
Amazon FreeRTOS
Qualification Guide

Amazon FreeRTOS Qualification Guide

Amazon FreeRTOS: Qualification Guide
Copyright © 2019 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

Amazon FreeRTOS Qualification Guide

Table of Contents
Amazon FreeRTOS Qualification 1

What is Amazon FreeRTOS? 1
What Is Amazon FreeRTOS Qualification? 1

Qualification FAQs 2
Documentation History 3

Qualifying Your Device 6
Hello World Demo 7

Configuring the Amazon FreeRTOS Download for Demos 8
Creating the Demo Project ... 9

Getting Started Guide 10
Getting Started Guide Template 10

CMakeLists.txt File ... 11
Prerequisites ... 12
CMakeLists.txt Template 12
Building Amazon FreeRTOS with CMake 19

Hardware Information 23
Company Information 23
Board Information 23

Open Source License 24
Qualification Check Script ... 24

Qualification Checklist ... 25

iii

Amazon FreeRTOS Qualification Guide
What is Amazon FreeRTOS?

Amazon FreeRTOS Qualification

What is Amazon FreeRTOS?
Amazon FreeRTOS is a real-time operating system that augments the FreeRTOS kernel with libraries for
connectivity, security, and over-the-air (OTA) updates. Amazon FreeRTOS also includes demo applications
that show Amazon FreeRTOS features on qualified boards.

Amazon FreeRTOS is an open-source project. You can download the source code, contribute changes
or enhancements, or report issues on the GitHub site at https://github.com/aws/amazon-freertos. We
release Amazon FreeRTOS code under the MIT open source license, so you can use it in commercial and
personal projects.

We also welcome contributions to the Amazon FreeRTOS documentation (Amazon FreeRTOS User Guide,
Amazon FreeRTOS Porting Guide, and Amazon FreeRTOS Qualification Guide). The markdown source for
the documentation is available at https://github.com/awsdocs/aws-freertos-docs. It is released under
the Creative Commons (CC BY-ND) license.

The three types of Amazon FreeRTOS releases are major, minor, and long-term support (LTS). A major
denotation indicates the addition of new features or significant updates to multiple libraries. All releases
use date-based versioning with the format YYYYMM.NN, where:

• Y represents the year.

• M represents the month.

• N represents the release order within the designated month (00 being the first release).

For example, a second release in June 2019 would be 201906.01.

Previously, Amazon FreeRTOS used semantic versioning for major releases. Although it has moved
to date-based versioning (Amazon FreeRTOS 1.4.8 updated to Amazon FreeRTOS 201906.00), the
FreeRTOS kernel and each individual Amazon FreeRTOS library still retain semantic versioning. In
semantic versioning, the version number itself (X.Y.Z) indicates whether the release is a major, minor,
or point release. This can create situations where semantic versioning indicates a major release based
on changes that don’t affect an individual application. You can use the semantic version of a library to
assess the scope and impact of a new release on your application.

LTS releases are maintained differently than other release types. Major and minor releases are frequently
updated with new features in addition to defect resolutions. LTS releases are only updated with changes
to address critical defects and security vulnerabilities. No new features are introduced in a given LTS
release after launch. They are maintained for at least three calendar years after release, and provide
device manufacturers the option to use a stable baseline as opposed to a more dynamic baseline
represented by major and minor releases.

What Is Amazon FreeRTOS Qualification?
Amazon Partner Network Partners can use the AWS Device Qualification Program to officially qualify a
microcontroller (MCU) development board for Amazon FreeRTOS.

1

https://freertos.org/index.html
https://devices.amazonaws.com/search?page=1&sv=freertos
https://github.com/aws/amazon-freertos
https://github.com/awsdocs/aws-freertos-docs

Amazon FreeRTOS Qualification Guide
Qualification FAQs

Amazon FreeRTOS qualification gives developers a reliable and consistent experience across a range
of qualified, MCU-based development boards. By abstracting some of the complexity of embedded
development, Amazon FreeRTOS qualification makes it possible for developers to focus on designing the
application code for their product, so they can rapidly evaluate, prototype, and productize IoT solutions.
This qualification process helps bridge the gap between cloud developers and embedded engineers.

Qualified boards are eligible for listing on the AWS Partner Device Catalog.

To qualify a device for Amazon FreeRTOS, you must port Amazon FreeRTOS to your device, and then
follow the Device Qualification Program steps. For information, see the AWS Device Qualification
Program page and the AWS Device Qualification Program Guide.

For information about qualifying your device for Amazon FreeRTOS, see Qualifying Your
Device (p. 6).

Qualification FAQs
If a version of Amazon FreeRTOS is released after I have started porting a previous version, do I need to
start over using the latest version?

Always start porting the latest version of Amazon FreeRTOS. If we release a new version of Amazon
FreeRTOS while you are working on your port, you can contact us with questions about how the
release might affect your qualification effort.

My device does not support Wi-Fi. Is a port of the Amazon FreeRTOS Wi-Fi library required to qualify for
Amazon FreeRTOS?

The primary requirement is that your device can connect to the AWS Cloud. If your device
can connect to the AWS Cloud across a secure ethernet connection, the Wi-Fi library is not a
requirement.

My device does not support Bluetooth Low Energy or over-the-air (OTA) updates. Are ports for these
Amazon FreeRTOS libraries required to qualify for Amazon FreeRTOS?

Bluetooth Low Energy and OTA ports are optional for qualification.

My board does not have on-chip TCP/IP functionality. Is a particular TCP/IP stack required for Amazon
FreeRTOS qualification?

If your board does not have on-chip TCP/IP functionality, you can use either the FreeRTOS+TCP TCP/
IP stack or version 2.0.3 of the lwIP TCP/IP stack to pass TCP/IP qualification requirements. For more
information, see Porting a TCP/IP Stack in the Amazon FreeRTOS Porting Guide.

Is a particular TLS stack required for qualification?

Amazon FreeRTOS supports mbedTLS and off-chip TLS implementations, such as those found
on some network processors. No matter which TLS implementation is used by your device's port
of Amazon FreeRTOS, the port must pass the Device Tester validation tests for TLS. For more
information, see Porting the TLS Library in the Amazon FreeRTOS Porting Guide.

Does my device need to pass all of the AWS IoT Device Tester validation tests to qualify? Is there a way to
qualify without passing all of the tests?

Your device must pass all of the required validation tests to qualify for Amazon FreeRTOS. The only
exceptions are for Wi-Fi, Bluetooth Low Energy, and OTA.

If you have questions about qualification that are not answered on this page or in the rest of the Amazon
FreeRTOS Qualification Guide, contact your AWS representative or the Amazon FreeRTOS engineering
team.

2

https://devices.amazonaws.com/search?page=1&sv=freertos
https://aws.amazon.com/partners/dqp/
https://aws.amazon.com/partners/dqp/
https://partnercentral.awspartner.com/sfc/#version?selectedDocumentId=0690L000005HXjb
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-tcp.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-tls.html
https://freertos.org/RTOS-contact-and-support.html
https://freertos.org/RTOS-contact-and-support.html

Amazon FreeRTOS Qualification Guide
Documentation History

Documentation History
Revision History of Amazon FreeRTOS Porting and Qualification Documentation

Date Porting and
Qualification
Documentation
Version

Change History Amazon FreeRTOS
Version

August 26, 2019 201908.00 (Porting
Guide)

201908.00
(Qualification Guide)

• Release 201908.00 201908.00 Major

June 17, 2019 201906.00 (Porting
Guide)

201906.00
(Qualification Guide)

• Release 201906.00
• Directory structured

updated

201906.00 Major

May 21, 2019 1.4.8 (Porting Guide)

1.4.8 (Qualification
Guide)

• Porting
documentation
moved to the
Amazon FreeRTOS
Porting Guide

• Qualification
documentation
moved to the
Amazon FreeRTOS
Qualification Guide

1.4.8

February 25, 2019 1.1.6 • Removed download
and configuration
instructions from
Getting Started Guide
Template Appendix
(page 84)

1.4.5

1.4.6

1.4.7

December 27, 2018 1.1.5 • Updated Checklist
for Qualification
appendix with CMake
requirement (page
70)

1.4.5

1.4.6

December 12, 2018 1.1.4 • Added lwIP porting
instructions to TCP/
IP porting appendix
(page 31)

1.4.5

November 26, 2018 1.1.3 • Added Bluetooth
Low Energy porting
appendix (page 52)

• Added AWS IoT
Device Tester for
Amazon FreeRTOS
testing information

1.4.4

3

https://github.com/aws/amazon-freertos/blob/201908.00_Major/doc/freertos_port_qual/aFreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/201908.00_Major/doc/freertos_port_qual/aFreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/201908.00_Major
https://github.com/aws/amazon-freertos/blob/201906.00_Major/doc/freertos_port_qual/aFreeRTOS_Porting_Guide.pdf
https://github.com/aws/amazon-freertos/blob/201906.00_Major/doc/freertos_port_qual/aFreeRTOS_Qualification_Guide.pdf
https://github.com/aws/amazon-freertos/tree/201906.00_Major
https://github.com/aws/amazon-freertos/blob/v1.4.8/tests/afreertos-pg.pdf
https://github.com/aws/amazon-freertos/blob/v1.4.8/tests/afreertos-qg.pdf
https://docs.aws.amazon.com/freertos/latest/portingguide/
https://docs.aws.amazon.com/freertos/latest/portingguide/
https://docs.aws.amazon.com/freertos/latest/qualificationguide/
https://docs.aws.amazon.com/freertos/latest/qualificationguide/
https://github.com/aws/amazon-freertos/tree/v1.4.8
https://github.com/aws/amazon-freertos/blob/v1.4.7/tests/Amazon%20FreeRTOS%20Qualification%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.5
https://github.com/aws/amazon-freertos/tree/v1.4.6
https://github.com/aws/amazon-freertos/tree/v1.4.7
https://github.com/aws/amazon-freertos/blob/v1.4.6/tests/Amazon%20FreeRTOS%20Qualification%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.5
https://github.com/aws/amazon-freertos/tree/v1.4.6
https://github.com/aws/amazon-freertos/blob/v1.4.5/tests/Amazon%20FreeRTOS%20Qualification%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.5
https://github.com/aws/amazon-freertos/blob/v1.4.4/tests/Amazon%20FreeRTOS%20Qualification%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.4

Amazon FreeRTOS Qualification Guide
Documentation History

Date Porting and
Qualification
Documentation
Version

Change History Amazon FreeRTOS
Version

throughout
document

• Added CMake link
to Information for
listing on the Amazon
FreeRTOS Console
appendix (page 85)

November 7, 2018 1.1.2 • Updated PKCS #11
PAL interface porting
instructions in PKCS
#11 porting appendix
(page 38)

• Updated path to
CertificateConfigurator.html
(page 76)

• Updated Getting
Started Guide
Template appendix
(page 80)

1.4.3

October 8, 2018 1.1.1 • Added new "Required
for AFQP" column to
aws_test_runner_config.h
test configuration
table (page 16)

• Updated Unity
module directory
path in Create the
Test Project section
(page 14)

• Updated
"Recommended
Porting Order" chart
(page 22)

• Updated client
certificate and key
variable names in TLS
appendix, Test Setup
(page 40)

• File paths changed
in Secure Sockets
porting appendix,
Test Setup (page 34);
TLS porting appendix,
Test Setup (page 40);
and TLS Server Setup
appendix (page 57)

1.4.2

4

https://github.com/aws/amazon-freertos/blob/v1.4.3/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.3
https://github.com/aws/amazon-freertos/blob/v1.4.2/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.2

Amazon FreeRTOS Qualification Guide
Documentation History

Date Porting and
Qualification
Documentation
Version

Change History Amazon FreeRTOS
Version

August 27, 2018 1.1.0 • Added OTA Updates
porting appendix
(page 47)

• Added Bootloader
porting appendix
(page 51)

1.4.0

1.4.1

August 9, 2018 1.0.1 • Updated
"Recommended
Porting Order" chart
(page 22)

• Updated PKCS #11
porting appendix
(page 36)

• File paths changed in
TLS porting appendix,
Test Setup (page
40), and TLS Server
Setup appendix, step
9 (page 51)

• Fixed hyperlinks
in MQTT porting
appendix,
Prerequisites (page
45)

• Added AWS CLI
config instructions
to examples in
Instructions to Create
a BYOC appendix
(page 57)

1.3.1

1.3.2

July 31, 2018 1.0.0 Initial version of the
Amazon FreeRTOS
Qualification Program
Guide

1.3.0

5

https://github.com/aws/amazon-freertos/blob/v1.4.0/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.4.0
https://github.com/aws/amazon-freertos/tree/v1.4.1
https://github.com/aws/amazon-freertos/blob/v1.3.2/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide.pdf
https://github.com/aws/amazon-freertos/tree/v1.3.1
https://github.com/aws/amazon-freertos/tree/v1.3.2
https://github.com/aws/amazon-freertos/blob/v1.3.0/tests/Amazon%20FreeRTOS%20Qualification%20Program%20Developer%20Guide-V1.0.0.pdf
https://github.com/aws/amazon-freertos/tree/v1.3.0

Amazon FreeRTOS Qualification Guide

Qualifying Your Device
To qualify your device for Amazon FreeRTOS

1. Port the Amazon FreeRTOS libraries to your device.

Note
Currently, ports of the Amazon FreeRTOS OTA and Bluetooth Low Energy libraries are not
required for qualification.
If your device does not support Wi-Fi, you can use an ethernet connection to connect to the
AWS Cloud instead. A port of the Amazon FreeRTOS Wi-Fi library is not necessarily required.

For instructions on porting Amazon FreeRTOS to your device, see the Amazon FreeRTOS Porting
Guide.

2. Validate your ports with AWS IoT Device Tester for Amazon FreeRTOS.

When using Device Tester to validate your ports for qualification, you must specify information in
the features attribute of the device.json configuration file about the following ports:

• TCP/IP

{
 "name": "TCP/IP",
 "value": "On-chip | Offloaded | No"
}

• TLS

{
 "name": "TLS",
 "value": "On-chip | Offloaded | No"
}

• Wi-Fi

{
 "name": "WIFI",
 "value": "Yes | No"
}

• OTA

{
 "name": "OTA",
 "value": "Yes | No"
}

Device Tester uses this information to determine which tests to run against your ported Amazon
FreeRTOS code. Device Tester runs all other required library port tests by default.

For information about AWS IoT Device Tester for Amazon FreeRTOS, see Using AWS IoT Device
Tester for Amazon FreeRTOS in the Amazon FreeRTOS User Guide.

3. Create the following for qualification submission:

• A "Hello World" demo application that publishes messages from your device to the AWS Cloud
over MQTT.

6

https://docs.aws.amazon.com/freertos/latest/portingguide/
https://docs.aws.amazon.com/freertos/latest/portingguide/
https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html

Amazon FreeRTOS Qualification Guide
Hello World Demo

For information, see Setting Up a Hello World Demo (p. 7).
• A "Getting Started with Amazon FreeRTOS" guide for your device.

For information, see Creating a Getting Started with Amazon FreeRTOS Guide for Your
Device (p. 10).

• A CMakeLists.txt file for building Amazon FreeRTOS applications for your device.

Note
A CMake list file is not required to qualify a board through the AWS Device Qualification
Program. The file is only required for listing devices on the Amazon FreeRTOS Console.
The file is also required to build project files for your platform using CMake.

For information, see Creating a CMakeLists.txt File for Your Platform (p. 11).
• A list of detailed information for your hardware platform.

For information, see Hardware Information for Amazon FreeRTOS Qualification (p. 23).
• An appropriate open source license file for your device's Amazon FreeRTOS port.

For information, see Providing an Open Source License for Your Code (p. 24).
• (For boards qualifying for OTA updates) Instructions for code-signing.

For examples, see Create a Code-Signing Certificate in the Amazon FreeRTOS User Guide.
• (For boards qualifying for OTA updates that use custom bootloader) Information and instructions

on the custom bootloader application.

For a list of requirements, see Porting the Bootloader Demo in the Amazon FreeRTOS Porting
Guide.

These items are required for your device to be listed on the Amazon FreeRTOS console, for your
device's code to be on GitHub, and for your device to receive Getting Started documentation
support.

4. Verify that you have all that you need to submit your board for qualification with the Amazon
FreeRTOS qualification check script.

For more information about running the qualification check script, see Amazon FreeRTOS
Qualification Check Script (p. 24).

5. Submit your qualified board for listing in the AWS Partner Device Catalog through the Device Listing
Portal on APN Partner Central. All submissions require an AWS IoT Device Tester test result file that
indicates that you passed all mandatory test cases. You must be a registered APN Partner to submit
your board for listing.

You can use the Amazon FreeRTOS Qualification Checklist (p. 25) to keep track of the list of required
steps for qualification.

Setting Up a Hello World Demo
To qualify for Amazon FreeRTOS, set up a Hello World demo application that runs on your qualified
device. This demo publishes messages from your device to the AWS Cloud over MQTT.

To set up the Hello World demo

1. Follow the instructions in Configuring the Amazon FreeRTOS Download for Demos (p. 8) to
configure the directory structure of your Amazon FreeRTOS download to fit your device.

7

https://docs.aws.amazon.com/freertos/latest/userguide/ota-code-sign-cert.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-bootloader.html.html
https://partnercentral.awspartner.com/DeviceListPage
https://partnercentral.awspartner.com/DeviceListPage

Amazon FreeRTOS Qualification Guide
Configuring the Amazon FreeRTOS Download for Demos

2. Follow the instructions in Creating the Demo Project (p. 9) to create a demo project in your IDE.

After you set up the demo, create a "Getting Started with Amazon FreeRTOS" guide for your device. This
guide walks users through setting up your device to run the Hello World demo.

Configuring the Amazon FreeRTOS Download for
Demos
Under the download's root directory (<amazon-freertos>), the vendors folder is structured as
follows:

vendors
+ - <vendor> (Template, to be renamed to the name of the MCU vendor)
 + - boards
 | + - <board> (Template, to be renamed to the name of the development board)
 | + - aws_demos
 | + - aws_tests
 | + - CMakeLists.txt
 | + - ports
 + - <driver_library> (Template, to be renamed to the library name)
 + - <driver_library_version> (Template, to be renamed to the library version)

The <vendor> and <board> folders are template folders that we provide to make it easier to
create demo and test projects. Their directory structure ensures that all demo and test projects have a
consistent organization.

The aws_demos folder has the following structure:

vendors/<vendor>/boards/<board>/aws_demos
+ - application_code (Contains main.c, which contains main())
| + - <vendor>_code (Contains vendor-supplied, board-specific files)
| + - main.c (Contains main())
+ - config_files (Contains Amazon FreeRTOS config files)

To configure the demo project files

Copy main.c and main.h files for the demo application to the application_code folder. You can
reuse the main.c from the aws_tests project that you used to test your ports.

1. Save any required vendor-supplied, board-specific libraries to the <vendor>_code folder.

Important
Do not save vendor-supplied libraries that are common across a target board's MCU family
to any subdirectories of aws_tests or aws_demos.

2. Replace <vendor> in the <vendor>_code folder with the name of the vendor.

3. Rename the <board> folder to the name of the development board.

After you configure the demo project files, you can create the project in the IDE. For instructions, see
Creating the Demo Project (p. 9).

If you are creating a CMake listfile (p. 11), make sure that you provide a CMakelist entry for the demo
project.

8

https://docs.aws.amazon.com/freertos/latest/portingguide/porting-create-project.html

Amazon FreeRTOS Qualification Guide
Creating the Demo Project

Creating the Demo Project
After you configure your Amazon FreeRTOS download, you can create an IDE project with the required
project structure for the Hello World demo.

Follow the instructions below to create an IDE project with the required IDE project structure for demo
applications.

Important
If you are using an Eclipse-based IDE, do not configure the project to build all the files in any
folder. Instead, add source files to a project by linking to each source file individually.

1. Create a project named aws_demos and save the project to the projects/vendors/<vendor>/
boards/<board>/<ide> directory.

2. In your IDE, create two virtual folders under aws_demos:

• application_code

• config_files

Under aws_demos, there should now be two virtual subdirectories in the IDE project:
application_code and config_files.

Note
Eclipse generates an additional includes folder. This folder is not a part of the required
structure.

3. Import all of the folders and files in aws_demos/application_code and its subdirectories into
the application_code virtual folder in your IDE.

4. Import all of the files from aws_demos/config_files into the config_files virtual folder in
your IDE.

5. Import all of the folders and files from the following directories into the application_code
virtual folder in your IDE:

• <amazon-freertos>/demos/demo_runner

• <amazon-freertos>/demos/mqtt

• <amazon-freertos>/demos/logging

• <amazon-freertos>/libraries/.../provisioning/src

6. Import the <amazon-freertos>/demos/include directory and its contents into the
application_code virtual folder in your IDE.

7. Import the following directories and their contents into the aws_demos IDE project:

Note
Only import the files and directories that apply to your platform and port.

• <amazon-freertos>/libraries

• <amazon-freertos>/freertos_kernel

• <amazon-freertos>/vendors/<vendor>/
boards/<board>/<driver_library>/<driver_library_version>

8. Open your project's IDE properties, and add the following paths to your compiler's include path:

• <amazon-freertos>/demos/include

• <amazon-freertos>/freertos_kernel/portable/<compiler>/<architecture>

• <amazon-freertos>/libraries/3rdparty/mbedtls/include

• <amazon-freertos>/vendors/<vendor>/boards/<board>/aws_demos/config_files

9

Amazon FreeRTOS Qualification Guide
Getting Started Guide

• Any paths required for vendor-supplied driver libraries.

Creating a Getting Started with Amazon FreeRTOS
Guide for Your Device

To qualify for Amazon FreeRTOS, you need to create a Getting Started with Amazon FreeRTOS guide for
your device. This guide walks users through setting up the hardware and development environment for
developing applications for Amazon FreeRTOS devices, and building, running, and flashing the Amazon
FreeRTOS Hello World demo on a device.

This guide must be available to customers on a public website. The URL to the guide is a requirement for
listing a qualified board in the AWS Partner Device Catalog.

Your guide must include the following instructions:

• Setting up the device hardware.
• Setting up the development environment.
• Building and running the demo project.
• Debugging.
• Troubleshooting.

We also recommend that your guide includes:

• A link to the MCU datasheet.
• A Printed Circuit Board (PCB) schematic.
• A default image boot up console log.

Important
Where instructions differ by operating system, you must provide instructions for Windows,
Linux, and macOS operating systems.

Follow the Getting Started Guide Template (p. 10) when you write the guide for your board. You can
find examples of published guides for other qualified boards in the Amazon FreeRTOS User Guide.

Getting Started Guide Template
Write an overview that provides a brief description of the board. This section should answer the
following questions:

• Which hardware is required to run the Amazon FreeRTOS Hello World demo?

Provide links to pages on your company website for more detail.
• Which IDEs are supported for developing applications for the board?

Provide links to IDE user guides and download pages.
• Which toolchains and other software utilities are required for development?

Provide links to user guides and download pages.
• Are there any other prerequisites for getting started with Amazon FreeRTOS on the board?

Provide links to purchasing pages, user guides, and download pages.

10

https://docs.aws.amazon.com/freertos/latest/userguide/freertos-getting-started.html

Amazon FreeRTOS Qualification Guide
CMakeLists.txt File

Setting Up Your Hardware
In this section, provide instructions for setting up the platform's hardware. Make sure that you provide
links to any user guides or other documentation for setting up hardware.

These instructions include the following:

• Configuring jumper settings.
• Downloading and installing drivers.

Provide links to download pages and other documentation for supported driver versions.
• Connecting the board to a computer.
• Any other steps required to set up the hardware.

Setting Up the Development Environment
In this section, provide instructions for setting up the platform's supported development environment.
Make sure that you provide links to any download pages, user guides, or other documentation for each
item.

These instructions include the following:

• Establishing a serial connection.
• Downloading and installing the toolchain.
• Downloading and installing a supported IDE.
• Any other software that is required to develop and debug applications for the device.

Build and Run the Amazon FreeRTOS Demo Project
Build the Amazon FreeRTOS Demo

In this section, provide instructions for building the Amazon FreeRTOS demo code in a supported IDE, or
with supported command line tools.

Note
You must provide instructions for building the demo application on your board with CMake.

Run the Amazon FreeRTOS Demo Project

In this section, provide instructions for flashing and running the Amazon FreeRTOS demo code on your
board.

Debugging
In this section, provide instructions for using on-board or external debuggers.

Troubleshooting
In this section, provide troubleshooting tips for resolving common or potential problems.

Creating a CMakeLists.txt File for Your Platform
A CMakeLists.txt file is used to list your device on the Amazon FreeRTOS console, and it makes it
possible for developers to build Amazon FreeRTOS code for the device without an IDE.

11

Amazon FreeRTOS Qualification Guide
Prerequisites

Note
A CMake list file is not required to qualify a board through the AWS Device Qualification
Program. The file is only required for listing devices on the Amazon FreeRTOS Console.

For more information about the CMake build system, see CMake.org.

Follow the instructions in Creating a List File for Your Platform from the CMakeLists.txt
Template (p. 12) to create a CMake list file from the template provided with Amazon FreeRTOS.

Important
Before submitting your CMake list file, you must verify that you can use the file to build the
Amazon FreeRTOS test project and the Hello World demo project with CMake.
For instructions, see Building Amazon FreeRTOS with CMake (p. 19).

Prerequisites
Make sure that your host machine meets the following prerequisites before you continue:

• Your device's compilation toolchain must support the machine's operating system. CMake supports all
versions of Windows, macOS, and Linux.

Windows subsystem for Linux (WSL) is not supported. Use native CMake on Windows machines.
• You must have CMake version 3.13 or later installed.

You can download the binary distribution of CMake from CMake.org.

Note
If you download the binary distribution of CMake, make sure that you add the CMake
executable to the PATH environment variable before you use CMake from command line.

You can also download and install CMake using a package manager, like homebrew on macOS, and
scoop or chocolatey on Windows.

Note
The CMake package versions in the package managers for many Linux distributions are out-of-
date. If your distribution's package manager does not include the the latest version of CMake,
you can try linuxbrew or nix.

• You must have a compatible native build system.

CMake can target many native build systems, including GNU Make or Ninja. Both Make and Ninja
can be installed with package managers on Linux, macOS, and Windows. If you are using Make on
Windows, you can install a standalone version from Equation, or you can install MinGW, which bundles
Make.

Note
The Make executable in MinGW is called mingw32-make.exe, instead of make.exe.

We recommend that you use Ninja, because it is faster than Make and also provides native support to
all desktop operating systems.

Creating a List File for Your Platform from the
CMakeLists.txt Template
A CMakeLists.txt template file is provided with Amazon FreeRTOS, under <amazon-freertos>/
vendors/<vendor>/boards/<board>/CMakeLists.txt.

The CMakeLists.txt template file consists of four sections:

12

https://cmake.org/overview/
https://cmake.org/download/
https://brew.sh/
https://scoop.sh/
https://chocolatey.org/
https://www.gnu.org/software/make/
https://github.com/ninja-build/ninja/releases
http://www.equation.com/servlet/equation.cmd?fa=make
https://sourceforge.net/projects/mingw-w64/files/

Amazon FreeRTOS Qualification Guide
CMakeLists.txt Template

• Amazon FreeRTOS Console Metadata (p. 13)
• Compiler Settings (p. 14)
• Amazon FreeRTOS Portable Layers (p. 15)
• Amazon FreeRTOS Demos and Tests (p. 18)

Follow the instructions to edit these four sections of the list file to match your platform. You can refer to
the CMakeLists.txt files for other qualified vendor boards under <amazon-freertos>/vendors as
examples.

Two primary functions are called throughout the file:

afr_set_board_metadata(<name> <value>)

This function defines metadata for the Amazon FreeRTOS console. The function is defined in
<amazon-freertos>/tools/cmake/afr_metadata.cmake.

afr_mcu_port(<module_name> [<DEPENDS> [targets...]])

This function defines the portable-layer target associated with an Amazon FreeRTOS module
(that is, library). It creates a CMake GLOBAL INTERFACE IMPORTED target with a name of the
form AFR:<module_name>::mcu_port. If DEPENDS is used, additional targets are linked with
target_link_libraries. The function is defined in <amazon-freertos>/tools/cmake/
afr_module.cmake.

Amazon FreeRTOS Console Metadata
The first section of the template file defines the metadata that is used to display a board's information
in the Amazon FreeRTOS console. Use the function afr_set_board_metadata(<name> <value>) to
define each field listed in the template. This table provides descriptions of each field.

Field Name Value Description

ID A unique ID for the board.

DISPLAY_NAME The name of the board as you want it displayed
on the Amazon FreeRTOS console.

DESCRIPTION A short description of the board for the Amazon
FreeRTOS console.

VENDOR_NAME The name of the vendor of the board.

FAMILY_NAME The name of the board's MCU family.

DATA_RAM_MEMORY The size of the board's RAM, followed by
abbreviated units. For example, use KB for
kilobytes.

PROGRAM_MEMORY The size of the board's program memory, followed
by abbreviated units. For example, use "MB" for
megabytes.

CODE_SIGNER The code-signing platform used for OTA updates.
Use AmazonFreeRTOS-Default for SHA256 hash
algorithm and ECDSA encryption algorithm. If you
want to use a different code-signing platform,
contact us.

13

https://freertos.org/RTOS-contact-and-support.html

Amazon FreeRTOS Qualification Guide
CMakeLists.txt Template

Field Name Value Description

SUPPORTED_IDE A semicolon-delimited list of IDs for the IDEs that
the board supports.

IDE_<ID>_NAME The name of the supported IDE. Replace
<ID> with the ID listed for the IDE in the
SUPPORTED_IDE field.

IDE_<ID>_COMPILER A semicolon-delimited list of names of supported
compilers for the supported IDE. Replace
<ID> with the ID listed for the IDE in the
SUPPORTED_IDE field.

Compiler Settings
The second section of the template file defines the compiler settings for your board. To create a target
that holds the compiler settings, call the afr_mcu_port function with compiler in place of the
<module_name> to create an INTERFACE target with the name AFR::compiler::mcu_port. The
kernel publicly links to this INTERFACE target so that the compiler settings are transitively populated to
all modules.

Use the standard, built-in CMake functions to define the compiler settings in this section of the list file.
As you define the compiler settings, follow these best practices:

• Use target_compile_definitions to provide compile definitions and macros.
• Use target_compile_options to provide compiler flags.
• Use target_include_directories to provide include directories.
• Use target_link_options to provide linker flags.
• Use target_link_directories to provide linker-search directories.
• Use target_link_libraries to provide libraries to link against.

Note
If you define the compiler settings somewhere else, you don't need to duplicate the information
in this section of the file. Instead, call afr_mcu_port with DEPENDS to bring in the target
definition from another location.
For example:

<your_target> is defined somewhere else. It does not have to be in the same file.
afr_mcu_port(compiler DEPENDS <your_target>)

When you call afr_mcu_port with DEPENDS, it calls
target_link_libraries(AFR::<module_name>::mcu_port INTERFACE
<your_targets>), which populates the compiler settings for the required
AFR::compiler::mcu_port target.

Using Multiple Compilers

If your board supports multiple compilers, you can use the AFR_TOOLCHAIN variable to dynamically
select the compiler settings. This variable is set to the name of the compiler you are using, which
should be same as the name of the toolchain file found under <amazon-freertos>/tools/cmake/
toolchains.

For example:

14

Amazon FreeRTOS Qualification Guide
CMakeLists.txt Template

if("${AFR_TOOLCHAIN}" STREQUAL "arm-gcc")
 afr_mcu_port(compiler DEPENDS my_gcc_settings).
elseif("${AFR_TOOLCHAIN}" STREQUAL "arm-iar")
 afr_mcu_port(compiler DEPENDS my_iar_settings).
else()
 message(FATAL_ERROR "Compiler ${AFR_TOOLCHAIN} not supported.")
endif()

Advanced Compiler Settings

If you want to set more advanced compiler settings, such as setting compiler flags based on
programming language, or changing settings for different release and debug configurations, you can use
CMake generator expressions.

For example:

set(common_flags "-foo")
set(c_flags "-foo-c")
set(asm_flags "-foo-asm")
target_compile_options(
 my_compiler_settings INTERFACE
 $<$<COMPILE_LANGUAGE:C>:${common_flags} ${c_flags}> # This only have effect on C files.
 $<$<COMPILE_LANGUAGE:ASM>:${common_flags} ${asm_flags}> # This only have effect on ASM
 files.
)

CMake generator expressions are not evaluated at the configuration stage, when CMake reads list files.
They are evaluated at the generation stage, when CMake finishes reading list files and generates build
files for the target build system.

Amazon FreeRTOS Portable Layers
The third section of the template file defines all of the portable layer targets for Amazon FreeRTOS (that
is, libraries).

You must use the afr_mcu_port(<module_name>) function to define a portable layer target for each
Amazon FreeRTOS module that you plan to implement.

You can use any CMake functions you want, as long as the afr_mcu_port call creates a target with a
name that provides the information required to build the corresponding Amazon FreeRTOS module.

The afr_mcu_port function creates a GLOBAL INTERFACE IMPORTED library target with a name of
the form AFR::<module_name>::mcu_port. As a GLOBAL target, it can be referenced in CMake list
files. As an INTERFACE target, it is not built as a standalone target or library, but compiled into the
corresponding Amazon FreeRTOS module. As an IMPORTED target, its name includes a namespace (::) in
the target name (for example, AFR::kernel::mcu_port).

Modules without corresponding portable layer targets are disabled by default. If you run CMake to
configure Amazon FreeRTOS, without defining any portable layer targets, you should see the following
output:

Amazon FreeRTOS modules:
 Modules to build:
 Disabled by user:
 Disabled by dependency: kernel, posix, pkcs11, secure_sockets, mqtt, ...

 Available demos:
 Available tests:

15

https://cmake.org/cmake/help/latest/command/add_library.html?#interface-libraries

Amazon FreeRTOS Qualification Guide
CMakeLists.txt Template

As you update the CMakeLists.txt file with porting layer targets, the corresponding Amazon
FreeRTOS modules are enabled. You should also be able to build any Amazon FreeRTOS module whose
dependency requirements are subsequently satisfied. For example, if the MQTT library is enabled, the
Device Shadow library is also enabled, because its only dependency is the MQTT library.

Note
The FreeRTOS kernel dependency is a minimum requirement. The CMake configuration fails if
the FreeRTOS kernel dependency is not satisfied.

Setting Up the Kernel Porting Target

To create the kernel porting target (AFR::kernel::mcu_port), call afr_mcu_port with the module
name kernel. When you call afr_mcu_port, specify the targets for the FreeRTOS portable layer and
driver code. After you create the target, you can provide the dependency information and the FreeRTOS
portable layer and driver code information for the target to use.

Follow the these instructions to set up the kernel porting target.

To set up the kernel porting target

1. Create a target for the driver code.

For example, you can create a STATIC library target for the driver code:

add_library(my_board_driver STATIC ${driver_sources})

Use your compiler settings
target_link_libraries(
 my_board_driver
 PRIVATE AFR::compiler::mcu_port
Or use your own target if you already have it.
PRIVATE ${compiler_settings_target}
)

target_include_directories(
 my_board_driver
 PRIVATE "<include_dirs_for_private_usage>"
 PUBLIC "<include_dirs_for_public_interface>"
)

Or you can create an INTERFACE library target for the driver code:

No need to specify compiler settings since kernel target has them.
add_library(my_board_driver INTERFACE ${driver_sources})

Note
An INTERFACE library target does not have build output. If you use an INTERFACE library
target, the driver code is compiled into the kernel library.

2. Configure the FreeRTOS portable layer:

add_library(freertos_port INTERFACE)
target_sources(
 freertos_port
 INTERFACE
 "${AFR_MODULES_DIR}/freertos_kernel/portable/GCC/ARM_CM4F/port.c"
 "${AFR_MODULES_DIR}/freertos_kernel/portable/GCC/ARM_CM4F/portmacro.h"
 "${AFR_MODULES_DIR}/freertos_kernel/portable/MemMang/heap_4.c"
)
target_include_directories(

16

Amazon FreeRTOS Qualification Guide
CMakeLists.txt Template

 freertos_port
 INTERFACE
 "${AFR_MODULES_DIR}/freertos_kernel/portable/GCC/ARM_CM4F"
 "${include_path_to_FreeRTOSConfig_h}
)

Note
You can also configure the FreeRTOS portable layer by specifying these source files and
their include directories directly in the AFR::kernel::mcu_port target.

3. Create the kernel portable layer target:

Bring in driver code and freertos portable layer dependency.
afr_mcu_port(kernel DEPENDS my_board_driver freertos_port)

If you need to specify additional configurations, use standard CMake functions with
AFR::kernel::mcu_port as the target name.
target_include_directories(
 AFR::kernel::mcu_port
 INTERFACE
 "${additional_includes}" # e.g. board configuration files
)
target_link_libraries(
 AFR::kernel::mcu_port
 INTERFACE
 "${additional_dependencies}"
)

4. To test your list file and configuration, you can write a simple application that uses the FreeRTOS
kernel port. For more information about developing and building Amazon FreeRTOS applications
with CMake, see Building Amazon FreeRTOS with CMake (p. 19).

5. After you create the demo, add add_executable and target_link_libraries calls to the list
file, and compile the kernel as a static library to verify that the kernel portable layer is correctly
configured.

add_executable(
 <my_demo>
 main.c
)
target_link_libraries(
 <my_demo>
 PRIVATE AFR::kernel
)

Setting Up the Porting Targets for Amazon FreeRTOS Modules

After you add the portable layer target for the kernel, you can add portable layer targets for other
Amazon FreeRTOS modules.

For example, to add the portable layer for the Wi-Fi module:

afr_mcu_port(wifi)
target_sources(
 AFR::wifi::mcu_port
 INTERFACE "${AFR_MODULES_DIR}/vendors/<vendor>/boards/<board>/ports/wifi/aws_wifi.c"
)

This example Wi-Fi module portable layer has only one implementation file, which is based on the driver
code.

17

Amazon FreeRTOS Qualification Guide
CMakeLists.txt Template

If you want to add the portable layer for the Amazon FreeRTOS Secure Sockets module, the module
depends on TLS. This makes its portable layer target slightly more complicated than that of the Wi-Fi
module. Amazon FreeRTOS provides a default TLS implementation based on mbedTLS that you can link
to:

afr_mcu_port(secure_sockets)
target_sources(
 AFR::secure_sockets::mcu_port
 INTERFACE ${portable_layer_sources}
)
target_link_libraries(
 AFR::secure_sockets::mcu_port
 AFR::tls
)

In this example code, the standard CMake function target_link_libraries states that the Secure
Sockets portable layer depends on AFR::tls.

You can reference all Amazon FreeRTOS modules by using their target name AFR::<module_name>. For
example, you can use the same syntax to also state a dependency on FreeRTOS-Plus-TCP:

target_link_libraries(
 AFR::secure_sockets::mcu_port
 AFR::freertos_plus_tcp
 AFR::tls
)

Note
If your platform handles TLS by itself, you can use your driver code directly. If you use your
driver code directly for TLS, you don't need to call target_link_libraries, because all
Amazon FreeRTOS modules implicitly depend on the kernel that includes your driver code.
Because all non-kernel Amazon FreeRTOS modules implicitly depend on the kernel, their porting
layers don't require you to specify the kernel as a dependency. The POSIX module, however, is
defined as an optional kernel module. If you want to use POSIX, you must explicitly include it in
your kernel portable layer. For example:

By default, AFR::posix target does not expose standard POSIX headers in its
 public
interface, i.e., You need to use "freertos_plus_posix/source/
FreeRTOS_POSIX_pthread.c" instead of "pthread.h".
Link to AFR::use_posix instead if you need to use those headers directly.
target_link_libraries(
 AFR::kernel::mcu_port
 INTERFACE AFR::use_posix
)

Amazon FreeRTOS Demos and Tests
The final section of the template file defines the demo and test targets for Amazon FreeRTOS. CMake
targets are created automatically for each demo and test that satisfies the dependency requirements.

In this section, define an executable target with the add_executable function. Use aws_tests as
the target name if you're compiling tests, or aws_demos if you're compiling demos. You might need to
provide other project settings, such as linker scripts and post-build commands. For example:

if(AFR_IS_TESTING)
 set(exe_target aws_tests)
else()
 set(exe_target aws_demos)

18

Amazon FreeRTOS Qualification Guide
Building Amazon FreeRTOS with CMake

endif()

set(CMAKE_EXECUTABLE_SUFFIX ".elf")
add_executable(${exe_target} "${board_dir}/application_code/main.c")

target_link_libraries is then called to link available CMake demo or test targets to your
executable target.

Note
You still need to modify aws_demos/config_files/aws_demo_config.h and aws_tests/
config_files/aws_test_runner_config.h to enable demos and tests.

Running Post-build Commands

For information about running post-build commands, see add_custom_command. Use the second
signature. For example:

This should run an external command "command --arg1 --arg2".
add_custom_command(
 TARGET ${exe_target} POST_BUILD COMMAND "command" "--arg1" "--arg2"
)

Note
CMake supports many common, platform-independent operations for creating directories,
copying files, and so on. For more information about CMake command-line operations, see the
CMake command-line tool reference. You can reference the CMake command-line tool from a
CMake list file with the built-in variable ${CMAKE_COMMAND}.

Building Amazon FreeRTOS with CMake
CMake targets your host operating system as the target system by default. To use CMake for cross
compiling, provide a toolchain file that specifies the compiler that you want to use. You can find some
examples in <amazon-freertos>/tools/cmake/toolchains.

If you're using a compiler different from the one provided with Amazon FreeRTOS, write this toolchain
file before you build Amazon FreeRTOS with CMake. You must also set the CMAKE_TOOLCHAIN_FILE
variable before CMake reads your top-level CMakeLists.txt file. The CMAKE_TOOLCHAIN_FILE
variable specifies which compiler to use and sets some CMake variables, like the system name and the
default search path. For more information about cross compiling with CMake, see Cross Compiling on the
official CMake wiki.

The CMakeLists.txt and toolchain files must be in the correct locations. Before you build Amazon
FreeRTOS with CMake, make sure that you have set up the Amazon FreeRTOS directory structure on your
local machine to match the Amazon FreeRTOS directory structure on GitHub.

To build a CMake-based project

1. Run CMake to generate the build files for a native build system, like Make or Ninja.

You can use either the CMake command-line tool or the CMake GUI to generate the build files for
your native build system.

For information about generating Amazon FreeRTOS build files, see Generating Build Files (CMake
Command-Line Tool) (p. 20) and Generating Build Files (CMake GUI) (p. 21).

2. Invoke the native build system to make the project into an executable.

For information about making Amazon FreeRTOS build files, see Building Amazon FreeRTOS from
Generated Build Files (p. 22).

19

https://cmake.org/cmake/help/latest/command/add_custom_command.html
https://cmake.org/cmake/help/latest/manual/cmake.1.html#command-line-tool-mode
https://gitlab.kitware.com/cmake/community/wikis/doc/cmake/CrossCompiling
https://github.com/aws/amazon-freertos
https://cmake.org/cmake/help/latest/manual/cmake.1.html
https://cmake.org/cmake/help/latest/manual/cmake-gui.1.html

Amazon FreeRTOS Qualification Guide
Building Amazon FreeRTOS with CMake

Generating Build Files (CMake Command-Line Tool)
You can use the CMake command-line tool (cmake) to generate Amazon FreeRTOS build files from the
command line or terminal.

To generate the build files, run cmake. For the DVENDOR option, specify the vendor. For the DBOARD
option, specify the board. For the DCOMPILER option, specify the compiler. Use the S option to specify
where your source code is. Use the B option to specify where to write the generated files.

Note
The compiler must be in the system's PATH variable, or you must specify the location of the
compiler.

For example, if the vendor is Texas Instruments, and the board is the CC3220 Launchpad, and the
compiler is GCC for ARM, you can issue the following command to build the source files from the current
directory to a directory named build:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S . -B build

Note
If you are using Windows, you must specify the native build system because CMake uses Visual
Studio by default. For example:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S . -B build -G Ninja

Or:

cmake -DVENDOR=ti -DBOARD=cc3220_launchpad -DCOMPILER=arm-ti -S . -B build -G "Unix
 Makefiles"

The regular expressions ${VENDOR}.* and ${BOARD}.* are used to search for a matching board, so
you don't have to use the full names of the vendor and board for the VENDOR and BOARD options. Partial
names work, provided there is a single match. For example, the following commands generate the same
build files from the same source:

cmake -DVENDOR=ti -DCOMPILER=arm-ti -S . -B build

cmake -DBOARD=cc3220 -DCOMPILER=arm-ti -S . -B build

cmake -DVENDOR=t -DBOARD=cc -DCOMPILER=arm-ti -S . -B build

You can use the CMAKE_TOOLCHAIN_FILE option if you want to use a toolchain file that is not located in
the default directory cmake/toolchains. For example:

cmake -DBOARD=cc3220 -DCMAKE_TOOLCHAIN_FILE='/path/to/toolchain_file.cmake' -S . -B build

If the toolchain file does not use absolute paths for your compiler, and you didn't add your compiler
to the PATH environment variable, CMake might not be able to find it. To make sure that CMake finds
your toolchain file, you can use the AFR_TOOLCHAIN_PATH option. This option searches the specified
toolchain directory path and the toolchain's subfolder under bin. For example:

cmake -DBOARD=cc3220 -DCMAKE_TOOLCHAIN_FILE='/path/to/toolchain_file.cmake' -
DAFR_TOOLCHAIN_PATH='/path/to/toolchain/' -S . -B build

20

Amazon FreeRTOS Qualification Guide
Building Amazon FreeRTOS with CMake

To enable debugging, set the CMAKE_BUILD_TYPE to debug. With this option enabled, CMake adds
debug flags to the compile options, and builds Amazon FreeRTOS with debug symbols.

Build with debug symbols
cmake -DBOARD=cc3220 -DCOMPILER=arm-ti -DCMAKE_BUILD_TYPE=debug -S . -B build

You can also set the CMAKE_BUILD_TYPE to release to add optimization flags to the compile options.

Generating Build Files (CMake GUI)
You can use the CMake GUI to generate Amazon FreeRTOS build files.

To generate build files with the CMake GUI

1. From the command line, issue cmake-gui to start the GUI.

2. Choose Browse Source and specify the source input, and then choose Browse Build and specify the
build output.

3. Choose Configure, and under Specify the build generator for this project, find and choose the
build system that you want to use to build the generated build files.

21

Amazon FreeRTOS Qualification Guide
Building Amazon FreeRTOS with CMake

4. Choose Specify toolchain file for cross-compiling, and then choose Next.
5. Choose the toolchain file (for example, amazon-freertos/tools/cmake/toolchains/arm-

ti.cmake), and then choose Finish.

The default configuration for Amazon FreeRTOS is the template board, which does not provide
any portable layer targets. As a result, a window appears with the message Error in configuration
process.

6. The GUI should now look like this:

Choose AFR_BOARD, choose your board, and then choose Configure again.
7. Choose Generate. After CMake generates the native build system files, the files should appear in the

output binaries directory that you specified in the first step.

Building Amazon FreeRTOS from Generated Build Files
You can build Amazon FreeRTOS with a native build system by calling the build system command from
the output binaries directory. For example, if your build file output directory is build, and you are using
Make as your native build system, run the following commands:

22

Amazon FreeRTOS Qualification Guide
Hardware Information

cd build
make -j4

You can also use the CMake command-line tool to build Amazon FreeRTOS. CMake provides an
abstraction layer for calling native build systems. For example:

cmake --build <build_dir>

Here are some other common uses of the CMake command-line tool's build mode:

Take advantage of CPU cores.
cmake --build <build_dir> --parallel 8

Build specific targets.
cmake --build <build_dir> --target afr_kernel

Clean first, then build.
cmake --build <build_dir> --clean-first

For more information about the CMake build mode, see the CMake documentation.

Hardware Information for Amazon FreeRTOS
Qualification

Submit the following information, along with the other items required for qualification:

Company Information
• Full company name.
• Abbreviated company name (if applicable), for the Amazon FreeRTOS console.
• High resolution company logo.
• Brief description of your company.
• URL of your company's landing page.

Board Information
• Full board name.
• Abbreviated board name, for the Amazon FreeRTOS console (under 20 characters).
• High resolution board image.
• Brief description of board.
• URL of board's landing page.
• Brief description of board, for the Amazon FreeRTOS console (under 50 characters).
• Microcontroller family name.
• Board datasheet.
• Compiler options, for optimization.
• Supported IDE, with latest supported version number.

23

https://cmake.org/cmake/help/latest/manual/cmake.1.html#build-tool-mode

Amazon FreeRTOS Qualification Guide
Open Source License

• CLI command to build target executables.
• CLI command to flash target.
• URL to the purchase page.

Providing an Open Source License for Your Code
For qualification, provide an open source license for your ported Amazon FreeRTOS code. To determine
which license you want to use, see the License and Standards on the Open Source Initiative website.

Amazon FreeRTOS Qualification Check Script
After you have ported Amazon FreeRTOS, tested your ports, and gathered the other qualification items,
run a qualification check script before you submit.

For instructions on running the script, see the script's README file on GitHub.

Note
The script might return warnings for libraries that you did not port. You can ignore these
warnings.

24

https://opensource.org/licenses
https://github.com/aws/amazon-freertos/tree/master/tools/checks/afqp/afqp_check

Amazon FreeRTOS Qualification Guide

Amazon FreeRTOS Qualification
Checklist

Use following checklist to help you keep track of qualification items.

□ Port Amazon FreeRTOS.

Make sure that you have ported and tested the following libraries, according to the instructions in
the Amazon FreeRTOS Porting Guide.
□ Implement configPRINT_STRING() macro.

For instructions, see Implementing the configPRINT_STRING() macro in the Amazon FreeRTOS
Porting Guide.

□ Configure FreeRTOS kernel for the target board.

For instructions, see Configuring a FreeRTOS Kernel Port in the Amazon FreeRTOS Porting Guide.
□ Port Wi-Fi library.

Note
This port is not required for qualification if your board does not support Wi-Fi.

For instructions, see Porting the Wi-Fi Library in the Amazon FreeRTOS Porting Guide.
□ Port TCP/IP stack.

For instructions, see Porting a TCP/IP Stack in the Amazon FreeRTOS Porting Guide.
□ Port Secure Sockets library.

For instructions, see Porting the Secure Sockets Library in the Amazon FreeRTOS Porting Guide.
□ Port PKCS #11 library.

For instructions, see Porting the PKCS #11 Library in the Amazon FreeRTOS Porting Guide.
□ Port TLS library.

For instructions, see Porting the TLS Library in the Amazon FreeRTOS Porting Guide.
□ Test MQTT library.

For instructions, see Setting Up the MQTT Library for Testing in the Amazon FreeRTOS Porting
Guide.

□ Port OTA library.

Note
This port is currently not required for qualification.

For instructions, see Porting the OTA Library in the Amazon FreeRTOS Porting Guide.

If you are porting the OTA library for qualification, you must meet the bootloader requirements
in Porting the Bootloader Demo in the Amazon FreeRTOS Porting Guide.

□ Port Bluetooth Low Energy library.

Note
This port is currently not required for qualification.

25

https://docs.aws.amazon.com/freertos/latest/portingguide/
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-config.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-kernel.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-wifi.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-tcp.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-ss.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-pkcs.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-tls.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-mqtt.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-ota.html
https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-bootloader.html

Amazon FreeRTOS Qualification Guide

For instructions, see Porting the Bluetooth Low Energy Library in the Amazon FreeRTOS Porting
Guide.

□ Validate your Amazon FreeRTOS ports with AWS IoT Device Tester.

For more information, see Using AWS IoT Device Tester for Amazon FreeRTOS in the Amazon
FreeRTOS User Guide.

□ Set up Hello World demo.

For instructions, see Setting Up a Hello World Demo (p. 7).
□ Create a Getting Started Guide for your device.

For instructions, see Creating a Getting Started with Amazon FreeRTOS Guide for Your Device (p. 10).
□ Create a CMake list file, and build the test and demo applications with the file.

For instructions, see Creating a CMakeLists.txt File for Your Platform (p. 11).

Note
A CMake list file is not required to qualify a board through the AWS Device Qualification
Program. The file is only required for listing devices on the Amazon FreeRTOS Console.

□ Provide hardware information for your device.

For instructions, see Hardware Information for Amazon FreeRTOS Qualification (p. 23).
□ Create and place an appropriate open source license text file with your code.

For instructions, see Providing an Open Source License for Your Code (p. 24).
□ Run the Amazon FreeRTOS qualification check script.

For instructions, see Amazon FreeRTOS Qualification Check Script (p. 24).
□ Submit your Device Tester test result file in the Device Listing Portal.

All qualification submissions must be made through the Device Listing Portal on APN Partner
Central.

26

https://docs.aws.amazon.com/freertos/latest/portingguide/afr-porting-ble.html
https://docs.aws.amazon.com/freertos/latest/userguide/device-tester-for-freertos-ug.html
https://partnercentral.awspartner.com/DeviceListPage

	Amazon FreeRTOS
	Table of Contents
	Amazon FreeRTOS Qualification
	What is Amazon FreeRTOS?
	What Is Amazon FreeRTOS Qualification?
	Qualification FAQs
	Documentation History

	Qualifying Your Device
	Setting Up a Hello World Demo
	Configuring the Amazon FreeRTOS Download for Demos
	Creating the Demo Project

	Creating a Getting Started with Amazon FreeRTOS Guide for Your Device
	Getting Started Guide Template
	Setting Up Your Hardware
	Setting Up the Development Environment
	Build and Run the Amazon FreeRTOS Demo Project
	Build the Amazon FreeRTOS Demo
	Run the Amazon FreeRTOS Demo Project

	Debugging
	Troubleshooting

	Creating a CMakeLists.txt File for Your Platform
	Prerequisites
	Creating a List File for Your Platform from the CMakeLists.txt Template
	Amazon FreeRTOS Console Metadata
	Compiler Settings
	Using Multiple Compilers
	Advanced Compiler Settings

	Amazon FreeRTOS Portable Layers
	Setting Up the Kernel Porting Target
	Setting Up the Porting Targets for Amazon FreeRTOS Modules

	Amazon FreeRTOS Demos and Tests
	Running Post-build Commands

	Building Amazon FreeRTOS with CMake
	Generating Build Files (CMake Command-Line Tool)
	Generating Build Files (CMake GUI)
	Building Amazon FreeRTOS from Generated Build Files

	Hardware Information for Amazon FreeRTOS Qualification
	Company Information
	Board Information

	Providing an Open Source License for Your Code
	Amazon FreeRTOS Qualification Check Script

	Amazon FreeRTOS Qualification Checklist

