
TLT-0709-AN-MICROEJ-DataSharing-A

Application Note:
TLT-0709-AN-MICROEJ-DataSharing

Java/C Data Sharing Using SNI

In relation to: MICROEJ products

Features
This Application Note explains how to share data between Java and C tasks.

Description
This Application Note assumes the reader wishes to understand the steps involved in sharing data be-
tween Java and native processes, using SNI library and the Immortal heap.

Java/C Data Sharing Using SNI

TLT-0709-AN-MICROEJ-DataSharing-A 2

Table of Contents
1. Introduction .. 4

1.1. Intended audience .. 4
1.2. Scope .. 4
1.3. Prerequisites ... 4
1.4. Files supplied with this Application Note .. 4

2. Design .. 5
2.1. How to share data ? ... 5
2.2. Example design .. 5

3. Implementation ... 7
3.1. Application .. 7
3.2. Embedded side ... 7
3.3. Simulated side ... 8

4. Document History ... 10

Java/C Data Sharing Using SNI

TLT-0709-AN-MICROEJ-DataSharing-A 3

List of Figures
2.1. Example application sequence diagram ... 5
3.1. Application code .. 7
3.2. Buffer reference sharing (C side) .. 8
3.3. Natives simulated implementation ... 8
3.4. Buffer sharing (mock side) ... 9

Java/C Data Sharing Using SNI

TLT-0709-AN-MICROEJ-DataSharing-A 4

1 Introduction

1.1 Intended audience
The intended audience for this Application Note are developers who wish to share data between Java
thread and C task.

1.2 Scope
This Application Note shows a simple implementation of data sharing through a buffer that can be
accessed from both Java and C sides. Data sharing can be used to :

• send data from Java to C task, or vice versa (ex: usage of a communication stack),

• implement a ring buffer recording history of values (ex: sensor driver).

This application note deals with data sharing between Java and C tasks, using SNI library. Another
library named ShieldedPlug provides also mechanisms to share data between two processes. Differences
between those two libraries will not be discussed on this application note.

This Application Note mainly highlights data sharing on simulated platform. Indeed, memory sharing
is more obvious using embedded platform since Immortal heap can be accessed on native side. On
contrary, mocks don't share same memory space than application since they are executed on their own
process (see reference manual about Simulation).

1.3 Prerequisites
This Application Note assumes that the reader has already created a Java Platform, as described in the
"Building a platform from scratch" Application Note. All the prerequisites specified in that Application
Note apply equally to this Note.

1.4 Files supplied with this Application Note
This application note is packaged with archives of Eclipse projects, which can be imported in the normal
way. The application note contains :

• Archive file DataSharingApp.zip, that is a MicroEJ® Java application that demonstrates data sharing
between processes.

• Archive file DataSharing-mock.zip, that is the simulated part of platform that shows mechanisms
of data sharing.

• Folder c-src containing native implementation for embedded platform.

Java/C Data Sharing Using SNI

TLT-0709-AN-MICROEJ-DataSharing-A 5

2 Design

2.1 How to share data ?
MicroEJ® brings Java technology into embedded devices. An application built on this technology sees
only libraries contained into the platform that executes it. As platform doesn't manage every board
specificities, sometimes you will need to create native API to expose features that will be executed on
another language (most of time in C).

This application note explains how to share data between those two "worlds".

The solution is to create a memory space that can be accessed by Java and C tasks. For this, MicroEJ®
provides, thanks to SNI library, mechanism to share reference of an array. This array can only be con-
stituted by Java based types (byte, int, float, double). This API also limits reference sharing to Immortal
arrays. Indeed, as Immortal objects are not processed by the garbage collector (see garbage collector as
memory defragmentation), those objects keep same memory location along the execution. In that way,
Immortal arrays can be shared between Java and C tasks.

2.2 Example design
The following sequence diagram explains application note example, highlighting the initialization se-
quence and execution steps :

Figure 2.1. Example application sequence diagram

Data sharing needs an initialization phase. Example execution starts with the creation of an Immortal
buffer. then the application shares buffer renferences with the platform by calling a native method with
a buffer as parameter.

The platform stores the buffer reference and lets the hand at the application by creating a native task.

Java/C Data Sharing Using SNI

TLT-0709-AN-MICROEJ-DataSharing-A 6

To finish the demonstration, this application note example divides its execution in 2 steps : first one is
focused on a native C process writing data and a Java application reading them on application side ;
second step is doing the opposite.

Java/C Data Sharing Using SNI

TLT-0709-AN-MICROEJ-DataSharing-A 7

3 Implementation
This chapter explains data sharing implemented by application note example.

3.1 Application
Import project from DataSharingApp.zip into MicroEJ SDK. This project contains several classes :

• The EntryPoint class. It implements the main method by creating and launching a Java task.

• The SensorManager class. It shares a buffer with a native task.

• And the NativeInterface class. This one defines native API to communicate with feature imple-
mented in C language.

This application can be executed on any platform as we provide embedded and simulated implementa-
tions of native methods.

Following illustration shows the application code :

 ...

 /**
 * Sensors values buffer.
 */
 private int[] sensorsValues;

 /**
 * Constructor.
 */
 public SensorManager() {
 nbSensors = NativesInterface.getNumberOfSensors();
 sensorsValues = new int[nbSensors];
 // Before sharing buffer, we have to set it as Immortal.
 sensorsValues = (int[]) Immortals.setImmortal(sensorsValues);
 }

 ...

 /*
 * (non-Javadoc)
 * @see java.lang.Runnable#run()
 */
 public void run() {
 System.out.println("--- 1st step : application reads buffer filled by a
 native process ---");
 NativesInterface.init(sensorsValues);

 ...

Figure 3.1. Application code

The code shows how to set an array as Immortal (see last line of constructor method).

3.2 Embedded side
Folder c-src contains native implementation for embedded platform. This implementation uses the Keil
RTX Kernel.

Following illustration shows the C implementation of init() native method :

Java/C Data Sharing Using SNI

TLT-0709-AN-MICROEJ-DataSharing-A 8

 ...

int32_t* SENSORS_VALUES;

 ...

void Java_com_is2t_appnote_NativesInterface_init(int32_t* buffer)
{
 // Store buffer address
 SENSORS_VALUES = buffer;
 // Create and launch a task
 os_tsk_create_user(sensorsTask, 10, &sensorsTaskStack, sizeof(sensorsTaskStack));
}

Figure 3.2. Buffer reference sharing (C side)

We can see that int[] array parameter in Java side becomes a memory pointer (int*) on the C side.
According to this principle, array values can be read / modified using this pointer.

To be able to execute the provided application on your board, we will need to add sensorsmanager.c
as source file set of the C project. Without this, 3rdd party linker will failed to find init() and getNum-
berOfSensors() symbols.

3.3 Simulated side
As previously said on this document, the simulated part of data sharing uses particular mechanisms to
reproduce the behavior on board. On board execution shares the same memory space for both Java and
C tasks. Thus, memory references in Java can be read from C (and inversely). On contrary, a simulated
native task does not share same memory space since they are processed through the HIL engine1.

To simulate shared memory, HIL engine provides API to refresh or flush content of an array coming
from application. As previously said, this array has to be Immortal. Following illustration shows native
method signature on simulated platform :

package com.is2t.appnote;

public class NativesInterface {

 /**
 * Native method used to retrieve number of sensors.
 *
 * @return Number of plugged sensors.
 */
 public static int getNumberOfSensors() {
 return SensorsDriver.NB_SENSORS;
 }

 /**
 * Native method used to share buffer address.
 *
 * @param buffer
 * Shared buffer.
 */
 public static void init(int[] buffer) {
 SensorsDriver driver = new SensorsDriver(buffer);
 new Thread(driver).start();
 }

}

Figure 3.3. Natives simulated implementation

Contrary to embedded implementation, the application buffer is seen as an array. A mock can store an
array reference in order to use it after.

1During simulation, native methods are executed by the HIL engine, which provide also an API to manage JVM.

Java/C Data Sharing Using SNI

TLT-0709-AN-MICROEJ-DataSharing-A 9

To use this buffer between the application and the simulated platform, HIL API provides two methods :

• The flush() method. It modifies application buffer values by replacing them with mock buffer ones.

• And the refreshContent() method. It does the opposite of flush method. It replaces mock buffer
values by application ones.

Following illustration shows how to use the API :

 ...

 /*
 * (non-Javadoc)
 *
 * @see java.lang.Runnable#run()
 */
 @Override
 public void run() {
 System.out.println("[SimJPF] - update sensors values");
 for (int i = 0; i < NB_SENSORS; i++) {
 this.buffer[i] = i * 10;
 }
 HIL.getInstance().flushContent(this.buffer);
 try {
 // Wait 750 ms so that application can read new buffer values
 // and modify them
 Thread.sleep(750);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 System.out.println("[SimJPF] - Read sensors values : ");
 HIL.getInstance().refreshContent(this.buffer);
 for (int i = 0; i < NB_SENSORS; i++) {
 System.out.println("[SimJPF] - Sensor_" + i + " = "
 + this.buffer[i]);
 }
 }

Figure 3.4. Buffer sharing (mock side)

To be able to execute the provided application on your workstation, we will need to export DataShar-
ing-mock project as a jar file in your platform (like others mocks). Without this, the execution will end
with timeout error since HIL engine will not find native methods implementations on platform.

Java/C Data Sharing Using SNI

TLT-0709-AN-MICROEJ-DataSharing-A 10

4 Document History
Date Revision Description
December 17th 2013 A First release

 Headquarters
 11, rue du chemin Rouge
 44373 Nantes Cedex 3
 FRANCE
 Phone: +33 2 40 18 04 96
 www.is2t.com

© 2013 IS2T All right reserved. Information, technical data and tutorials contained in this document
are IS2T S.A. Proprietary under Copyright Law. Without any written permission from IS2T S.A.,
copying or sending parts of the document or the entire document by any means to third parties is not
permitted including but not limited to electronic communication, photocopies, mechanical reproduc-
tion systems. Granted authorizations for using parts of the document or the entire document do not
mean they give public full access rights.

IceTea®, IS2T®, MicroJvm®, MicroEJ®, S3™, SNI™, SOAR®, Drag Emb'Drop™, IceOS® and
all associated logos are trademarks or registered trademarks of IS2T S.A. in France, Europe, United
States or others Countries.

Java™ is Sun Microsystems' trademark for a technology for developing application software and de-
ploying it in crossplatform, networked environments. When it is used in this documentation without
adding the ™ symbol, it includes implementations of the technology by companies other than Sun.

Java™, all Java-based marks and all related logos are trademarks or registered trademarks of Sun Mi-
crosystems Inc, in the United States and other Countries.

Other trademarks are proprietary of their authors.

	Java/C Data Sharing Using SNI
	Table of Contents
	1 Introduction
	1.1 Intended audience
	1.2 Scope
	1.3 Prerequisites
	1.4 Files supplied with this Application Note

	2 Design
	2.1 How to share data ?
	2.2 Example design

	3 Implementation
	3.1 Application
	3.2 Embedded side
	3.3 Simulated side

	4 Document History

