
MICROEJ MODULE MANAGER
(MMM)

SPECIFICATION

Version 2.0-C

All rights reserved. Information, technical data and tutorials contained in this

document are confidential and proprietary under copyright Law of MicroEJ S.A.

operating under the brand name MicroEJ®. Without written permission from

MicroEJ S.A., copying or sending parts of the document or the entire document by

any means to third parties is not permitted. Granted authorizations for using parts

of the document or the entire document do not mean MicroEJ S.A. gives public full

access rights.

The information contained herein is not warranted to be error-free.

MicroEJ® and all relative logos are trademarks or registered trademarks of MicroEJ

S.A. in France and other Countries.

Java™ is Sun Microsystems’ trademark for a technology for developing application software and deploying it in cross-
platform, networked environments. When it is used in this site without adding the “™” symbol, it includes
implementations of the technology by companies other than Sun. Java™, all Java-based marks and all related logos are
trademarks or registered trademarks of Sun Microsystems Inc, in the United States and other Countries.

Other trademarks are proprietary of their respective owners.

DISCLAIMER & CONFIDENTIALITY

2

• Modern electronic device design involves many parts and teams to collaborate to
finally obtain a product to be sold on its market.

• MicroEJ encourages modular design which involves various stake holders:
hardware engineers, UX designers, graphic designers, drivers/BSP engineers,
software engineers, etc.

• Modular design is a design technique that emphasizes separating the functionality
of an application into independent, interchangeable modules. Each module
contains everything necessary to execute only one aspect of the desired
functionality.

MMM, MICROEJ MODULE MANAGER

3

• In order to have team members collaborate
internally within their team and with other teams,
MicroEJ SDK provides a powerful modular design
concept, with smart module dependencies,
controlled by the MMM.

• The MMM frees engineers from the difficult task
of computing module dependencies. Engineers
specify the bare minimum description of the
module requirements.

MMM

MODULE REPOSITORY

4

Modules are shared among developers using a Repository

• A repository can be

• a filesystem organized using directories

• a database on a server

• a composite of multiple repositories

Team
Repository 1

Team
Repository 2

Team
Repository 3

MODULE DEFINITION

• A module is a set of files that contains some information (code, text files, binary files) to

be stored in a repository and to be delivered to a work process when requested.

• A module is uniquely identified by:

• An organization name (a sequence of dot-separated strings)

• [a-zA-Z0-9\-_]+ (\. [a-zA-Z0-9\-_]+)*

• A name (a string with no dot)

• [a-zA-Z0-9\-_]+

• A version (3 dot-separated numbers)

• M.m.p (\-RCYYYYMMDDHHmm)?

• [0-9]+ \. [0-9]+ \. [0-9]+

• A module has the following information:

• A list of dependencies

• A build status: release vs snapshot

• A nature to qualify the content

MODULE LIFE CYCLE

6

com.corp.module

2.1.4
release

…
…

timeline

com.corp.module

2.1.5-

RC201803141216

snapshot

com.corp.module

2.1.5-RC201805060850

snapshot

…
… com.corp.module

2.1.5

release

• Once delivered, the module is called a release

• It has a unique version with the only 3 numbers (M.m.p)

• A new module can only be delivered by incrementing its version

• While not delivered, the module is called a snapshot

• Its version is suffixed with –RCxxx pattern

• A new module can be delivered by incrementing its –RCxxx version suffix

• MMM follows Semantic Versioning v2 - https://semver.org/

• M.m.p < M.m.p+1-RCxxx < M.m.p+1-RCxxx+1 < M.m.p+1

https://semver.org/

MODULE DEPENDENCIES (1/3)

7

• A module dependency is a link from one module to another module

• A module declares an ordered list of zero or more dependencies

• The dependencies graph is a direct acyclic graph based on the module

name and organisation but not module version number

com.corporate.m1-2.1.4

com.corporate.m2-8.2.4

com.corporate.m3-1.0.1
com.corporate.m4-2.2.2

MODULE DEPENDENCIES (2/3)

8

• A dependency is described by

• An organization: same format as module organization

• A name: same format as module name

• A version: major.minor.patch (same format as module version)

• A matching rule: one of compatible (default), equivalent,
greaterOrEqual, perfect

• A visibility: one of public (default) or private

MODULE DEPENDENCIES (3/3)

9

Name Range Notation Semantic

compatible [M.m.p-RC, (M+1).0.0-RC[Default if not set.
Equal or up to next major version

equivalent [M.m.p-RC, M.(m+1).0-RC [Equal or up to next minor version

greaterOrEqual [M.m.p-RC, [Equal or greater versions

perfect [M.m.p-RC, M.m.(p+1)-RC[Exact match (strong dependency)

• Dependency Visibility

• A dependency declared public is transitively resolved by upper modules

• A dependency declared private is only used by the module itself, typically for:

• Bundling the content into the module

• Testing the module

• Dependency Matching Rule

• The matching rule indicates the possibility for this module to be replaced by a higher version
without breaking its specified behavior

• Matching rules are used for transitive dependencies resolution or for module update action

• The following table describes the available matching rules:

• For each dependency,

• If the version is M.m.p, the fetched module is the release module, or the most recent
available snapshot when there is not a released version yet.

• If the version is M.m.p-RCYYYYMMDDHHmm, the fetched module is this exact version

• if the dependency is public the resolved module dependencies are resolved
recursively

• If multiple versions of a module have been fetched,

• The final resolved version is the highest version, provided:

• It matches the rule declared for each dependency

• It is equivalent to the direct dependency declared version (if any)

• Otherwise, the resolution fails.

• Modules are ordered using a depth-first search topological sort algorithm

• Use of the dependencies list order of each module.

MMM RESOLUTION SPECIFICATION

MMM RESOLUTION EXAMPLES (1/4)

11

Dependency Graph Repository Content MMM Resolution
(Ordered Result)

A
|- B 1.0.0

B 1.0.0 B 1.0.0

A
|- B 1.0.0

B 1.0.0
B 1.0.1

B 1.0.0

A
|- B 1.0.0

B 1.0.0
B 1.1.0

B 1.0.0

A
|- B 1.0.0

B 1.0.0-RC201805090841
B 1.0.0-RC201805091055
B 1.1.0

B 1.0.0-RC201805091055

A
|- B 1.0.0

B 1.0.0-RC201805090841
B 1.0.0

B 1.0.0

A
|- B 1.0.0

|- C 1.0.0

B 1.0.0
C 1.0.0

B 1.0.0
C 1.0.0

A
|- B 1.0.0

|- C 1.0.0
|- C 1.1.0

B 1.0.0
C 1.0.0
C 1.1.0

B 1.0.0
C 1.1.0

A
|- B 1.0.0

|- C 1.0.1
|- C 1.0.0

B 1.0.0
C 1.0.0
C 1.0.1

B 1.0.0
C 1.0.1

A
|- B 1.0.0

|- C 1.0.0
|- D 1.0.0

|- C 1.1.0

B 1.0.0
C 1.0.0
C 1.1.0
D 1.0.0

B 1.0.0
D 1.0.0
C 1.1.0

Matching Rules
• C = Compatible
• E = Equivalent
• G = GreaterOrEqual
• P = Perfect

MMM RESOLUTION EXAMPLES (2/4)

12

Dependency Graph Repository Content MMM Resolution
(Ordered Result)

A
|- B 1.0.0 (P)

B 1.0.0
B 1.0.1

B 1.0.0

A
|- B 1.0.0 (E)

B 1.0.0
B 1.1.0

B 1.0.0

A
|- B 1.0.0 (G)

B 1.0.0
B 2.0.0

B 1.0.0

A
|- B 1.0.0

|- C 1.0.0 (G)
|- C 2.0.0

B 1.0.0
C 1.0.0
C 2.0.0

B 1.0.0
C 2.0.0

A
|- B 1.0.0

|- C 1.0.0 (G)
|- D 1.0.0

|- C 2.0.0

B 1.0.0
C 1.0.0
C 2.0.0
D 1.0.0

B 1.0.0
D 1.0.0
C 2.0.0

Matching Rules
• C = Compatible
• E = Equivalent
• G = GreaterOrEqual
• P = Perfect

Dependency Graph Repository Content MMM Resolution
(Ordered Result)

A
|- B 1.0.0

ø ERROR
B 1.0.0 not found

A
|- B 1.0.0

|- C 1.0.0

B 1.0.0
C 1.1.0

ERROR
C 1.0.0 not found

A
|- B 1.0.0

B 1.0.1 ERROR
B 1.0.0 not found

A
|- B 1.0.0

B 1.1.0 ERROR
B 1.0.0 not found

A
|- B 1.0.0

|- C 1.1.0
|- C 1.0.0

B 1.0.0
C 1.1.0

ERROR
C 1.0.0 not found

A
|- B 1.0.0

|- C 1.1.0
|- C 1.0.0

B 1.0.0
C 1.0.0
C 1.1.0

ERROR
The higher version required by BC is not
equivalent to the version declared by AC as
a direct dependency)

A
|- B 1.0.0

|- C 1.0.0
|- C 2.0.0

B 1.0.0
C 1.0.0
C 2.0.0

ERROR
The higher version required by BC is not
equivalent to the version declared by AC as
a direct dependency)

MMM RESOLUTION EXAMPLES (3/4)

13

Matching Rules
• C = Compatible
• E = Equivalent
• G = GreaterOrEqual
• P = Perfect

Dependency Graph Repository Content MMM Resolution
(Ordered Result)

A
|- B 1.0.0

|- C 1.0.0
|- D 1.0.0

|- C 2.0.0

B 1.0.0
C 1.0.0
C 2.0.0
D 1.0.0

ERROR
The higher version required by DC is not
compatible to the version declared by BC)

A
|- B 1.0.0

|- C 1.0.0 (P)
|- D 1.0.0

|- C 1.0.1

B 1.0.0
C 1.0.0
C 1.0.1

ERROR
The higher version required by DC is not
perfect to the version declared by BC)

A
|- B 1.0.0

|- C 1.0.0 (E)
|- D 1.0.0

|- C 1.1.0

B 1.0.0
C 1.0.0
C 1.1.0

ERROR
The higher version required by DC is not
equivalent to the version declared by BC)

MMM RESOLUTION EXAMPLES (4/4)

14

Matching Rules
• C = Compatible
• E = Equivalent
• G = GreaterOrEqual
• P = Perfect

• The module dependencies list is modified as following:

• For each dependency, search in the repository for the latest available version
still valid for the matching rule and update to this version

(Dependencies marked with matching rule perfect are never updated)

• UPDATE can be applied

• Manually, from the IDE or command line (ANT Task)

• Automatically, before resolution, each time a module is built

UPDATE ACTION

UPDATE ACTION EXAMPLES

Dependency Graph
(Before)

Repository Content Dependency Graph
(After)

A
|- B 1.0.0

B 1.0.0 A
|- B 1.0.0

A
|- B 1.0.0

B 1.0.0
B 1.1.0

A
|- B 1.1.0

A
|- B 1.0.0

B 1.0.0
B 1.1.0
B 2.0.0

A
|- B 1.1.0

A
|- B 1.0.0

B 1.0.0
B 1.1.0-RC201805090841

A
|- B 1.1.0

A
|- B 1.0.0 (G)

B 1.0.0
B 1.1.0
B 2.0.0

A
|- B 2.0.0

A
|- B 1.0.0 (E)

B 1.0.0
B 1.0.1
B 1.1.0
B 2.0.0

A
|- B 1.0.1

A
|- B 1.0.0 (P)

B 1.0.0
B 1.0.1
B 1.1.0
B 2.0.0

A
|- B 1.0.0

• Enable MicroEJ MMM specification

• Add ej:version on Ivy module header

• <ivy-module version="2.0" xmlns:ej="https://developer.microej.com"
ej:version="2.0.0" >

• Specify a dependency matching rule

• Add ej:match on dependency line

• <dependency org="xxx" name="xxx" rev="3.0.0" ej:match="perfect"/>

• Enable Automatic Update before resolution

• Add the following Easyant plugin dependency

• <ea:plugin org="com.is2t.easyant.plugins" module="ivy-update"
revision="1.+" />

MMM IVY / EASYANT MAPPING

• MMM is compatible with any legacy built MicroEJ modules.

• When a legacy module is resolved from a MMM module, each of its
dependencies are automatically converted as following:

• The version is the version that was used when the module was built (Ivy rev field)

• The matching rule is based on the declared revision range (Ivy revConstraint
field), with the following conversions:

COMPATIBILITY MODE

Legacy Module
revConstraint

MMM
Matching Rule

[M.m.p, M+1.u.v[compatible

[M.m.p, M.m+1.u[equivalent

[M.m.p, M.m.p+1[perfect

[M.m.p,) greater

+ greater

M.+ compatible

M.m.+ equivalent

Any other unrecognized pattern compatible

• Whatever the target repository content, release dependencies are always

resolved with the same versions (snapshots are automatically updated to

the most recent version)

• Uploading modules to a server does not change resolution result (for

release modules), but update action result

• Matching Rules specification is Eclipse Feature matching rule

• https://help.eclipse.org/photon/index.jsp?topic=%2Forg.eclipse.platform.doc.
isv%2Freference%2Fmisc%2Ffeature_manifest.html

INTERNAL UNDERSTANDING NOTES

https://help.eclipse.org/photon/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/misc/feature_manifest.html

• Simplify usage

• Deterministic result

• Ivy ranges notation was used for 3 different reasons:

• Allow to fetch snasphots modules while it is not yet released

• Allow the fetch of multiple versions before conflict resolution (otherwise latest-
compatible resolution triggers an error)

• Get the latest available version in the repository

• Semantic designed for

• cache only resolution (offline)

• repositories connection with high request latency (VPN: ~60ms per request)

• Extract semantic out of tools

• Prepare a GUI view

• Prepare to use other dependency managers than Ivy in the future (or other IDEs)

• Documentation

WHY

• 2.0-C - 2019-06-27

• Fixed regular expression (escaped ‘. ‘ and ‘-‘ reserved characters)

• 2.0-B - 2019-03-15

• Added a Changelog

• Fixed missing ‘-’ character in organization string pattern

• 2.0-A - 2018-10-02

• Initial Revision

CHANGELOG

THANK YOU
FOR YOUR ATTENTION!

