@ Application Note:
’5 ZT TLT-0742-AN-MICROEJ-NativeResourceMan-
agement

Native Resource Management

In relation to: MICROEJ products

Features

This Application Note explains how to automate the release of native resources used by Java objects.
Native resources here mainly refer to those system resources that are not directly managed by JVM.
Indeed, as Java language defines the "native" keyword for method that are executed out of JVM, "na-
tive resources" refers to memory allocated during such calls (file handles, sockets, stack buffers, etc.).

Description

This Application Note assumes the reader wishes to understand the steps involved in automating the
release of native resources used by Java objects that are not referred anymore.

TLT-0742-AN-MICROEJ-NativeResourceManage-
ment-B

Native Resource Management

Table of Contents

R 01004 L1 Lot o) AU UP PP PUPPPPRIN
I L 20 Ta T B 16) 2 o (o P
12 SCOPE ettt ettt et e et e e et e e et e e et e e et e e et e eaaaanns
IR T ¥ Tad 4=4 10111 L« KOTSRS PP PR PO OUPOROPRPRPRPRPRPRPRt
1.4, PTEIOQUISITES ..eevuueeiiiuieeeeiiue e ettt e ettt e ettt eettna e eetetaeeettaaaeetenaaeerannaseerenanseenennneenennnns
1.5. Files supplied with this Application NOEcceuuuuiieeeriieieiiiiieee e eeeeiiee e e e e eeeeeeeeeees
2. DIBSIGI ettt ettt ettt e e e e e et ettt e e e e et e e bbb e e e e e e e e tttaha e e e e eetaaabaaneeeaaaes
3. IIMIPIEITIENEATION L.vuvvuvvvvviuitruueteeutusessreeasssasesseesesesssnnes
4. Running the eXampleoooiiiiiiiiiiiiiii e
5. DOCUMENT HISTOTY .uuuiiiiiiiiiiiiieieitiie ettt ettt e ettt e e ettae e ettt e eettaaeseettnanseeesnasseeaannnseeeennnsee

TLT-0742-AN-MICROEJ-NativeResourceManage-
ment-B 2

Native Resource Management

List of Figures

2.1. Objects prior t0 garbage COIECHIONuvuuuuurrrvreiererurererererarerarererrrereaerererererareaererereree————————..
2.2. Objects after garbage COLECHONuviiiiiiiiieiiiiiiee e tee e e et e e e e e s aeeeeeeeeeeeeaans
2.3. Objects after queue has been empPtiedeeeeeiiiiiiiiiiiiiiieie e e e e e e
3.1. Example apPlCAtiONcuuuuuieeiiiiiiiiiiiieee e e ecetiieeee e e e e ee ettt eee e e e e eeeaaaaa e eeseeaeenasnnaaeesaeaeenernns
3.2. Native 1esource implementationeeeeeeeeeeeeeereeeeeeeeeeeeeeeeeeeereeeeeeeereererrereeerereeerrrrr
3.3. GENETALEd OULPUL eieiiiiiiiiiiiiiiiiiieieeeeeceee aaaaeaaaaaeaaaaaaaaaaaeans
3.4, RESOUTCEUSET CLASS ...ueuueeieeee e s
3.5. ReSOUrCEUSEIHEIPET CLASSvvvvvvrrvrerrreiuiiierereterererererererererererererersssrsseesrsrsssssrsssrsssnsrsrsrnrsssnnnes
3.6. RESOUICEMANAZET ClASSueeiieeeeriiiiiieeeeeetettiureiaeeeeeeeeeatennnaaeeseeeeerssnnnsaaeeesessrmsssnnnseseseeseessnnns

TLT-0742-AN-MICROEJ-NativeResourceManage-
ment-B 3

Native Resource Management

1 Introduction

1.1 Intended audience

The intended audience for this Application Note are developers who want to ensure that native resources
used by Java objects are always released when the Java object is garbage collected.

1.2 Scope

This Application Note shows how the weak reference support provided by the B-ON library can be
used to automate the release of native resources (such as buffers) when the Java objects using them are
garbage collected.

1.3 Background

When a Java object is created the RAM required to hold its data is allocated from a memory heap, and
the code that requested the creation is given a reference to the new object, which it holds in a field or
local variable. That reference can be passed to other objects in the application, so that at any time there
may be many references to an object. A Java object can only be accessed via a reference to it. When
a reference is no longer required the field or local variable holding it is overwritten with a new value,
either a reference to a different object or the special value null. If there are no longer any references to
an object then the object cannot be used and the memory it occupies is automatically reclaimed by the
garbage collector that forms part of the MicroJvm® virtual machine.

Imagine a scenario where a Java application creates several Java objects, each of which uses a native
resource. When such a Java object is created it typically will call a native method that allocates the
resource. At some later point when the Java object is no longer needed by the application it will be
garbage collected. It is essential that the native resource the object was using is also released. That could
be achieved by having the application invoke a special "release" method provided by the object, but this
is often problematic because references to the object can be held in many places and there may be no one
place that knows when the object is no longer required. A better solution is to implement a mechanism
that will automatically release the resource when the object is garbage collected. This Application Note
describes such a mechanism.

1.4 Prerequisites

This document assumes the reader is familiar with the process of creating a Java Platform (JPF), and
with the creation of native methods using SNI.

1.5 Files supplied with this Application Note

This application note is packaged with an archive of an Eclipse project in the file NativeResourceMan-
agement -example.zip, which can be imported in the normal way.

The project contains five files of particular interest:

» The file NativeResourceManagementExample. java, in the src-example folder, is a MicroEJ® Java
application that demonstrates the management of native resources.

» The files ResourceUser . java and ResourceUserHelper. java, in the src-example folder, are a sim-
ple example of Java code that uses native resources.

» The file ResourceManager . java, in the src-framework folder, is a Java class that can help manage
any kind of resource.

» The file resource_user.c, in the c-src folder, contains implementations of the native methods used
by ResourceUser . java.

TLT-0742-AN-MICROEJ-NativeResourceManage-
ment-B 4

Native Resource Management

2 Design

As discussed above in the Introduction, a Java object becomes eligible for garbage collection when there
are no references to it. However, the B-ON library supports the concept of a "weak reference". A weak
reference is a reference that is ignored by the garbage collector when deciding whether an object is
eligible for garbage collection.

B-ON provides a class called EnqueuedweakReference whose instances can hold a weak reference.
They also hold a (normal) reference to an instance of ReferenceQueue, another class provided by B-
ON. When the object to which an EnqueuedweakReference holds a weak reference is garbage collected,
the EnqueuedweakReference is added to the queue managed by the ReferenceQueue. The application
can monitor this queue to detect when an object of interest has been garbage collected.

Our design uses a specially-written subclass of EnqueuedweakReference called ResourcerReference. In
addition to holding a weak reference to the object using the resource, instances of ResourceReference
hold a reference to a helper object that knows how to release the native resource being held. Each
resource-using object has such a helper.

The arrangement is as shown in the figure below.

a Resource User

Helper
+
a Resource User |wa------------1 a Resource Reference
+ ;
the Application a Resource Manager —— | a Reference Queue
v v T
a Resource User |«------—----1 a Resource Reference

v

a Resource User
Helper

Figure 2.1. Objects prior to garbage collection

The rectangles in this diagram represent objects. The solid arrows represent normal references and the
dashed arrows represent weak references. The application has created two ResourceUser objects, each
of which is using a native resource. When it was constructed the ResourceUser object created a Re-
sourceUserHelper object, which knows how to allocate and release its native resource, and (via the
ResourceManager) a ResourceReference that holds a weak reference to it.

TLT-0742-AN-MICROEJ-NativeResourceManage-
ment-B 5

Native Resource Management

a Resource User
Helper

+

a Resource Reference

f

the Application a Resource Manager —— P a Reference Queue [—

a Resource User |«§------—----1 a Resource Reference 4

v

a Resource User
Helper

Figure 2.2. Objects after garbage collection

The application has now finished using one of the ResourceUser objects, and because the only remaining
reference to the ResourceuUser is a weak reference, the Resourceuser has been garbage collected. The
ResourceReference that was referring to the Resourceuser has been added to the ReferenceQueue,
ready for processing.

the Application a Resource Manager | a Reference Queue
a Resource User |«ef------—----1 a Resource Reference

Y

a Resource User
Helper

Figure 2.3. Objects after queue has been emptied

The application has taken the expired ResourceReference from the ReferenceQueue and its Re-
sourceUserHelper has been used to release the native resource.

TLT-0742-AN-MICROEJ-NativeResourceManage-
ment-B 6

Native Resource Management

3 Implementation

We will now look at the supplied implementation, which follows the outline shown in the diagrams

above.

First

we will look at the code of a very simple

application

(in

NativeResourceManagementExample.java). The application has no useful function but it demonstrates
the principle.

public class NativeResourceManagementExample {

public static void main(String[] args) throws Exception {

}

private static void createAndUseResources() throws OutOfResourcesException {

createAndUseResources();

ResourceUser resourceUser® = new ResourceUser();
ResourceUser resourceUserl = new ResourceUser();
resourceUser@.useResource();
resourceUserl.useResource();
try {

new ResourceUser();
} catch (OutOfResourcesException e) {

// expected because only 2 resources are available
}

resourceUser® = null;

ResourceUser resourceUser2 = new ResourceUser();
resourceUser2.useResource();

Figure 3.1. Example application

The application first creates two resource-using objects and simulates their use in the application (the
calls to useResource). It then attempts to create a third resource user. This will fail because only two
native resources are available, as we will see shortly. The application then indicates that it has finished
with the resource referred to by resourceusero by setting it to null. It then makes another attempt to
create a new resource user, and this succeeds because one of the two initial resources can be released.

#define ERROR_OUT_OF_RESOURCES -1

#define RESOURCE_LIMIT 2
static uint8_t resource_in_use[RESOURCE_LIMIT];

jint Java_com_is2t_example_ResourceUser_allocateResource() {
jint result = ERROR_OUT_OF_RESOURCES;
for (jint id = @; id < RESOURCE_LIMIT; ++id) {

if (!'resource_in_use[id]) {
result = id;
resource_in_use[id] = 1;
break;

}

printf("Allocating resource %i\n", result);
return result;;

}

void Java_com_is2t_example_ResourceUser_useResource__ I(jint id) {

printf("Using resource %i\n", id);

void Java_com_is2t_example_ResourceUser_releaseResource(jint id) {

printf("Releasing resource %i\n", id);
resource_in_use[id] = 0;

Figure 3.2. Native resource implementation

TLT-0742-AN-MICROEJ-NativeResourceManage-

ment-B

Native Resource Management

The implementation of the native resources is simple. The native resource is simply its id. There are a
fixed number of resources available, and the availability of each resource is indicated by a flag in an
array indexed by the id.

The result of running this application is shown below.

Allocating resource 0
Allocating resource 1
Using resource 0

Using resource 1
Allocating resource -1
Allocating resource -1
Allocating resource -1
Releasing resource 0
Allocating resource 0
Using resource 0

Figure 3.3. Generated output

The first four lines show two resources being allocated and used. The next two lines (both "Allocating
resource -1") the result of the unsuccessful attempt to allocate the third resource. The last "Allocating
resource -1"is generated during the successful attempt - you can see resource 0 being released and
re-allocated.

The ResourceUser class is mainly a wrapper for the underlying C natives.

class ResourceUser {
public static final int ERROR_OUT_OF_RESOURCES = -1;

private static final ResourceManager resourceManager = new ResourceManager();
private final int cResourceld;

public ResourceUser() throws OutOfResourcesException {
ResourceUserHelper helper = new ResourceUserHelper();
resourceManager.allocateResource(this, helper);
cResourcelId = helper.getResourceId();

}

public int getCResourceId() {
return cResourceld;
}

public void useResource() {
useResource(cResourceld);
}

native static int allocateResource();
private native static void useResource(int cResourceld);
native static void releaseResource(int cResourceld);

Figure 3.4. ResourceUser class

The constructor first creates a helper object, and then calls the ResourceManager's allocateResource
method to allocate and track the native resource. The ResourceUserHelper object is passed to the Re-
sourceManager, ready for use when the Resourceuser is garbage collected. The actual allocation is
done by the helper. Notice that the helper holds the id of the resource because it will need it to release
the resource - by that time the Resourceuser will have been garbage collected, so cannot be used to
find the id.

The ResourceUserHelper class is very simple.

TLT-0742-AN-MICROEJ-NativeResourceManage-
ment-B 8

Native Resource Management

class ResourceUserHelper implements ResourceManager.ResourceHelper {
int cResourceld;

public void allocateResource() throws OutOfResourcesException {
cResourceId = ResourceUser.allocateResource();
if (cResourceld == ResourceUser.ERROR_OUT_OF_RESOURCES) {
throw new ResourceManager.OutOfResourcesException();
}

}

public void cleanup() {
ResourceUser.releaseResource(cResourceld);
}

public int getResourceId() {
return cResourceld;
}

Figure 3.5. ResourceUserHelper class

The allocateResource method is called by the ResourceManager when it is asked to allocate the re-
source. Notice that an exception defined by the ResourceManager is thrown if no resource is available.

The cleanup method is called by the ResourceManager when the related ResourceUser object is garbage
collected. It is essential that the helper object does not hold a reference to the resource-using object,
because that would prevent it from being garbage collected.

The ResourceManager class does most of the work. Notice that it provides a simple interface (Resource-
Helper) which all helper classes must implement. It also has a private inner class, the ResourceRef-
erence class, which extends EnqueuedweakReference to provide behavior specific to this use of weak
references.

TLT-0742-AN-MICROEJ-NativeResourceManage-
ment-B 9

Native Resource Management

public class ResourceManager {
public static class OutOfResourcesException extends Exception {

}

public static interface ResourceHelper {
void allocateResource() throws OutOfResourcesException;
void cleanup();

}

private final ReferenceQueue queue = new ReferenceQueue();
private final Vector activeReferencelList = new Vector();

public void allocateResource(Object resourceUser, ResourceHelper helper) throws
OutOfResourcesException {
cleanup();

try {
helper.allocateResource();

} catch (OutOfResourcesException e) {
System.gc();
cleanup();
helper.allocateResource();

activeReferencelList.addElement(new ResourceReference(helper, resourceuUser,
queue));

private void cleanup() {
ResourceReference removedReference;
while((removedReference=(ResourceReference) queue.poll()) != null){
activeReferencelList.removeElement (removedReference);
removedReference.cleanup();

}

private static class ResourceReference extends EnqueuedwWeakReference {
private final ResourceHelper helper;

private ResourceReference(ResourceHelper helper, Object resourceUser,
ReferenceQueue queue) {
super (resourceUser, queue);
this.helper = helper;
}

private void cleanup() {
helper.cleanup();
}

Figure 3.6. ResourceManager class

When the ResourceManager is asked to allocate a resource it first frees any unused resources by calling
its cleanup method). This will release any resources owned by ResourceUser objects that have been
garbage collected since the last allocation request. Then it asks the helper to do the allocation. If that fails
(with an outofResourcesException) it explicitly requests a garbage collection and frees any resources
that become unused at a result, and asks the helper to try the allocation again. This time the exception
is not caught; it is thrown to the caller because there really are no resources available. If a resource was
available it creates a ResourceReference and adds it to its list of active references. The only purpose
of this list is to prevent the ResourceReference objects themselves, and the helper objects they refer
to, being garbage collected.

To free unused resources the cleanup method removes any expired ResourceReference objects from
the ReferenceQueue and uses their associated helper objects to cleanup the native resources.

This design for the ResourceManager is appropriate when it is not important to release the underlying
resources at the earliest opportunity - in this design resources are not released until another allocation is
requested. An alternative design would spawn a thread in the ResourceManager that is blocked waiting
for a ResourceReference to expire, and immediately releases the resource.

TLT-0742-AN-MICROEJ-NativeResourceManage-
ment-B 10

Native Resource Management

4 Running the example

To run the example you must already have a suitable Java Platform (JPF), possibly a "Basic" JPF created
using the Java Platorm Example feature of the MicroEJ workbench.

1.

Import the Eclipse project provided with this Application note. The project is in the file NativeRe-
sourceManagement-example.zip.

. Create a suitable "EmbJPF" launch configuration to build the NativeResourceManagementExample

application, and run it.

Copy the file resource_user.c from the c-src folder to the src folder of your BSP project.

In your C IDE, add the file resource_user.c to your project.

Ensure that the object file built by running the "EmbJPF" launch in the earlier step is available to
your pVision project - the projects created using the Java Platorm Example feature assume that the
Java object file is in the xxxIJPF/source/1ib folder, so either your launch should copy it there or you

should reconfigure the C project to access it from wherever the launch puts it.

Build, deploy and run your C project.

TLT-0742-AN-MICROEJ-NativeResourceManage-
ment-B 11

Native Resource Management

5 Document History

Date Revision Description

July 2nd 2013 A First release

October 4th 2013 B Features paragraph improvement

Headquarters

11, rue du chemin Rouge
44373 Nantes Cedex 3
FRANCE

Phone: +33 2 40 18 04 96
www.is2t.com

© 2014 IS2T All right reserved. Information, technical data and tutorials contained in this document
are IS2T S.A. Proprietary under Copyright Law. Without any written permission from IS2T S.A.,
copying or sending parts of the document or the entire document by any means to third parties is not
permitted including but not limited to electronic communication, photocopies, mechanical reproduc-
tion systems. Granted authorizations for using parts of the document or the entire document do not
mean they give public full access rights.

IceTea®, IS2T®, MicroJvm®, MicroEJ®, S3™, SNI™, SOAR®, Drag Emb'Drop™, IceOS® and
all associated logos are trademarks or registered trademarks of IS2T S.A. in France, Europe, United
States or others Countries.

Java™ is Sun Microsystems' trademark for a technology for developing application software and de-
ploying it in crossplatform, networked environments. When it is used in this documentation without
adding the ™ symbol, it includes implementations of the technology by companies other than Sun.

Java™, all Java-based marks and all related logos are trademarks or registered trademarks of Sun Mi-
crosystems Inc, in the United States and other Countries.

Other trademarks are proprietary of their authors.

TLT-0742-AN-MICROEJ-NativeResourceManage-
ment-B 12

	Native Resource Management
	Table of Contents
	1 Introduction
	1.1 Intended audience
	1.2 Scope
	1.3 Background
	1.4 Prerequisites
	1.5 Files supplied with this Application Note

	2 Design
	3 Implementation
	4 Running the example
	5 Document History

