

Dynamic Host Configuration Protocol
for Clients

User Guide

Express Logic, Inc.

858.613.6640
Toll Free 888.THREADX

FAX 858.521.4259

www.expresslogic.com

http://www.expresslogic.com/

©2002-2016 by Express Logic, Inc.
All rights reserved. This document and the associated NetX software are the sole property of Express Logic,
Inc. Each contains proprietary information of Express Logic, Inc. Reproduction or duplication by any means of
any portion of this document without the prior written consent of Express Logic, Inc. is expressly forbidden.
Express Logic, Inc. reserves the right to make changes to the specifications described herein at any time and
without notice in order to improve design or reliability of NetX. The information in this document has been
carefully checked for accuracy; however, Express Logic, Inc. makes no warranty pertaining to the correctness
of this document.

Trademarks
NetX, Piconet, and UDP Fast Path are trademarks of Express Logic, Inc. ThreadX is a registered trademark of
Express Logic, Inc.
All other product and company names are trademarks or registered trademarks of their respective holders.

Warranty Limitations
Express Logic, Inc. makes no warranty of any kind that the NetX products will meet the USER’s requirements,
or will operate in the manner specified by the USER, or that the operation of the NetX products will operate
uninterrupted or error free, or that any defects that may exist in the NetX products will be corrected after the
warranty period. Express Logic, Inc. makes no warranties of any kind, either expressed or implied, including but
not limited to the implied warranties of merchantability and fitness for a particular purpose, with respect to the
NetX products. No oral or written information or advice given by Express Logic, Inc., its dealers, distributors,
agents, or employees shall create any other warranty or in any way increase the scope of this warranty, and
licensee may not rely on any such information or advice.

Part Number: 000-1050
Revision 5.9

Contents

Chapter 1 Introduction to DHCP Client... 5

Dynamic IP Address Assignment ... 5

RARP Alternatives.. 5
DHCP Messages ... 6
DHCP Communication ... 6
DHCP Client State Machine ... 6
DHCP User Request ... 7

DHCP RFCs .. 7

Chapter 2 Installation and Use of DHCP Client .. 8

Product Distribution .. 8
DHCP Installation ... 8

Using DHCP ... 8
In the Bound State ... 9
Sending DHCP Messages To The Server ... 9

Starting and Stopping the DHCP Client ... 10
Using the DHCP Client with Auto IP ... 11

Small Example System ... 11
Multi-Server Environments .. 14
BOOTP Protocol ... 14

DHCP Multihome Support ... 14

Configuration Options .. 16
Chapter 3 Description of DHCP Client Services ... 21

nx_dhcp_create ... 23

nx_dhcp_clear_broadcast_flag ... 24
nx_dhcp_delete ... 25

nx_dhcp_decline ... 26

nx_dhcp_force_renew ... 27
nx_dhcp_packet_pool_set ... 28

nx_dhcp_reinitialize .. 29
nx_dhcp_release .. 30
nx_dhcp_request_client_ip ... 31

nx_dhcp_send_request .. 32
nx_dhcp_server_address_gset... 33

nx_dhcp_set_interface_index ... 34
nx_dhcp_start .. 35
nx_dhcp_state_change_notify... 36
nx_dhcp_stop .. 38
nx_dhcp_user_option_retrieve .. 39

nx_dhcp_user_option_convert .. 41
Appendix A - Description of the Restore State Feature ... 42

Restoring the DHCP Client between Reboots .. 42

Resuming the DHCP Client Thread after Suspension .. 43

nx_dhcp_client_get_record ... 45
nx_dhcp_ client_restore_record .. 46
nx_dhcp_ client_update_time_remaining ... 48

nx_dhcp_suspend .. 50
nx_dhcp_resume ... 51

Chapter 1

Introduction to DHCP Client

In NetX, the application’s IP address is one of the supplied parameters to
the nx_ip_create service call. Supplying the IP address poses no problem
if the IP address is known to the application, either statically or through
user configuration. However, there are some instances where the
application doesn’t know or care what its IP address is. In such situations,
a zero IP address should be supplied to the nx_ip_create function and the
DHCP Client protocol should be used to dynamically obtain an IP address.

Dynamic IP Address Assignment

The basic service used to obtain a dynamic IP address from the network is
the Reverse Address Resolution Protocol (RARP). This protocol is similar
to ARP, except it is designed to obtain an IP address for itself instead of
finding the MAC address for another network node. The low-level RARP
message is broadcast on the local network and it is the responsibility of a
server on the network to respond with an RARP response, which contains
a dynamically allocated IP address.

Although RARP provides a service for dynamic allocation of IP addresses,
it has several shortcomings. The most glaring deficiency is that RARP only
provides dynamic allocation of the IP address. In most situations, more
information is necessary in order for a device to properly participate on a
network. In addition to an IP address, most devices need the network
mask and the gateway IP address. The IP address of a DNS server and
other network information may also be needed. RARP does not have the
ability to provide this information.

RARP Alternatives

In order to overcome the deficiencies of RARP, researchers developed a
more comprehensive IP address allocation mechanism called the
Bootstrap Protocol (BOOTP). This protocol has the ability to dynamically
allocate an IP address and also provide additional important network
information. However, BOOTP has the drawback of being designed for
static network configurations. It does not allow for quick or automated
address assignment.

This is where the Dynamic Host Configuration Protocol (DHCP) is
extremely useful. DHCP is designed to extend the basic functionality of

6

BOOTP to include completely automated IP server allocation and
completely dynamic IP address allocation through “leasing” an IP address
to a client for a specified period of time. DHCP can also be configured to
allocate IP addresses in a static manner like BOOTP.

DHCP Messages

Although DHCP greatly enhances the functionality of BOOTP, DHCP uses
the same message format as BOOTP and supports the same vendor
options as BOOTP. In order to perform its function, DHCP introduces
seven new DHCP-specific options, as follows:

 DISCOVER (1) (sent by DHCP Client)
 OFFER (2) (sent by DHCP Server)
 REQUEST (3) (sent by DHCP Client)
 DECLINE (4) (sent by DHCP Server)
 ACK (5) (sent by DHCP Server)
 NACK (6) (sent by DHCP Server)
 RELEASE (7) (sent by DHCP Client)
 INFORM (8) (sent by DHCP Client)
 FORCERENEW (9) (sent by DHCP Server)

DHCP Communication

DHCP utilizes the UDP protocol to send requests and field responses.
Prior to having an IP address, UDP messages carrying the DHCP
information are sent and received by utilizing the IP broadcast address of
255.255.255.255.

DHCP Client State Machine

The DHCP Client is implemented as a state machine. The state machine
is processed by an internal DHCP thread that is created during
nx_dhcp_create processing. The main states of DHCP Client are as
follows:

 State Meaning

NX_DHCP_STATE_BOOT Starting with a previous IP
address

NX_DHCP_STATE_INIT Starting with no previous

IP address value

 NX_DHCP_STATE_SELECTING Waiting for a response
from any DHCP server

7

 NX_DHCP_STATE_REQUESTING DHCP Server identified, IP
 address request sent

 NX_DHCP_STATE_BOUND DHCP IP Address lease

established

NX_DHCP_STATE_RENEWING DHCP IP Address lease
renewal time elapsed,
renewal requested

NX_DHCP_STATE_REBINDING DHCP IP Address lease
rebind time elapsed,
renewal requested

 NX_DHCP_STATE_FORCERENEW DHCP IP Address lease

established, force renewal
by server or by application

DHCP User Request

Once the DHCP server grants an IP address, the DHCP client processing
can request additional parameters — one at a time — by using the
nx_dhcp_user_option_request service.

DHCP RFCs

NetX DHCP is compliant with RFC2132, RFC2131, and related RFCs.

8

Chapter 2

Installation and Use of DHCP Client

This chapter contains a description of various issues related to installation,
setup, and usage of the NetX DHCP component.

Product Distribution

DHCP for NetX is shipped on a single CD-ROM compatible disk. The
package includes two source files and a PDF file that contains this
document, as follows:

 nx_dhcp.h Header file for DHCP for NetX
 nx_dhcp.c C Source file for DHCP for NetX
 nx_dhcp.pdf PDF description of DHCP for NetX
 demo_netx_dhcp.c NetX DHCP demonstration

DHCP Installation

In order to use DHCP for NetX, the entire distribution mentioned
previously should be copied to the same directory where NetX is installed.
For example, if NetX is installed in the directory “\threadx\arm7\green”
then the nx_dhcp.h and nx_dhpc.c files should be copied into this
directory.

Using DHCP

Using DHCP for NetX is easy. Basically, the application code must include
nx_dhcp.h after it includes tx_api.h and nx_api.h, in order to use ThreadX
and NetX, respectively. Once nx_dhcp.h is included, the application code
is then able to make the DHCP function calls specified later in this guide.
The application must also include nx_dhcp.c in the build process. This file
must be compiled in the same manner as other application files and its
object form must be linked along with the files of the application. This is all
that is required to use NetX DHCP.

Note that since DHCP utilizes NetX UDP services, UDP must be enabled
with the nx_udp_enable call prior to using DHCP.

To obtain a previously assigned IP address, the DHCP Client can initiate
the DHCP process with the Request message and Option 50 “Requested
IP Address” to the DHCP Server. The DHCP Server will respond with
either an ACK message if it grants the IP address to the Client or a NACK

9

if it refuses. In the latter case, the DHCP Client restarts the DHCP
process at the Init state with a Discover message and no requested IP
address. The host application first creates the DHCP Client, then calls the
nx_dhcp_request_client_ip API service to set the requested IP address
before starting the DHCP process with nx_dhcp_start. An example DHCP
application is provided elsewhere in this document for more details.

In the Bound State

While the DHCP client is in the bound state, the client thread iterates once
per interval (as specified by NX_DHCP_TIME_INTERVAL). During this
interval it will decrement the time remaining on the IP address lease.
There is an option to periodically check for DHCP Server messages.
This is set by the NX_DHCP_TIMEOUT_DECREMENTS option which
determines the intervals between checking for messages as follows:

NX_DHCP_TIMEOUT_DECREMENTS * NX_DHCP_TIME_INTERVAL

When this amount of time has elapsed since either the IP lease was
issued or since the last check for Server messages, the DHCP Client will
check the receive queue for DHCP messages.

The default setting for NX_DHCP_TIMEOUT_DECREMENTS is 0xFFFFFFFF which
indicates do not check for Server messages.

When the time remaining reaches the T1 (renewal timeout), the DHCP
Client is promoted to the RENEW state. It will then send requests
renewing its IP lease from the DHCP Server. If the Server has not
responded when the time remaining reaches T2 (rebind timeout), the
DHCP Client is promoted to the REBIND state. It will then broadcast
requests for a new IP address to any DHCP Server on the network. If no
Server replies when the IP lease expires, the DHCP Client is reset back to
the INIT state and it restarts the IP address request with the DISCOVER
messages.

Sending DHCP Messages To The Server

The DHCP Client has API services that allow the host application to send
a message to the DHCP Server. Note these services are NOT intended
for the host application to manually run the DHCP Client protocol as they
primarily send the message without necessarily updating the DHCP Client
internal state.

o nx_dhcp_release: this sends a release message to the Server

when the host application is either leaving the network or needs
relinquish its IP address.

10

o nx_dhcp_forcerenew: this does not send a message but sets the

DHCP Client in the FORCERENEW state if the Server sends the
Client a FORCERENEW message. The DHCP Client will then set
itself to the RENEW state to begin requesting IP lease renewal.

o nx_dhcp_send_request: This takes as an argument a DHCP

message type, as specified in nx_dhcp.h, and sends the message
to the Server. This is how a host application would send a
DECLINE or INFORM_REQUEST to the Server.

See “Description of DHCP Services” for more information about these
services elsewhere in this document.

Starting and Stopping the DHCP Client

To stop the DHCP Client, regardless if it has achieved a bound state, the
host application calls nx_dhcp_stop. This will wait for the DHCP Client to
pause between its loop iterations and give other threads, e.g. the host
application, a chance to access the DHCP Client profile (DHCP state, IP
address, etc) and even send messages back to the Server.

To restart a DHCP client, the host application must first stop the DHCP
Client using the nx_dhcp_stop service described above. Then the host
can call nx_dhcp_start to resume the DHCP Client. If the host application
wishes to clear a previous DHCP Client profile, for example, one obtained
from a previous DHCP Server on another network, the host application
should call nx_dhcp_reinitialize to perform this task internally before
calling nx_dhcp_start.

A typical sequence might be:

nx_dhcp_stop(&my_dhcp);

nx_dhcp_reinitialize(&my_dhcp);

nx_dhcp_start(&my_dhcp);

Note that while the DHCP Client is stopped, the timer on the IP lease
expiration is stopped as well, so stopping the DHCP Client is not advised
unless the host application requires rebooting or switching networks.

11

Using the DHCP Client with Auto IP

The NetX DHCP Client works concurrently with the Auto IP protocol in
applications where DHCP and Auto IP guarantee an address where a
DHCP Server is not guaranteed to be available or responding. However,
If the host is unable to detect a Server or get an IP address assigned, it
can switch to the Auto IP protocol for a local IP address. However before
doing so, it is advisable to stop the DHCP Client temporarily while Auto IP
goes through the “probe” and “defense” stages. Once an Auto IP address
is assigned to the host, the DHCP Client can be restarted and if a DHCP
Server does become available, the host IP address can accept the IP
address offered by the DHCP Server while the application is running.

The NetX Auto IP has an address change notification for the host to
monitor its activities in the event of an IP address change.

Small Example System

An example of how easy it is to use NetX is described in Figure 1.1 that
appears below. In this example, the DHCP include file nx_dhcp.h is
brought in at line 3. Next, DHCP is created “my_thread_entry” at line 101.
Note that the DHCP control block “my_dhcp” was defined as a global
variable at line 9 previously. After successful creation, the DHCP process
of requesting an IP address is initiated at the call to nx_dhcp_start at line
108. It is here that attempts are initiated to contact the DHCP server. At
this point, the application code waits for a valid IP address to appear using
the nx_ip_status_check service starting at line 95. After line 127, DHCP
has received a valid IP address and the application can then proceed,
utilizing NetX TCP/IP services as desired.

0001 #include "tx_api.h"
0002 #include "nx_api.h"
0003 #include "nx_dhcp.h"
0004
0005 #define DEMO_STACK_SIZE 4096
0006 TX_THREAD my_thread;
0007 NX_PACKET_POOL my_pool;
0008 NX_IP my_ip;
0009 NX_DHCP my_dhcp;
0010
0011 /* Define function prototypes. */
0012
0013 void my_thread_entry(ULONG thread_input);
0014 void my_netx_driver(struct NX_IP_DRIVER_STRUCT *driver_req);
0015
0016 /* Define main entry point. */
0017
0018 intmain()
0019 {
0020
0021 /* Enter the ThreadX kernel. */
0022 tx_kernel_enter();
0023 }
0024
0025

12

0026 /* Define what the initial system looks like. */
0027
0028 void tx_application_define(void *first_unused_memory)
0029 {
0030
0031 CHAR *pointer;
0032 UINT status;
0033
0034
0035 /* Setup the working pointer. */
0036 pointer = (CHAR *) first_unused_memory;
0037
0038 /* Create “my_thread”. */
0039 tx_thread_create(&my_thread, "my thread", my_thread_entry, 0,
0040 pointer, DEMO_STACK_SIZE,
0041 2, 2, TX_NO_TIME_SLICE, TX_AUTO_START);
0042 pointer = pointer + DEMO_STACK_SIZE;
0043
0044 /* Initialize the NetX system. */
0045 nx_system_initialize();
0046
0047 /* Create a packet pool. */
0048 status = nx_packet_pool_create(&my_pool, "NetX Main Packet Pool",
0049 1024, pointer, 64000);
0050 pointer = pointer + 64000;
0051
0052 /* Check for pool creation error. */
0053 if (status)
0054 error_counter++;
0055
0056 /* Create an IP instance without an IP address. */
0057 status = nx_ip_create(&my_ip, "My NetX IP Instance", IP_ADDRESS(0,0,0,0),
0058 0xFFFFFF00, &my_pool, my_netx_driver, pointer,
0059 DEMO_STACK_SIZE, 1);
0060 pointer = pointer + DEMO_STACK_SIZE;
0061
0062 /* Check for IP create errors. */
0063 if (status)
0064 error_counter++;
0065
0066 /* Enable ARP and supply ARP cache memory for my IP Instance. */
0067 status = nx_arp_enable(&my_ip, (void *) pointer, 1024);
0068 pointer = pointer + 1024;
0069
0070 /* Check for ARP enable errors. */
0071 if (status)
0072 error_counter++;
0073
0074 /* Enable UDP. */
0075 status = nx_udp_enable(&my_ip);
0076 if (status)
0077 error_counter++;
0078 }
0079
0080
0081 /* Define my thread. */
0082
0083 void my_thread_entry(ULONG thread_input)
0084 {
0085
0086 UINT status;
0087 ULONG actual_status;
0088 NX_PACKET *my_packet;
0089
0090 /* Wait for the link to come up. */
0091 do
0092 {
0093
0094 /* Get the link status. */
0095 status = nx_ip_status_check(&my_ip, NX_IP_LINK_ENABLED,
0096 &actual_status, 100);
0097
0098 } while (status != NX_SUCCESS);
0099
0100 /* Create a DHCP instance. */
0101 status = nx_dhcp_create(&my_dhcp, &my_ip, "My DHCP");
0102
0103 /* Check for DHCP create error. */
0104 if (status)
0105 error_counter++;

13

0106
0107 /* Start DHCP. */
0108 nx_dhcp_start(&my_dhcp);
0109
0110 /* Check for DHCP start error. */
0111 if (status)
0112 error_counter++;
0113
0114 /* Wait for IP address to be resolved through DHCP. */
0115 nx_ip_status_check(&my_ip, NX_IP_ADDRESS_RESOLVED,
0116 (ULONG *) &status, 100000);
0117
0118 /* Check to see if we have a valid IP address. */
0119 if (status)
0120 {
0121 error_counter++;
0122 return;
0123 }
0124 else
0125 {
0126
0127 /* Yes, a valid IP address is now on lease… All NetX
0128 services are available.
0129 }
0130 }

Figure 1.1 Example of DHCP use with NetX

14

Multi-Server Environments

On networks where there is more than one DHCP Server, the DHCP
Client accepts the first received DHCP Server Offer message, advances
to the Request state, and ignores any other received offers.

The DHCP Client can be configured to send an ARP probe after IP
address assignment to verify the IP address is unique. This is
recommended by RFC 2131 and is particularly important in environments
with more than one DHCP Server. If the host application enables the
NX_DHCP_CLIENT_SEND_ARP_PROBE option (and optionally adjusts the
NX_DHCP_ARP_PROBE_TIMEOUT), the DHCP Client will send a ‘self
addressed’ ARP probe and wait for the specified time for a response. If
none is received, the DHCP Client advances to the Bound state. If a
response is received, the DHCP Client assumes the address is already in
use. It automatically sends a DECLINE message to the Server, and
returns to the Client to the INIT state. This restarts the DHCP state
machine and the Client sends another DISCOVER message to the Server.

BOOTP Protocol

The DHCP Client also supports the BOOTP protocol as well the DHCP
protocol. To enable this option and use BOOTP instead of DHCP, the
host application must set the NX_DHCP_BOOTP_ENABLE configuration
option. The host application can still request specific IP addresses in the
BOOTP protocol. However, the DHCP Client does not support loading the
host operating system as BOOTP is sometimes used to do.

DHCP Multihome Support

DHCP Client v5.1 and later supports multihomed devices. Multihome
support is available starting inNetX 5.3 and NetX Duo 5.6. For single
homed devices, DHCP for NetXdefaults to the IP task primary interface,
so is backward compatible with previous versions of NetX. Existing host
applications will require no changes to work with DHCP Client v5.1.

To run a DHCP Client on a secondary network interface, the host
application must set the interface index of the DHCP Client to the
secondary interface using the nx_dhcp_set_interface_index API service.
The interface must already be attached to the primary network interface
using the nx_ip_interface_attach NetX API call. See the NetX User Guide
for more details on multihome support.

15

If a host requires DHCP to run on both interfaces, it should create a DHCP
Client task for each interface, but requires only one IP task interface.
Below in Figure 1.2 is an example system on which the host application
connects to the DHCP server on its secondary interface. On line 68, the
secondary interface is attached to the IP task with a null IP address. On
line 104, after the DHCP Client instance is created, the DHCP Client
interface index is set to 1 (e.g. the offset from the primary interface which
itself is index 0) by calling nx_dhcp_set_interface_index. Then the DHCP
Client is ready to be started in line 108.

0001 #include "tx_api.h"
0002 #include "nx_api.h"
0003 #include "nx_dhcp.h"
0004
0005 #define DEMO_STACK_SIZE 4096
0006 TX_THREAD my_thread;
0007 NX_PACKET_POOL my_pool;
0008 NX_IP my_ip;
0009 NX_DHCP my_dhcp;
0010
0011 /* Define function prototypes. */
0012
0013 void my_thread_entry(ULONG thread_input);
0014 void my_netx_driver(struct NX_IP_DRIVER_STRUCT *driver_req);
0015
0016 /* Define main entry point. */
0017
0018 intmain()
0019 {
0020
0021 /* Enter the ThreadX kernel. */
0022 tx_kernel_enter();
0023 }
0024
0025
0026 /* Define what the initial system looks like. */
0027
0028 void tx_application_define(void *first_unused_memory)
0029 {
0030
0031 CHAR *pointer;
0032 UINT status;
0033
0034
0035 /* Setup the working pointer. */
0036 pointer = (CHAR *) first_unused_memory;
0037
0038 /* Create “my_thread”. */
0039 tx_thread_create(&my_thread, "my thread", my_thread_entry, 0,
0040 pointer, DEMO_STACK_SIZE,
0041 2, 2, TX_NO_TIME_SLICE, TX_AUTO_START);
0042 pointer = pointer + DEMO_STACK_SIZE;
0043
0044 /* Initialize the NetX system. */
0045 nx_system_initialize();
0046
0047 /* Create a packet pool. */
0048 status = nx_packet_pool_create(&my_pool, "NetX Main Packet Pool",
0049 1024, pointer, 64000);
0050 pointer = pointer + 64000;
0051
0052 /* Check for pool creation error. */
0053 if (status)
0054 error_counter++;
0055
0056 /* Create an IP instance without an IP address. */
0057 status = nx_ip_create(&my_ip, "My NetX IP Instance", IP_ADDRESS(0,0,0,0),
0058 0xFFFFFF00, &my_pool, my_netx_driver, pointer, STACK_SIZE, 1);
0059 pointer = pointer + DEMO_STACK_SIZE;
0060
0061 /* Check for IP create errors. */
0062 if (status)

16

0063 error_counter++;
0064
0065 status = _nx_ip_interface_attach(&ip_0, "port_2", IP_ADDRESS(0, 0, 0,0),

0xFFFFFF00UL, my_netx_driver);

0066 /* Enable ARP and supply ARP cache memory for my IP Instance. */
0067 status = nx_arp_enable(&my_ip, (void *) pointer, 1024);
0068 pointer = pointer + 1024;
0069
0070 /* Check for ARP enable errors. */
0071 if (status)
0072 error_counter++;
0073
0074 /* Enable UDP. */
0075 status = nx_udp_enable(&my_ip);
0076 if (status)
0077 error_counter++;
0078 }
0079
0080
0081 void my_thread_entry(ULONG thread_input)
0082 {
0083
0084 UINT status;
0085 ULONG status;
0086 NX_PACKET *my_packet;
0087
0088 /* Wait for the link to come up. */
0089 do
0090 {
0091
0092 /* Get the link status. */
0093 status = nx_ip_status_check(&my_ip,NX_IP_LINK_ENABLED,& status,100);
0094 } while (status != NX_SUCCESS);
0095
0096 /* Create a DHCP instance. */
0097 status = nx_dhcp_create(&my_dhcp, &my_ip, "My DHCP");
0098
0099 /* Check for DHCP create error. */
0100 if (status)
0101 error_counter++;
0102
0103 /* Set the DHCP client interface to the secondary interface.
0104 status = nx_dhcp_set_interface_index(&my_dhcp, 1);
0105
0106
0107 /* Start DHCP. */
0108 nx_dhcp_start(&my_dhcp);
0109
0110 /* Check for DHCP start error. */
0111 if (status)
0112 error_counter++;
0113
0114 /* Wait for IP address to be resolved through DHCP. */
0115 nx_ip_status_check(&my_ip, NX_IP_ADDRESS_RESOLVED,
0116 (ULONG *) &status, 100000);
0117
0118 /* Check to see if we have a valid IP address. */
0119 if (status)
0120 {
0121 error_counter++;
0122 return;
0123 }
0124 else
0125 {
0126
0127 /* Yes, a valid IP address is now on lease… All NetX
0128 services are available.
0129 }
0130 }

Figure 1.2 Example of DHCP for NetX with multihome support

Configuration Options

17

User configurable DHCP options in nx_dhcp.h allow the host application to
fine tune DHCP Client for its particular requirements. The following is a
list of these parameters:

Define Meaning

NX_DHCP_ENABLE_BOOTP Defined, this option enables the

BOOTP protocol instead of
DHCP. By default this option is
disabled.

NX_DHCP_CLIENT_RESTORE_STATE If defined, this enables the DHCP
Client to save its current DHCP
Client license ‘state’ including
time remaining on the lease, and
restore this state between DHCP
Client application reboots. The
default value is disabled.

NX_DHCP_CLIENT_CLEAR_QUEUE If defined, this enables the DHCP
Client to clear the DHCP Client
queue packet. The default value
is enabled.

NX_DHCP_CLIENT_USER_CREATE_PACKET_POOL

If set, the DHCP Client will not
create its own packet pool. The
host application must use the
nx_dhcp_packet_pool_set
service to set the DHCP Client
packet pool. The default value is
disabled.

NX_DHCP_CLIENT_SEND_ARP_PROBE

Defined, this enables the DHCP
Client to send an ARP probe after
IP address assignment to verify
the assigned DHCP address
isnot owned by another host. By
default, this option is disabled.

NX_DHCP_CLIENT_SEND_MAX_DHCP_MESSAGE_OPTION

Defined, this enables the DHCP
Client to send maximum DHCP
message size option. By default,
this option is disabled.

18

NX_DHCP_THREAD_PRIORITY Priority of the DHCP thread. By
 default, this value specifies that
 the DHCP thread runs at priority
 3.

NX_DHCP_THREAD_STACK_SIZE Size of the DHCP thread stack.
 By default, the size is 2048,
 which represents a stack of
 2048 bytes.

NX_DHCP_TIME_INTERVAL Number of seconds between

iterations of the DHCP client
entry thread unaction. By default,
this value is1 second updates.

NX_DHCP_NUM_DNS_SERVERS Number of DNS name servers

the DHCP client will store. By
default, this value is 1.

NX_DHCP_NUM_NTP_SERVERS Number of network time protocol

servers the DHCP client will store.
By default, this value is 1.

NX_DHCP_PACKET_PAYLOAD Specifies the size in bytes of the

DHCP Client packet payload.
The default value is
NX_DHCP_MINIMUM_IP_DATAFRAM
+ physical header size (e.g.
Ethernet frame).

NX_DHCP_PACKET_POOL_SIZE Specifies the size of the DHCP
Client packet pool. The default
value is (5 *NX_DHCP_PACKET_PAYLOAD)

which will provide four packets
plus room for internal packet pool
overhead.

NX_PACKET_ALLOCATE_TIMEOUT Specifies the time out option for

allocating a packet from the
DHCP Client packet pool. The
value is defined as the
NX_DHCP_IP_PERIODIC_RATE.

NX_DHCP_MIN_RETRANS_TIMEOUT Specifies the minimum wait

option for receiving a DHCP
Server reply to client message
before retransmitting the

19

message. The default value is the
RFC 2131 recommended 4
seconds.

NX_DHCP_MAX_RETRANS_TIMEOUT Specifies the maximum wait

option for receiving a DHCP
Server reply to client message
before retransmitting the
message. The default value is the
RFC 2131 recommended 64
seconds.

NX_DHCP_MIN_RENEW_TIMEOUT Specifies minimum wait option for

receiving a DHCP Server
message and sending a renewal
request after the DHCP Client is
bound to an IP address. The
default value is 60 seconds.
However, the DHCP Client uses
the Renew and Rebind expiration
times from the DHCP server
message before defaulting to the
minimum renew timeout.

NX_DHCP_TIMEOUT_DECREMENTS Determines how long the DHCP

client waits between checking for
DHCP server messages once the
Client has reached the bound
state as follows. The interval is
defined as:

(NX_DHCP_TIMEOUT_DECREMENTS *

NX_DHCP_TIME_INTERVAL)

The default value is 0xFFFFFFFF
for disabled. The Client
periodically decrements the time
remaining on the lease and if
expired moves the Client into the
RENEW/ REQUEST state.

NX_DHCP_TYPE_OF_SERVICE Type of service required for the

DHCP UDP requests. By default,
this value is defined as
NX_IP_NORMAL to indicate
normal IP packet service.

20

NX_DHCP_FRAGMENT_OPTION Fragment enable for DHCP UDP
 requests. By default, this value is
 NX_DONT_FRAGMENT to
 disable DHCP UDP fragmenting.

NX_DHCP_TIME_TO_LIVE Specifies the number of routers
 this packet can pass before it
 is discarded. The default value
 is set to 0x80.

NX_DHCP_QUEUE_DEPTH Specifies the number of

maximum depth of receive
queue. The default value is set to
4.

NX_DHCP_ARP_PROBE_TIMEOUT Specifies the time out option in

timer tick to wait for response to
the DHCP Client ARP probe (see
NX_DHCP_CLIENT_SEND_ARP_PROBE
option). If
NX_DHCP_CLIENT_SEND_ARP_PROBEis
not enabled, this option has no
meaning. The value is defaulted
to 10 seconds.

21

Chapter 3

Description of DHCP Client Services

This chapter contains a description of all NetX DHCP services (listed
below) in alphabetic order.

In the “Return Values” section in the following API descriptions, values in
BOLD are not affected by the NX_DISABLE_ERROR_CHECKING define
that is used to disable API error checking, while non-bold values are
completely disabled.

nx_dhcp_create
 Create a DHCP instance

nx_dhcp_clear_broadcast_flag
 Clear broadcast flag on Client messages

nx_dhcp_delete
 Delete a DHCP instance

nx_dhcp_decline
 Send Decline message to server

nx_dhcp_force_renew
 Handle Server force renew message

nx_dhcp_packet_pool_set
 Set the DHCP Client packet pool

nx_dhcp_release
 Send Release message to server

nx_dhcp_reinitialize
 Clear DHCP client network parameters

nx_dhcp_request_client_ip
 Specify a specific IP address

nx_dhcp_send_request
 Send DHCP message to server

22

nx_dhcp_server_address_get
 Retrieve DHCP Client’s dhcp server address

nx_dhcp_set_interface_index
 Specify the Client network interface

nx_dhcp_start
 Start DHCP processing

nx_dhcp_state_change_notify
 Notify application of DHCP state change

nx_dhcp_stop
 Stop DHCP processing

nx_dhcp_user_option_retrieve
 Retrieve DHCP option

nx_dhcp_user_option_convert
 Convert four bytes to ULONG

23

nx_dhcp_create

Create a DHCP instance

Prototype

UINT nx_dhcp_create(NX_DHCP *dhcp_ptr, NX_IP *ip_ptr, CHAR *name_ptr);

Description

This service creates a DHCP instance for the previously created IP
instance.

Note: The DHCP Client packet pool payload is defaulted to
NX_DHCP_PACKET_PAYLOAD (548 bytes plus UDP, IP and Ethernet
headers). 548 bytes is the mandatory payload size a DHCP Client should
be able to receive.

Input Parameters

dhcp_ptr Pointer to DHCP control block.
ip_ptr Pointer to previously created IP instance.
name_ptr Pointer to name for DHCP instance.

Return Values

status Status return from NetX
NX_SUCCESS (0x00) Successful DHCP create
NX_PTR_ERROR (0x16) Invalid IP or DHCP pointer
NX_CALLER_ERROR (0x11) Invalid caller of this service
NX_NOT_ENABLED (0x14) UDP not enabled on IP instance

Allowed From

 Initialization

Example

/* Create a DHCP instance. */
status = nx_dhcp_create(&my_dhcp, &my_ip, "My DHCP");

/* If status is NX_SUCCESS a DHCP instance was successfully created. */

See Also

nx_dhcp_delete, nx_dhcp_request_client_ip,
nx_dhcp_set_interface_index, nx_dhcp_release, nx_dhcp_start,
nx_dhcp_state_change_notify, nx_dhcp_stop

24

nx_dhcp_clear_broadcast_flag

Send DHCP messages with the broadcast flag cleared

Prototype

UINT nx_dhcp_clear_broadcast_flag(NX_DHCP *dhcp_ptr, UINT clear_flag);

Description

This service enables the DHCP Client host application to have the
broadcast flag cleared in DHCP Client messages to the DHCP Server. On
certain message types (DISCOVER) the DHCP Client will set the
broadcast flag to request the Server reply with a broadcast. This is
typically because the Client does not have an IP address. If clear_flag is
set to NX_TRUE, the broadcast flag is cleared where it would normally set
the bit on. If it is NX_FALSE, the DHCP Client will set the broadcast flag
(default behavior)

It is intended for DHCP Clients going through a router to the DHCP
Server, where the router rejects the message because of the broadcast
request.

Input Parameters

dhcp_ptr Pointer to DHCP control block
clear_flag Value to set the broadcast flag to

Return Values

NX_SUCCESS (0x00) Successful DHCP create
NX_PTR_ERROR (0x16) Invalid IP or DHCP pointer
NX_CALLER_ERROR (0x11) Invalid caller of this service
NX_NOT_ENABLED (0x14) UDP not enabled on IP instance

Allowed From

 Threads

Example

/* Send DHCP Client messages with the broadcast flag set (e.g. request a unicast
 response). */
status = nx_dhcp_clear_broadcast_flag(&my_dhcp, NX_TRUE);

/* If status is NX_SUCCESS the DHCP Client messages will request unicast replies.
*/

25

nx_dhcp_delete

Delete a DHCP instance

Prototype

UINT nx_dhcp_delete(NX_DHCP *dhcp_ptr);

Description

This service deletes a previously created DHCP instance.

Input Parameters

dhcp_ptr Pointer to previously created DHCP instance.

Return Values

NX_SUCCESS (0x00) Successful DHCP delete.
NX_PTR_ERROR (0x16) Invalid DHCP pointer.
NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From

 Threads

Example

/* Delete a DHCP instance. */
status = nx_dhcp_delete(&my_dhcp);

/* If status is NX_SUCCESS the DHCP instance was successfully deleted. */

See Also

nx_dhcp_create, nx_dhcp_release, nx_dhcp_start,
nx_dhcp_state_change_notify, nx_dhcp_stop

26

nx_dhcp_decline

Decline a Leased IP address

Prototype

UINT nx_dhcp_decline(NX_DHCP *dhcp_ptr);

Description

This service informs the DHCP Server the DHCP Client is declining the IP
address offered by the DHCP Server and returns the DHCP state machine
to the initial state. A new IP address can be requested by calling
nx_dhcp_start again. The host application must use this service and not
nx_dhcp_send_request to send a DECLINE message.

Input Parameters

dhcp_ptr Pointer to previously created DHCP instance.

Return Values

NX_SUCCESS (0x00) Successful DHCP release
NX_DHCP_NOT_STARTED (0x96) DHCP Client not started
NX_PTR_ERROR (0x16) Invalid DHCP pointer
NX_CALLER_ERROR (0x11) Invalid caller of this service

Allowed From

 Threads

Example

/* Decline the IP address offered by the DHCP Server. */
status = nx_dhcp_decline(&my_dhcp);

/* If status is NX_SUCCESS the DECLINE message was successfully sent. */

See Also

nx_dhcp_create, nx_dhcp_decline, nx_dhcp_delete, nx_dhcp_start,
nx_dhcp_state_change_notify, nx_dhcp_stop

27

nx_dhcp_force_renew

Handle a server force renew message

Prototype

UINT nx_dhcp_force_renew(NX_DHCP *dhcp_ptr);

Description

This service enables the host application to handle a force renew
message. It sets the DHCP client to the FORCERENEW state so that on
the next DHCP client thread iteration it will execute the Client in the
RENEW state and obtain a new IP lease.

Input Parameters

dhcp_ptr Pointer to previously created DHCP instance.

Return Values

NX_SUCCESS (0x00) Successful DHCP release.
NX_DHCP_NOT_BOUND (0x94) The IP address has not been
 leased so it can’t be released.
NX_PTR_ERROR (0x16) Invalid DHCP pointer.
NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From

 Threads

Example

/* Handle a force renew message from server. */
status = nx_dhcp_force_renew(&my_dhcp);

/* If status is NX_SUCCESS the DHCP client state is the FORCE RENEW state. */

See Also

nx_dhcp_create, nx_dhcp_delete, nx_dhcp_start,
nx_dhcp_state_change_notify, nx_dhcp_stop

28

nx_dhcp_packet_pool_set

Set the DHCP Client packet pool

Prototype

UINT nx_dhcp_packet_pool_set(NX_DHCP *dhcp_ptr,

NX_PACKET_POOL *packet_pool_ptr);

Description

This service sets the DHCP Client packet pool by passing in a pointer to a
previously created packet pool. To use this service, the host application
must define NX_DHCP_CLIENT_USER_CREATE_PACKET_POOL so that the
nx_dhcp_create service will not create the Client’s packet pool. Note that
the caller should use the default values for the DHCP client packet pool
payload, defined as NX_DHCP_PACKET_PAYLOAD in nx_dhcp.h when

creating the packet pool.

Input Parameters

dhcp_ptr Pointer to DHCP control block.
packet_pool_ptr Pointer to previously created packet pool

Return Values

NX_SUCCESS (0x00) DHCP Client packet pool is set
NX_PTR_ERROR (0x16) Invalid DHCP pointer

Allowed From
 Application code

Example

 /* Create the packet pool. */

status = nx_packet_pool_create(&dhcp_pool, "DHCP Client Packet Pool",
NX_DHCP_PACKET_PAYLOAD, pointer, (15 * NX_DHCP_PACKET_PAYLOAD));

 /* Create the DHCP Client. */

status = nx_dhcp_create(&dhcp_0, &ip_0, "janetsdhcp1");

/* Set the DHCP Client packet pool. */
status = nx_dhcp_packet_pool_set(&my_dhcp, packet_pool_ptr);
/* If status is NX_SUCCESS packet pool was successfully set. */

See Also

nx_dhcp_delete, nx_dhcp_create, nx_dhcp_release, nx_dhcp_start,
nx_dhcp_state_change_notify, nx_dhcp_stop

29

nx_dhcp_reinitialize

Clear the DHCP client network parameters

Prototype

UINT nx_dhcp_reinitialize(NX_DHCP *dhcp_ptr);

Description

This service clears the host application network parameters (IP address,
network address and network mask), and returns the DHCP client to the
INIT state. It is used in combination with nx_dhcp_stop and nx_dhcp_start
to ‘restart’ a host on another network with another server:

nx_dhcp_stop(&my_dhcp);
nx_dhcp_reinitialize(&my_dhcp);
nx_dhcp_start(&my_dhcp);

Input Parameters

dhcp_ptr Pointer to previously created DHCP instance.

Return Values

NX_SUCCESS (0x00) Successful DHCP release
NX_PTR_ERROR (0x16) Invalid DHCP pointer

Allowed From

 Threads

Example

/* Reinitialize the previously started DHCP client. */
status = nx_dhcp_reinitialize(&my_dhcp);

/* If status is NX_SUCCESS the host application successfully reinitialized its
network parameters and DHCP client state. */

See Also

nx_dhcp_create, nx_dhcp_delete, nx_dhcp_start,
nx_dhcp_state_change_notify, nx_dhcp_stop

30

nx_dhcp_release

Release Leased IP address

Prototype

UINT nx_dhcp_release(NX_DHCP *dhcp_ptr);

Description

This service releases the IP address obtained from the previous DHCP
start request and returns the DHCP state machine to the initial state. The
host application must use this service and not nx_dhcp_send_requestto
send a RELEASE message A new IP address can be requested by calling
nx_dhcp_start again.

Input Parameters

dhcp_ptr Pointer to previously created DHCP instance.

Return Values

NX_SUCCESS (0x00) Successful DHCP release.
NX_DHCP_NOT_BOUND (0x94) The IP address has not been
 leased so it can’t be released.
NX_DHCP_NOT_STARTED (0x96) The DHCP instance not started.
NX_PTR_ERROR (0x16) Invalid DHCP pointer.
NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From

 Threads

Example

/* Release the previously leased IP address. */
status = nx_dhcp_release(&my_dhcp);

/* If status is NX_SUCCESS the previous IP lease was successfully released. */

See Also

nx_dhcp_create, nx_dhcp_decline, nx_dhcp_delete, nx_dhcp_start,
nx_dhcp_state_change_notify, nx_dhcp_stop

31

nx_dhcp_request_client_ip

Set requested IP address for DHCP instance

Prototype

UINT nx_dhcp_request_client_ip(NX_DHCP *dhcp_ptr,

ULONG client_ip_address, UINT skip_discover_message);

Description

This service sets the IP address for the DHCP instance to request from
the DHCP Server. If the skip_discover_message flag is set, the DHCP
client skips the discover message and sends a Request message.

Input Parameters

dhcp_ptr Pointer to DHCP control block.
client_ip_address IP address to request from DHCP server
skip_discover_message
 If true, DHCP Client sends Request message; else
 it starts with the Discover message.

Return Values

NX_SUCCESS (0x00) Requested IP address is set.
NX_PTR_ERROR (0x16) Invalid DHCP pointer

Allowed From
 Threads

Example

/* Set the DHCP Client requested IP address and skip the discover message. */
status = nx_dhcp_request_client_ip(&my_dhcp, IP(192,168,0,6), NX_TRUE);
/* If status is NX_SUCCESS requested IP address was successfully set. */

See Also

nx_dhcp_delete, nx_dhcp_create, nx_dhcp_release, nx_dhcp_start,
nx_dhcp_state_change_notify, nx_dhcp_stop

32

nx_dhcp_send_request

Send DHCP message to Server

Prototype

UINT nx_dhcp_send_request(NX_DHCP *dhcp_ptr, UINT dhcp_message_type);

Description

This service sends a message to the DHCP server. This is intended

primarily for the host application to send INFORM REQUESTmessages. It is

NOT intended for the host application to drive the DHCP Client state
machine. It does not update the DHCP client internally. If the host needs
to decline or release an IP address leased from a DHCP Server it should
use the nx_dhcp_decline or nx_dhcp_releaseservice respectively.

Input Parameters

dhcp_ptr Pointer to DHCP control block.
dhcp_message_type Message request (defined in nx_dhcp.h)

Return Values

NX_DHCP_INVALID_MESSAGE

 (0x9B) Illegal message type
NX_DHCP_NOT_STARTED (0x96) Invalid interface index
NX_PTR_ERROR (0x16) Invalid pointer input

Allowed From
 Threads

Example

/* Send the INFORM REQUEST message to the DHCP server. It is assumed the DHCP
Client task is already started */

status = nx_dhcp_send_request(&my_dhcp, NX_DHCP_TYPE_INFORMREQUEST);
/* If status is NX_SUCCESS the DHCP message was successfully sent. */

See Also
nx_dhcp_release, nx_dhcp_decline, nx_dhcp_state_change_notify,
nx_dhcp_reinitialize, nx_dhcp_stop, nx_dhcp_start

33

nx_dhcp_server_address_gset

Get the DHCP Client’s DHCP server IP address

Prototype

UINT nx_dhcp_server_address_get(NX_DHCP *dhcp_ptr,

ULONG server_address);

Description

This service retrieves the DHCP Client DHCP server IP address. The
caller should use this service when the DHCP Client has been granted an
IP address and is in a bound state. The host application can either use
the nx_ip_status_check service or a successful ping exchange to verify IP
address is set, or can use the nx_dhcp_state_change_notify and query
the DHCP Client state is NX_DHCP_STATE_BOUND.

Input Parameters

dhcp_ptr Pointer to DHCP control block.
server_address Pointer to server IP address

Return Values

NX_SUCCESS (0x00) DHCP server address returned
NX_PTR_ERROR (0x16) Invalid input pointer

Allowed From
 Application code

Example

 /* Use the state change notify service to determine the Client transition to the

bound state and get its DHCP server IP address.
 /* void dhcp_state_change(NX_DHCP *dhcp_ptr, UCHAR new_state)

{

ULONG server_address;
UINT status;

 /* Increment state changes counter. */

state_changes++;

if (dhcp_0.nx_dhcp_state == NX_DHCP_STATE_BOUND)
 {

status = nx_dhcp_server_address_get(&dhcp_0, &server_address);
 }
}*/

See Also

nx_dhcp_delete, nx_dhcp_create, nx_dhcp_release, nx_dhcp_start,
nx_dhcp_state_change_notify, nx_dhcp_stop

34

nx_dhcp_set_interface_index

Set network interface for DHCP instance

Prototype

UINT nx_dhcp_set_interface_index(NX_DHCP *dhcp_ptr, UINT index);

Description

This service sets the network interface DHCP instance connects to the
DHCP Server on.

 Important Note: The application must previously attach the specified

interface to the IP task.

Input Parameters

dhcp_ptr Pointer to DHCP control block.
index Index of device network interface

Return Values

NX_SUCCESS (0x00) Interface is successfully set.
NX_DHCP_BAD_INTERFACE_INDEX _ERROR

(0x9A) Invalid interface index
NX_PTR_ERROR (0x16) Invalid DHCP pointer

Allowed From
 Threads

Example

/* Set the DHCP Client interface to the secondary interface (index 1). */
status = nx_dhcp_set_interface_index(&my_dhcp, 1);
/* If status is NX_SUCCESS a DHCP interface was successfully set. */

See Also

nx_dhcp_delete, nx_dhcp_request_client_ip, nx_dhcp_create,
nx_dhcp_release, nx_dhcp_start, nx_dhcp_state_change_notify,
nx_dhcp_stop

35

nx_dhcp_start

Start DHCP processing

Prototype

UINT nx_dhcp_start(NX_DHCP *dhcp_ptr);

Description

This service starts DHCP processing, which includes contacting the DHCP
server on the network in order to obtain an IP address.

Note that when proceeding further, the application should use
nx_ip_status_check to see when an IP address is obtained.

Input Parameters

dhcp_ptr Pointer to previously created DHCP instance.

Return Values

NX_SUCCESS (0x00) Successful DHCP start.
NX_DHCP_ALREADY_STARTED (0x93) The DHCP instance has
 already been started.
NX_PTR_ERROR (0x16) Invalid DHCP pointer.
NX_CALLER_ERROR (0x11) Invalid caller of service.

Allowed From

 Threads

Example

/* Start the DHCP processing for this IP instance. */
status = nx_dhcp_start(&my_dhcp);

/* If status is NX_SUCCESS the DHCP was successfully started. */

See Also

nx_dhcp_create, nx_dhcp_delete, nx_dhcp_release,
nx_dhcp_state_change_notify, nx_dhcp_stop, nx_dhcp_request_client_ip,
nx_dhcp_set_interface_index

36

nx_dhcp_state_change_notify

Notify application of DHCP state change

Prototype

UINT nx_dhcp_state_change_notify(NX_DHCP *dhcp_ptr,
 VOID (*dhcp_state_change_notify)(NX_DHCP *dhcp_ptr,UCHARnew_state));

Description

This service registers the specified application callback function with
DHCP. Once this service is called, the specified callback function is
invoked whenever the DHCP state changes. Following are values
associated with the various DHCP states:

 State Value

NX_DHCP_STATE_BOOT 1
NX_DHCP_STATE_INIT 2
NX_DHCP_STATE_SELECTING 3
NX_DHCP_STATE_REQUESTING 4
NX_DHCP_STATE_BOUND 5
NX_DHCP_STATE_RENEWING 6
NX_DHCP_STATE_REBINDING 7
NX_DHCP_STATE_FORCERENEW 8

Input Parameters

dhcp_ptr Pointer to previously created
DHCP instance.

dhcp_state_change_notify Application callback function pointer

Return Values

NX_SUCCESS (0x00) Successful DHCP start.
NX_PTR_ERROR (0x16) Invalid DHCP pointer.
NX_CALLER_ERROR (0x11) Invalid caller of service.

Allowed From

 Threads

Example

/* Register the “my_state_change” function to be called on any DHCP state change,
assuming DHCP has alreadybeen created. */
status = nx_dhcp_state_change_notify(&my_dhcp, my_state_change);

37

/* If status is NX_SUCCESS the callback function was successfully
 registered. */

See Also

nx_dhcp_create, nx_dhcp_start, nx_dhcp_stop,
nx_dhcp_user_option_retrieve, nx_dhcp_user_option_convert

38

nx_dhcp_stop

Stops DHCP processing

Prototype

UINT nx_dhcp_stop(NX_DHCP *dhcp_ptr);

Description

This service stops DHCP processing, which includes sending a release
request to the DHCP server on the network if DHCP is in a bound state.

Input Parameters

dhcp_ptr Pointer to previously created DHCP instance.

Return Values

NX_SUCCESS (0x00) Successful DHCP stop
NX_DHCP_NOT_STARTED (0x96) The DHCP instance not started.
NX_PTR_ERROR (0x16) Invalid DHCP pointer.
NX_CALLER_ERROR (0x11) Invalid caller of service.

Allowed From

 Threads

Example

/* Stop the DHCP processing for this IP instance. */
status = nx_dhcp_stop(&my_dhcp);

/* If status is NX_SUCCESS the DHCP was successfully stopped. */

See Also

nx_dhcp_create, nx_dhcp_delete, nx_dhcp_release, nx_dhcp_start,
nx_dhcp_state_change_notify

39

nx_dhcp_user_option_retrieve

Retrieve a DHCP option from last server response

Prototype

UINT nx_dhcp_user_option_retrieve(NX_DHCP *dhcp_ptr,
 UINT request_option, UCHAR *destination_ptr,

 UINT *destination_size);

Description

This service retrieves the specified DHCP option from the server’s last
message. If successful, the option response string returned is copied into
the specified application buffer.

Input Parameters

dhcp_ptr Pointer to previously created DHCP instance.

request_option DHCP option, as specified by the RFCs. See the
 NX_DHCP_OPTION* defines in nx_dhcp.h.

destination_ptr Pointer to the destination for the response string.

destination_size Pointer to the size of the destination and on
 return, the destination to place the number of
 bytes returned.

40

Return Values

NX_SUCCESS (0x00) Successful DHCP option
 retrieval.

NX_DHCP_NOT_BOUND (0x94) The IP address has not been
 leased yet so option requests

cannot be made.

NX_DHCP_ERROR (0x90) Option not found in buffer. Please
 include the option in the

_nx_dhcp_request_parameters

which is defined at the top of
nx_dhcp.c.

NX_DHCP_DEST_TO_SMALL (0x95) Destination is too small to hold

response.

NX_PTR_ERROR (0x16) Invalid DHCP or destination
 pointer.

NX_CALLER_ERROR (0x11) Invalid caller of this service.

Allowed From

 Threads

Example

UCHAR dns_ip_string[4];
ULONG size;

/* Obtain the IP address of the DNS server. */
size = sizeof(dnx_ip_string);
status = nx_dhcp_user_option_retrieve(&my_dhcp, NX_DHCP_OPTION_DNS_SVR,
 dns_ip_string, &size);

/* If status is NX_SUCCESS the DNS IP address is in dns_ip_string. */

See Also

nx_dhcp_user_option_convert

41

nx_dhcp_user_option_convert

Convert four bytes to ULONG

Prototype

ULONG nx_dhcp_user_option_convert(UCHAR *option_string_ptr);

Description

This service converts the four characters pointed to by “option_string_ptr”
into an unsigned long value. It is especially useful when IP addresses are
present.

Input Parameters

option_string_ptr Pointer to previously retrieved option string.

Return Values

Value Value of first four bytes.

Allowed From

 Threads

Example

UCHAR dns_ip_string[4];
ULONG dns_ip;

/* Convert the first four bytes of “dns_ip_string” to an actual IP
address in “dns_ip.” */
dns_ip= nx_dhcp_user_option_convert(dns_ip_string);

/* If status is NX_SUCCESS the DNS IP address is in “dns_ip.” */

See Also

nx_dhcp_stop, nx_dhcp_user_option_retrieve

42

Appendix A - Description of the
Restore State Feature

The NetX DHDP Client configuration option, NX_DHCP_CLIENT_RESTORE_STATE,
allows a system to restore a previously created DHCP Client in a Bound state
between system reboots.

This option also allows an application to suspend the DHCP Client thread and
resume it, updated with the elapsed time between suspending and resuming the
thread without powering down.

Restoring the DHCP Client between Reboots

To restore a DHCP Client between reboots, the DHCP application creates an
instance of the DHCP Client, and then obtains an IP address lease using the
normal DHCP protocol and calling nx_dhcp_start. Then the DHCP application
waits for the protocol to complete. If all goes well, the device achieves the
BOUND state with an assigned valid IP address from its DHCP Server. Before it
powers down, the DHCP application saves the current DHCP Client instance to a
DHCP Client record which is then stored in non-volatile memory. An
independent ‘time keeper’ elsewhere in the system keeps track of the time
elapsed during this powered down state. On powering up, the application creates
a new DHCP Client instance, and then updates it with the previously created
DHCP Client record. The elapsed time is obtained from the “time keeper” and
then applied to the time remaining on the DHCP Client lease. At this point, the
application can resume the DHCP Client.

If the time elapsed during power down puts the DHCP Client state in either a
RENEW or REBIND state, the DHCP Client will automatically initiate DHCP
messages requesting to renew or rebind the IP address lease. If the IP address
is expired, the DHCP Client will automatically clear the IP address on the IP
instance and begin the DHCP process from the INIT state, requesting a new IP
address.

In this manner the DHCP Client can operate between reboots as if uninterrupted.

Below is an illustration of this feature.

/* On the power up, create an IP instance, DHCP Client, enable ICMP and UDP
 and other resources (not shown) for the DHCP Client/application
 in tx_application_define(). */

/* Define the DHCP application thread. */
void thread_dhcp_client_entry(ULONG thread_input)
{

UINT status;
UINT time_elapsed = 0;

43

NX_DHCP_CLIENT_RECORD client_nv_record;

if (/* The application checks if there is a previously saved DHCP Client record. */)
{

 /* No previously saved Client record. Start the DHCP Client in the INIT state. */
 status = nx_dhcp_start(&dhcp_0);

 if (status !=NX_SUCCESS)
 return;

 while(1)
 {

 /* Wait for DHCP to assign the IP address. */
 }

 /* At some point decide we power down the system. */

 /* Save the Client state data which we will subsequently need to restore the DHCP
 Client. */
 status = nx_dhcp_client_get_record(&dhcp_0, &client_nv_record);

 /* Copy this memory to non-volatile memory (not shown). */

 /* Delete the IP and DHCP Client instances before powering down. */
 nx_dhcp_delete(&dhcp_0);

 nx_ip_delete(&ip_0);

 /* Ready to power down, having released other resources as necessary. */

}
else
{

 /* The application has determined there is a previously saved record. We will
 restore it to the current DHCP Client instance. */

 /* Get the previous Client state data from non-volatile memory. */

 /* Apply the record to the current Client instance. This will also
 update the IP instance with IP address, mask etc. */
 status = nx_dhcp_client_restore_record(&dhcp_0, &client_nv_record, time_elapsed);

 if (status != NX_SUCCESS)
 return;

 /* We are ready to resume the DHCP Client thread and use the assigned IP address. */
 status = nx_dhcp_resume(&dhcp_0);

 if (status != NX_SUCCESS)
 return;

}

Resuming the DHCP Client Thread after Suspension

To suspend a DHCP Client thread without powering down, the application calls
nx_dhcp_suspend on a DHCP Client which has achieved the BOUND state and
which has a valid IP address. When it is ready to resume the DHCP Client it first
calls nx_dhcp_client_update_time_remaining to update the time remaining on the
DHCP address lease (obtaining the time elapsed from an independent time
keeper). Then it calls the nx_dhcp_resume to resume the DHCP Client thread.

44

If the time elapsed puts the DHCP Client state in either a RENEW or REBIND
state, the DHCP Client will automatically initiate DHCP messages requesting to
renew or rebind the IP address lease. If the IP address is expired, the DHCP
Client will automatically clear the IP address and begin the DHCP process from
the INIT state, requesting a new IP address.

Below is an illustration of using this feature.

/* Create an IP instance, DHCP Client, enable ICMP and UDP
 and other resources (not shown) typically in tx_application_define(). */

/* Define the DHCP application thread. */
void thread_dhcp_client_entry(ULONG thread_input)
{

 /* Start the DHCP Client. */
 status = nx_dhcp_start(&dhcp_0);

 if (status !=NX_SUCCESS)
 return;

 while(1)
 {

 /* Wait for DHCP to obtain an IP address. */
 }

 /* Do tasks with the IP address e.g. send pings to another host on the network... */
 status = nx_icmp_ping(…);

 if (status !=NX_SUCCESS)
 printf("Failed %d byte Ping!\n", length);

 /* At some later time, suspend the DHCP Client e.g. the device is going to low
 power mode (sleep) so we do not want any threads to wake it up. */

 nx_dhcp_suspend(&dhcp_0);

 /* During this suspended state, an independent timer is keeping track of the elapsed
 time. */

 /* At some point, we are ready to resume the DHCP Client thread. */

 /* Update the DHCP Client lease time remaining with the time elapsed. */
 status = nx_dhcp_client_update_time_remaining(&dhcp_0, time_elapsed);

 if (status != NX_SUCCESS)
 return;

 /* We now can resume the DHCP Client thread. */
 status = nx_dhcp_resume(&dhcp_0);

 if (status != NX_SUCCESS)
 return;

 /* Resume tasks e.g. ping another host. */
 status = nx_icmp_ping(…);

}

45

nx_dhcp_client_get_record

Create a record of the current DHCP Client state

Prototype

ULONG nx_dhcp_ client_get_record(NX_DHCP *dhcp_ptr,

 NX_DHCP_CLIENT_RECORD *record_ptr);

Description

This service saves the DHCP Client to the record pointed to by
record_ptr. This allows the DHCP Client application restore its DHCP
Client state after, for example, a power down and reboot.

Input Parameters

dhcp_ptr Pointer to DHCP Client
record_ptr Pointer to DHCP Client record

Return Values

NX_SUCCESS (0x0) Valid Client record created
NX_DHCP_NOT_BOUND (0x94) Client not in bound state,

therefore not assigned valid IP
address

 NX_PTR_ERROR (0x16) Invalid pointer input

Allowed From

 Threads

Example

NX_DHCP_CLIENT_RECORD dhcp_record;

/* Obtain a record of the current client state. */
status= nx_dhcp_client_get_record(dhcp_ptr, &dhcp_record);

/* If status is NX_SUCCESS dhcp_record contains the current DHCP client record. */

See Also

nx_dhcp_resume, nx_dhcp_suspend, nx_dhcp_client_restore_record,
nx_dhcp_client_update_time_remaining

46

nx_dhcp_ client_restore_record

Restore DHCP Client state from saved record

Prototype

ULONG nx_dhcp_client_restore_record(NX_DHCP *dhcp_ptr,

 NX_DHCP_CLIENT_RECORD
 *record_ptr, ULONG time_elapsed);

Description

This service enables a DHCP application to recreate its DHCP Client state
from a previous session by updating the DHCP Client with the DHCP
Client record pointed to by record_ptr, and updates the time remaining on
DHCP Client lease with the time_elapsed input. This allows the DHCP
Client application to recreate its DHCP Client, for example, after powering
down. This requires that the DHCP Client application created a record of
the DHCP Client before powering down, and saved that record to
nonvolatile memory.

Input Parameters

dhcp_ptr Pointer to DHCP Client
record_ptr Pointer to DHCP Client record
time_elapsed Time to subtract from the lease

time remaining in the input client
record

Return Values

NX_SUCCESS (0x0) Client record restored
status Status completion from native

NetX library calls
 NX_PTR_ERROR (0x16) Invalid Pointer Input

Allowed From

 Threads

Example

NX_DHCP_CLIENT_RECORD dhcp_record;
ULONG time_elapsed;

/* Obtain time (timer ticks) elapsed from independent time keeper. */
Time_elapsed = /* to be determined by application */ 1000;

/* Obtain a record of the current client state. */
status= nx_dhcp_client_restore_record(client_ptr, &dhcp_record, time_elapsed);

47

/* If status is NX_SUCCESS the current DHCP Client pointed to by dhcp_ptr
contains the current client record updated for time elapsed during power down. */

See Also

nx_dhcp_resume, nx_dhcp_suspend, nx_dhcp_client_get_record,
nx_dhcp_client_update_time_remaining

48

nx_dhcp_ client_update_time_remaining

Update the time remaining on DHCP Client lease

Prototype

ULONG nx_dhcp_client_update_time_remaining(NX_DHCP *dhcp_ptr

 ULONG time_elapsed);

Description

This service updates the time remaining on the DHCP Client IP address
lease with the time_elapsed input. The DHCP Client must suspend the
DHCP Client thread before using this service using nx_dhcp_suspend.
After calling this service, the application then resumes the DHCP Client
thread by calling nx_dhcp_resume.

This is intended for DHCP Client applications that need to suspend the
DHCP Client thread for a period of time, and then update the IP address
lease time remaining.

Note: This service is not intended to be used with
nx_dhcp_client_get_record and nx_dhcp_client_restore_record described
previously). These services are previously described in this section.

Input Parameters

dhcp_ptr Pointer to DHCP Client
time_elapsed Time to subtract from the

time remaining on the IP address
lease

Return Values

NX_SUCCESS (0x0) Client IP lease updated
 NX_PTR_ERROR (0x16) Invalid Pointer Input

Allowed From

 Threads

Example

ULONG time_elapsed;

/* Obtain time (timer ticks) elapsed from independent time keeper. */
time_elapsed = /* to be determined by application */ 1000;

/* Apply the elapsed time to the DHCP Client address lease. */

49

status= nx_dhcp_client_update_time_remaining(client_ptr, time_elapsed);

/* If status is NX_SUCCESS the DHCP Client is updated for time elapsed. */

See Also

nx_dhcp_resume, nx_dhcp_suspend, nx_dhcp_client_get_record,
nx_dhcp_client_restore_record

50

nx_dhcp_suspend

Suspend the DHCP Client thread

Prototype

ULONG nx_dhcp_suspend(NX_DHCP *dhcp_ptr);

Description

This service suspends the current DHCP Client thread. Note that unlike
nx_dhcp_stop, there is no change to the DHCP Client state when this
service is called.

To update the DHCP Client state with elapsed time while the DHCP Client
is suspended, see the nx_dhcp_client_update_time_remaining described
previously. To resume a suspended DHCP Client thread, the application
should call nx_dhcp_resume.

Input Parameters

dhcp_ptr Pointer to DHCP Client

Return Values

NX_SUCCESS (0x0) Client thread is suspended
 NX_PTR_ERROR (0x16) Invalid pointer Input

Allowed From

 Threads

Example

/* Pause the DHCP client thread. */
status= nx_dhcp_suspend(client_ptr);

/* If status is NX_SUCCESS the current DHCP Client thread is paused. */

See Also

nx_dhcp_resume, nx_dhcp_client_update_remaining_time,
nx_dhcp_client_get_record, nx_dhcp_client_restore_record

51

nx_dhcp_resume

Resume a suspended DHCP Client thread

Prototype

ULONG nx_dhcp_resume(NX_DHCP *dhcp_ptr);

Description

This service resumes a suspended DHCP Client thread. Note that there is
no change to the actual DHCP Client state after resuming the Client
thread. To update the time remaining on the DHCP Client IP address
lease with elapsed time before calling nx_dhcp_resume, see the
nx_dhcp_client_update_time_remaining described previously.

Input Parameters

dhcp_ptr Pointer to DHCP Client

Return Values

NX_SUCCESS (0x0) Client thread is resumed
 NX_PTR_ERROR (0x16) Invalid pointer Input

Allowed From

 Threads

Example

/* Resume the DHCP client thread. */
status= nx_dhcp_resume(client_ptr);

/* If status is NX_SUCCESS the current DHCP Client thread is resumed. */

See Also

nx_dhcp_suspend, nx_dhcp_client_update_remaining_time,
nx_dhcp_client_get_record, nx_dhcp_client_restore_record

