
NX_DNS_PARAM_ERROR (OxA8) Index exceeds size of list
NX_PTR_ERROR (0OxQ7) Invalid IP or DNS pointer.
NX_CALLER_ERROR (Ox11) Invalid caller of this

service

Allowed From
Threads

Example

ULONG my server address;

/* Get the DNS Server at index 5 (zero based) into the Client list. */
status = nx_dns_server get (&my dns, 5, &my_ server_addres);

/* If status is NX SUCCESS a DNS Server was successfully
returned. */

60
nx_d NS_server_remove
Remove an IPv4 DNS Server from the Client list

Prototype
UINT nx_dns_server_remove (NX_DNS *dns_ptr, ULONG server_address);

Description

This service removes an IPv4 DNS Server from the Client list.

Input Parameters
dns_ptr Pointer to DNS control block.

server_address IP address of DNS Server.

Return Values

NX_SUCCESS (0x00) DNS Server successfully
removed
NX_DNS_SERVER_NOT_FOUND
(OxA9) Server not in Client list
NX_DNS BAD_ADDRESS ERROR Null server address input
(OxA4)
status Completion status of internal
NetX and ThreadX calls
NX_PTR_ERROR (0x07) Invalid IP or DNS pointer.
NX_CALLER_ERROR (Ox11) Invalid caller of this
service

NX_DNS_BAD_ADDRESS_ERROR
(OxA4) Null Server address input

Allowed From

Threads

Example

/* Remove the DNS Server at IP address is 202.2.2.13. */
status = nx_dns server_ remove (&my dns, IP_ADDRESS (202,2,2,13));

/* If status is NX_ SUCCESS a DNS Server was successfully
removed. */

61

62
nx_dns_server_remove_all
Remove all DNS Servers from the Client list

Prototype
UINT nx_dns_server_remove_al1(NX_DNS *dns_ptr);

Description

This service removes all DNS Servers from the Client list.

Input Parameters

dns_ptr Pointer to DNS control block.

Return Values

NX_SUCCESS (0x00) DNS Servers successfully
removed
NX_DNS_ERROR (OxA0) Unable to obtain protection

mutex to remove servers

NetX and ThreadX calls
NX_PTR_ERROR (0OxQ7) Invalid IP or DNS pointer.
NX_CALLER_ERROR (Ox11) Invalid caller of this service

Allowed From
Threads

Example

/* Remove all DNS Servers from the Client list. */
status = nx_dns_server remove_all (¢my dns);

/* If status is NX SUCCESS all DNS Servers were successfully removed. */

