: Application Note:
’52 T TLT-0664-AN-MICROEJ-MWT Tutorial

MWT Tutorial

In relation to: MICROEJ products

Features
This Application Note explains all aspects of MWT library.

Description

This Application Note assumes the reader wishes to get a quick understanding of the MWT library
concepts.

TLT-0664-AN-MICROEJ-MWTTutorial-B

MWT Tutorial

Table of Contents

I BT ol L ol o) 1 U U USRS 4
1.1 What 1S MWT? e 4
1.2. About this TUEOTIAL .eeceiiiiiiiiiiiiieiiieeeeeeeeeeeee e e e e e e 4
1,30 ROIES e 4
1.4, BELOTE® FOU SEATE ...uvuuuuiueueueuauatetutetetetatetatatatatatetatesateaesasssssssssssasssssssssssssssssssssssnsssssssssnnes 4
N 001 0] (B T F o PR 6
2.1, EXAMPIE 1 oo s 6
N I 13T PP PPPPPPPPRE 7
B T - 10 T<] 2] 1 (<3) SO PP PPPPPPPPPRPPPPPPPRt 7
2.4, TUOTIAITREIME ..oceieiiiiiieiee ettt ettt e e e e e ettt e e e e e e s aeeaeeeeeeeas 8
O (a o T 2 T=) AT T) PSP 10
3.1 EXAMPIE 2 e nan 10
I = 1111 (0] 1 R U PPPP PR PPUPPRRPR 10
3.3. BUtONRENAETET ...cceviiiiiiiiiiiiiiiiiiiiieieieeeee ettt e e et et et e e e e e e e e e e eeeeeeeeeaaaeaaeas 11
4. COIMIMANAS ..evvvvvvrererererererererererrrerererererere....——..—.—... 12
4.1. Button ENhanCementsccoeeeeiiiiiiiiiieieee e 12
4.2. ButtonRenderer ENhanCemenntsccoouuuiieieetiiiiiiiiiitieeeeeeeeiieteeeeeeeeeniiieeeeeeeee e e 12
4.3. Running EXamPIe 3ccciiiiiiiiiiiiieie e e e e e eeetii e e e e e e eteeaaeeeeeseeeeenaannaaeeeaaanenannns 13
5. Widgets, Renderers and the MV C Patterneueeieeieriiiiiiiiieeeeeeeeniiiieeteeeeesenieereeeeeseenaans 14
5.1. MOdel-VieW-CONtrOLIETuuuuuuuuunnnnnniiniiiiieneieienenennnennnnnnnnnnnnnsnnnnnnnnnsnnnnnnnnnsssnnnnsnnnnns 14
5.2. Widget-ReNdeTer-PIeSEILETcuuutttrureturirtietitereteeertretereeereeerereeeeeseeeeereeereserereresererenes 15
5.3. Widget-Renderer-Model-PreSEnteruuuuuuerurerrrrrrrererrrerererseerererererrrerersmsm.. 15
6. Redisplaying @ WIA@ELccceeiiiiieiiiiiieee ettt e e e e ettt e e e e e e e e e eeaaeeeeeeeeeeeaasnnnnaaeseearenssennnns 17
6.1, REPAINIIE ...oeeeiiiieiiiiieietiiie ettt ettt e ettt e ettt e eettna e eetana s eeeaaaeseeesnanseresnneserernnnsenennn 17
LT 771 F- Ui o < PP 19
TR T = Tl o= 20
6.4. The validation PrOCESScceeverieeiririeiereieieiereeeeeeereeerereeeeerererererereeereeeeereeerererereeeeeeeeeeeees 21
6.5. Summary, and iMpPaCt ON TENAETETSuuuuueei s 21
6.6. Synchronizing display UPAAtescceiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeee e e e e e e e e eea e 22
2 O0)11] 510 13 L = PP PPT PSPPI 23
7.1, A SIMPIE COMPOSILE ...t aas 23
7.2. Bounds, Margins and Paddingcccccceiiiiiiiiiiiiiiieee, 24
7.3. Implementing margins and padding ... 25
7.4, INEStEA COTTIPOSITES ..vvvvuvvvurerervruresureranesasesesssesssssessnsnns 27
7.5. What if the children Won't fit?ooooiiiiiiiiiii e 27
S YA T4 oL A olo) 111 o] PP 29
ST YA 15 101 11 OO P PR UPPPPOPPPPRR 29
8.2. Disabled WIGRLS ..ccceiiiiiiiiiiiiiieie 29
9. LooK and Feel ...cccoeiiiiiiiiiiiie e, 31
0.0 00K e s 31
9.2. Changing looks and themes at TUN-tIMEcceviiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 33
B Ta 1< Co I o)) oy SRR 35
11. Widget and Renderer Collaborationeeeeiiiiiiiiiiiieireeeeeiiereeee e e e e e 36
11.1. RENAETET COMITACES ...uuuvuuuuuurnnsnsnsnnssnnnnnsssnnssnnnnssssnnssnnnsnnnnn 36
11.2. RENAEIET COMETACES ...t s 37
11.3. Selecting renderers by Styleccciiiiiiiiiiiiiii e, 41
12. Panels and DIAlOESceeeiiiiiiiiiiiiaee et e e e eeeett e e e e e e et e et e e e e e e e ee et e e e e e eerearanaans 44
12,1, MUItPLE PANELS ..eeeieeeeeeeeeeeeeeee e e e e e e e s e s e s e e e e e e e e e s e e e s e e e e enenesesesanaes 44
S) 1 (o PP PPPPPPRt 45
13. DOCUMENT HISTOTY ..uuieeiiiiiiiiiiiieee ettt e e ettt teee e e e e et etttbeae e e e eeeettebaaaseeeeeseeernnaneseaaaees 47

TLT-0664-AN-MICROEJ-MWTTutorial-B 2

MWT Tutorial

List of Figures

2.1. Example 1 executed on SIMUIALOTccoiiiiiiiiiiiiiiiiiiciccccccceeereceeer e e e e e e e e 6
3.1. BULtON SOUICE COUReeeeeeiieeeeeeeeeee e e e e e e e e e e e e e e s e e e s e e e e s e e s s s nas 10
3.2. ButtonRenderer SOUICE COUEceiitiimiumiiiiiiieeeeeiiiiitteeee e e e sttt e e e e e e sibetteeeeeeeeseaaereeeeeas 11
ST B\ AV O - 11 1<) 1 1 O PPN 14
5.2. WRDP DALEITL ...cieiiiiiiiiiieeee ettt e ettt eee e e e et e ttttbtae s e e eeetttebbaaeseeeeseeessnanasseeeeseeessnnnnnnss 15
5.3. WRMP PALETI ..eiiiuiiiiiiieeeiiiieeeetiiee ettt e eettiieeeettaaeeetauaeeetanaseatsnnseeesnaseeesnnseeaesnnnseeennnnns 16
LT O 5 1001 0] (I Y0 ol ol 1 LSS 17
6.2. ToggleButtOn SOUICE COUERuuuuuuuuuunnnininiiiniiiniiiiiinnannnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsssnsnnnnnsnnnnnnns 18
6.3. ToggleButtonRenderer SOUICE COAEuuuureeriiiiririiniieeeeeeeeteietiaaeeeeeeeearernnaaeeseeeneesrnnnnaeesaanes 19
6.4. EXample 5 SOUICE COUR ...ovvviiiiiiiiiiiiiiiiiii e e 20
6.5. Label eNhanCemMeNtoiiiiuuiiiiiitee ettt e ettt e e e e e ettt et e e e e e s ettt eeeeeseenneeaeas 20
7.1. Horizontal Composite validate methodeuueueiiiiiiiiiiiiiiiiaaes 24
7.2. Example 6 executed ON SIMUIALOTccceeeeeeieieiereieieeeeeieeeeeeeeeeeeeeeseeeseeeseeeeeeeseseeesesesesesesesesasanns 24
7.3. WidgetRenderer DOUNMS 25
7.4. Margin and padding management ON COMPOSILEueeeeeerreriiiurrieereeeeenniiiieeeeeeeessenansneeees 26
7.5. Example 7 executed 0N SIMUIALOTceeiiiiiiiiiiiieiee et eeeertisee e e e e e eerraasee e e e eeeeeeenennns 26
7.6. Example 8 executed 0N SIMUIATOT ..cccceiiiiuiiiiiiieeteeiiiiieeeee e e e e et eeeeeseireereeeeessesaseeeees 27
8.1. EXample 9 SOUICE COUE ...ccciiiiiiiiiiiiii i 29
8.2. EXample 9a SOUICE COUEceeeeeiiiiiiieeeeeeeeeeiiiiee e e e e eeeettteeseeeeeeeeesassnaaaeeeeaenssssnnnaaaeaaeeensens 30
8.3. ToggleButtonRenderer eXteNdedccoiviiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee e e e e e e e e e 30
10.1. Widgets library UML class dia@lamceeeeeeeeiiiiuiiieneeeeeeeeiiiiieeeeeeeeeeeennnnseeeeeeseesssennnaeenas 35
11.1. Scale widget SOUICE COURcceviiiiiiiiiiiiiiiiiiiiee e e e e e e e e e e e e e eeaeaeeas 36
11.2. ScaleRenderer SOUICE COURciiiiiiiiiuiiiitieeeee ettt e e e e e e ettt e e e e e e eeaiaeeteeeeeeesseanseeeeeeas 37
11.3. Example 11 executed on SIMUIALOTccoviiiiiiiiiiiiiiiiiiiiiiiiiieiees 37
11.4. TextHoIder SOUTCE COUEcetiiiiiiiiiiiiiteeee ettt e e e ettt e e e e e e s eiibbeeeeeeees 39
11.5. Transparent Label Source Codeuuoeeeiiiiiiiiiiiiiee e e e e e e e e e e e e eeees 39
11.6. Renderer handling tanSPareniCycceviiiiiiiiiiiiiiiiiieieieeeieeeeeeeeereeeeeeeeeeeeereeeeeeereeeeeeeeeeeseees 39
11.7. EXample 12 SOUTCE COUE ..uuuuuuereeiieiiiiiiiiiaeeeeeeeeetituiaaeeeeeeeerusannaaeeseeesemsssnssaessssesessssnnsaeesaeaes 40
11.8. Example 12 executed on SIMUIALOTcceeitiiiiiiiiiitieieeriiiiieet e et e e e e eeee e 41
11.9. EXample 13 SOUTCE COUE ...uvvvvrrrrrrrrrrrrrrrererereresrereereeeseeeserssereeeseresereerrererre. 43
11.10. Example 13 executed on SIMUIALOLccvuuuiiieieeeieiiiiiiiieeeeeeeeeriieeeeeeeeererareniaeeeeeeeeeesens 43
12.1. Example 14 executed On SIMUIALOTccevviiiiieiiiiieieieieieieeeieeeeeeeeeeereeerereeeeerereeeeereeeeeeeseeeseees 45
12.2. EXaMpPIe 14 SOUTCE COUE ...uvuuuieiiieiiiiiiiiieeeeeeeeeetttniaaeeeeeeeeessnnnaaeeseesennsnsnnaaeessseesssssnnsaeesaenes 45
12.3. EXample 14 SOUTCE COUEevvvriririiiiiiiiiiiriiiiiteietteerereeeeeeeeeeereeereereeaererereeeeerarerarererereresareraee 46

TLT-0664-AN-MICROEJ-MWTTutorial-B 3

MWT Tutorial

1 Introduction

1.1 What is MWT?
Widgets are the visual elements of graphical user interfaces. Widgets exist at the point of interaction

between the user and the machine. Common types of widget include radio buttons, lists and text fields.

A widget library comprises classes that can be instantiated directly to create widgets in a user interface
or extended to define new kinds of widgets.

The MicroUI Widget Toolkit (MWT), the subject of this tutorial, makes it simple to create and use
widget libraries. It includes an abstract superclass, Widget, that can be extended to define widget types,
plus other ready-to-use classes that act as widget containers. It also contains a framework that controls
the operation of the widgets and their interaction with users. However, MWT is not a widget library —
it contains no widget classes that can be used directly.

MWT targets pixelated display devices in resource-constrained environments, such as embedded con-
trollers.

MWT is defined by a specification, the Micro Widget Toolkit Profile Specification. This tutorial assumes
the use of version 1.0 of MWT and IS2T's implementation of the specification.

1.2 About this tutorial

This tutorial is designed to provide a self-taught introduction to MWT. If you are new to MWT we
recommend that you work through the examples, taking time to study, run, and perhaps modify, the
supplied source code. Each example introduces new concepts and builds on previous ones. More expe-
rienced MWT users may wish to be more selective, and focus on the topic they wish to learn about.

The tutorial examples gradually build up a small widget library that is used consistently throughout.
Readers may find this library useful as the basis for their own work.

1.3 Roles

In this tutorial we will consider MWT from three different points of view. We will show how to create a
widget library, looking separately at the functional and look-and-feel aspects. We will show how to use
a widget library built using MWT. These points of view correspond to the three roles defined in MWT:

+ The Widget Designer — the person who defines the types of widgets that make up the widget library,
and how they work.

» The Look And Feel Designer — the person who defines how widgets and containers appear on the
display.

» The Application Designer — the person who uses an MWT-based widget library to create a graphical
user interface.

Obviously, these three roles are not always played by different people; the last two in particular will
often be undertaken by the same people.

1.4 Before you start

Before you start working through this tutorial you should install:
* MicroEJ product
* A MicroEJ Java Platform that provides MWT.

 The tutorial examples project available on MWTTutorial-apps.zip archive file.

TLT-0664-AN-MICROEJ-MWTTutorial-B 4

MWT Tutorial

The tutorial assumes you already know:

» How to use Eclipse and MicroEJ.

» How to write simple programs using Java.

* How to create and run a MicroEJ application

The MicroEJ Workbench User's Manual includes step-by-step guidance on creating a simple application.

TLT-0664-AN-MICROEJ-MWTTutorial-B 5

MWT Tutorial

2 A Simple Widget

We will start by adopting the “Widget Designer” role, and we will create a very simple widget. We
want to be able to test our widget, so we need to understand how to construct a simple MWT-based
user interface.

At its most basic, an MWT-based user interface is created by arranging some widgets in a Panel, and
showing that panel on a Desktop, which is itself shown on a display. Panel and Desktop are classes
within MWT. We don't arrange the widgets directly on the desktop because an application may want to
be able to create a number of different panels and switch between them quickly. In our first examples
the panel will contain a single widget, but by using composites, which we will discuss later, the panel
can be the root of a complex hierarchy of widgets.

2.1 Example 1

It's time to create our first MWT application. Open the class Exi in the package
com.is2t.mwt.tutorial.ex01:

package com.is2t.mwt.tutorial.ex01;

import ej.microui.MicroUI;
import ej.mwt.Desktop;
import ej.mwt.MWT;

import ej.mwt.Panel;

public class Ex1 {

public static void main(String[] args) {
MicroUI.errorLog(true);
MWT .RenderingContext.add(new TutorialTheme());
Desktop desktop = new Desktop();
Panel panel = new Panel();
Label label = new Label("Hello World");
panel.setwidget(label);
panel.show(desktop);
desktop.show();
}
}

This example displays a label. Create a launch configuration for the example and run it using the sim-
ulator. You should see something like this:

v

1
g
i

Figure 2.1. Example 1 executed on simulator

TLT-0664-AN-MICROEJ-MWTTutorial-B 6

MWT Tutorial

The example depends on three other classes that are in the same package. We will look at each of these

in

turn, but first we will examine Ex1 line by line:

MicroUI.errorLog(true) turns on error logging so that you can see any errors in the Eclipse console.
This line isn't essential but we will include it in all our examples to help with debugging.

MWT .RenderingContext.add(new TutorialTheme()) establishes the theme to be used. A theme de-
fines a look-and-feel. When you create an MWT widget library you can define several themes that
can be applied to the widgets in the library.

Desktop desktop = new Desktop() creates a Desktop bound to the default display device.

Panel panel = new Panel() creates a Panel. A panel is analogous to a window — there can be several
on them on the desktop, but only one is active.

Label label = new Label("Hello World") creates a Label widget and sets its text. Label is one
of the three other classes that make up the example.

panel.setwidget(label) connects the label widget to the panel. A panel can hold only one widget
(but that widget can be a composite, as we will see later).

panel.show(desktop) instructs MWT to show the panel on the desktop. If there were already other
panels on the desktop it would be added to the top of the stack of panels being shown, becoming the

active panel. This step also causes the panel to lay out its contents — simple in this case.

desktop.show() instructs the desktop to show itself on the display.

2.2 Label
The Label class defines a kind of widget, using the MWT Widget class as its base.

package com.is2t.mwt.tutorial.ex01;

import ej.mwt.Widget;

pu

blic class Label extends Widget {

protected String text;

public Label(String text) {

3

super();
this.text = text;

public String getText() {

}
3

return text;

This very simple widget holds a string and provides a getter method for it. You will immediately notice
that this class does not define how the label is to be rendered on the display. That is the job of a renderer.

2.
A

3 LabelRenderer

renderer is an object that can render widgets of a specific type or types. It holds no widget-related

state: the widget is always passed to it as a parameter. As a result a single renderer object can be used

to

render many widgets.

TLT-0664-AN-MICROEJ-MWTTutorial-B 7

MWT Tutorial

package com.is2t.mwt.tutorial.ex01;

import
import
import
import
import

ej
eJ
ej
ej
eJ

.microui.Colors;
.microui.io.GraphicsContext;
.mwt .Renderable;

.mwt.Widget;
.mwt.rendering.WidgetRenderer;

public class LabelRenderer extends WidgetRenderer {

public Class getManagedType() {
return Label.class;

}

public int getPreferredContentwidth(widget widget) {
return 100;

}

public int getPreferredContentHeight(wWidget widget) {
return 16;

}

public void render(GraphicsContext g, Renderable renderable) {

Label label = (Label)renderable;

g.setColor(Colors.WHITE);

g.fillRect (0, 0, label.getWidth(), label.getHeight());

g.setColor(Colors.BLACK);

g.drawString(label.getText(), O, 0, GraphicsContext.TOP | GraphicsContext.LEFT);

}

A widget renderer class must extend the widgetRenderer base-class. The LabelRenderer in this exam-
ple implements four methods which must be implemented by every widget renderer class:

getManagedType () returns the widget class that this renderer can render. Implicitly it can also render
widgets that are instances of sub-classes of the managed type. The MWT framework selects the most
appropriate renderer for each widget.

getPreferredContentwidth() and getPreferredContentHeight() allow the renderer to indicate
how much screen space it would like to occupy (in pixels). Here we have hard coded some values but
more commonly the renderer will compute the required space based on the widget content. In the case
of a label the computation might be based on the label's string. You can see that sort of computation
in the next example.

render () is called by the MWT framework to ask the renderer to render the widget on the display.
The first parameter is the GraphicsContext that the renderer should use to do its painting. The origin
of the graphics context is set to the top-left corner of the space allocated to the widget, and the graphics
context will clip any attempt to paint outside the bounds of the widget.

In this simple example the colors used by the renderer are hard-coded. In realistic examples the colors
would instead be defined by the Look associated with the selected Theme.

2.4 TutorialTheme

The MWT framework needs a way of knowing what renderers are available. It does this by having a
RenderingContext that holds one or more Themes. Each Theme holds a coherent set of renderers and

a Look, which defines visual properties such as colors.

You will recall that the main Ex1 class contained the line: MWT.RenderingContext.add(new Tutori-

alTheme());

This statement creates an instance of Tutorial Theme and makes it available to MWT's rendering context.

Here is the trivial theme we are using for this example:

TLT-0664-AN-MICROEJ-MWTTutorial-B 8

MWT Tutorial

package com.is2t.mwt.tutorial.ex01;

import ej.mwt.rendering.Look;
import ej.mwt.rendering.Theme;

public class TutorialTheme extends Theme {

public Look getDefaultLook() {
return null;

}

public String getName() {
return "Tutorial theme";

}

public boolean isStandard() {
return true;

}

protected void populate() {
add(new LabelRenderer());

}
3

This tutorial theme does not define a look (getDefaultLook() returns null), but a theme would normally
do so. We will return to Look in a later example, when we will also discuss the significance of the
isStandard method.

The populate method is called by the rendering context when the theme is added to it, and it must add
to the theme an instance of each kind of renderer that makes up the theme. These instances are then
available to MWT to use for rendering. Our theme has only one renderer at present: the LabelRenderer.
Whenever the rendering context needs to find a renderer to use to render a widget it looks through the
themes it has available and selects the best possible renderer. The exact algorithm used for that will be
discussed in a later example.

TLT-0664-AN-MICROEJ-MWTTutorial-B 9

MWT Tutorial

3 Adding Behavior

In Example 2, we will create a simple button widget that can be pressed using the pointer (the mouse,
when using the simulator).

3.1 Example 2

The example can be found in com.is2t.mwt.tutorial.ex02.Ex2:

public class Ex2 {

public static void main(String[] args) {
MicroUI.errorLog(true);
MWT .RenderingContext.add(new TutorialTheme());
Desktop desktop = new Desktop();
Panel panel = new Panel();
Button button = new Button("Press Me");
button.setListener(new Listener() {
public void performAction() {
System.out.println("Button pressed");

public void performAction(int value) {}
public void performAction(int value, Object object) {}

1)
panel.setWidget (button);

panel.show(desktop);
desktop.show();

3
3

This is very similar to the previous example except that we are creating a Button widget rather than a
Label. The interesting part is the call to setListener, which sets up a callback that is invoked when the
button is pressed. Listener is an interface commonly used in MWT and MicroUI to define these kinds
of notifications. When the button is pressed it will invoke the performAction method and the message
will appear on the Eclipse console. Try running Ex2 and clicking on the button.

3.2 Button

The Button class extends the Label class we created in Example 1:

public class Button exXxtends Label {

public boolean handleEwvent (int event) {
int type = Event.getType (event):

if (type == Ewvent.POINTER) {
int action = Pointer.gethction(event);
if (actionm == Pointer.RELEASED)} {
if {listener '= null)

listener.performction ()
return true;

if (type = Event.COMMAND) {

int command = Event.getData(event);
if (command == Command.SELECT}) {
if (listener !'= null})

listener.performAction () ;
return true;
}
H
return super.handleEvent (event);

Figure 3.1. Button source code

TLT-0664-AN-MICROEJ-MWTTutorial-B 10

MWT Tutorial

As we have already seen, the setListener method is used by the application to hook up the callback.
A reference to the listener is held in a field of the button.

The handleEvent method is called by the MWT framework when an event occurs that may be of interest
to the widget. Our button will receive several different events but here we are looking specifically for the
pointer button being released. When that happens we notify the listener, if there is one, and return true,
indicating that we have consumed the event. For all other events we let the superclass handle it. The
Pointer class contains constants for the possible events, and were are looking for Pointer .RELEASED
which will be sent when the button is released.

Generally speaking, input events are sent to the widget that has the focus. The widget that is under the
pointer when the mouse button is pressed is given focus. That widget then retains focus until another
widget is similarly selected. That is why the Pointer.RELEASED event is sent to the widget that was
under the pointer when the button was pressed, even if the pointer is moved outside the widget. Input
focus can also be changed in other ways, such as by using a joystick or cursor keys, we will see it in
later examples.

The general pattern for event handling is that the event is sent to the most specific widget that might
be interested in it. That widget will either consume it or not. If it is not consumed the event is sent to
the widget's parent (which in this case is the panel) and so on until either the event is consumed or the
top of the desktop hierarchy is reached.

3.3 ButtonRenderer
The ButtonRenderer is very similar to the LabelRenderer from Example 1:

public class ButtonRenderer extends Renderer implements SizeComputer {

public void render (GraphicsContext g, Renderable renderable) {
Button button = (Button) renderable;
.sectColor (Colors.WHITE) ;
.fillRect (0, 0, button.getWidth(), button.getHeight()):
.setColor (Colors.BLACK) ;
.drawString (button.getText (), button.getWidth() / 2, button.getHeight () / 2,
GraphicsContext.HCENTER | GraphicsContext.VCENTER) :
if (button.hasFocus()) {
g.secS5trokeStyle (GraphicsContext.DOTTED) ;
g.drawBect (1, 1, button.getWidth(}-3, button.getHeight()}-3):

(=== Ry T

public int getPadding() {
return 4;

}

Figure 3.2. ButtonRenderer source code

Notice the more sophisticated (and accurate!) calculation of the preferred width and height, based on
the size of the font to be used and the text to be displayed. Notice also that the text is drawn in the center
of the widget, rather than the top-left.

TLT-0664-AN-MICROEJ-MWTTutorial-B 11

MWT Tutorial

4 Commands

In the previous example we used the pointer to press the button. But often we want to use other input
devices, such as physical push-buttons or a keypad to “press” the button. This is achieved using com-
mand events.

The MicroUTI library, on which MWT is based, converts low-level inputs into abstract commands. So, for
example, the center joystick button on the STM3220G-EVAL is normally configured so that it generates
the Command.SELECT command. In Example 3 we will enhance our button widget so that it responds
to this command.

Commands such as Command . SELECT are sent as events by MWT to whichever widget has the focus, as
discussed in the previous exercise.

4.1 Button Enhancements

To handle command events we simply need to enhance the handleEvent method in the Button class:

public class Button extends Label {

public boolean handleEvent(int event) {
int type = Event.getType(event);
if (type == Event.POINTER) {
int action = Pointer.getAction(event);
if (action == Pointer.RELEASED) {
if (listener != null)
listener.performAction();
return true;

}

}
if(type == Event.COMMAND) {
int command = Event.getData(event);
if (command == Command.SELECT) {
if (listener != null)
listener.performAction();
return true;
}
}
return super.handleEvent(event);
}
}

4.2 ButtonRenderer Enhancements

It is normal to indicate to the user which widget has focus by means of a visual clue. We can enhance
the ButtonRenderer to do this:

TLT-0664-AN-MICROEJ-MWTTutorial-B 12

MWT Tutorial

public class ButtonRenderer extends Renderer implements SizeComputer {

public void render(GraphicsContext g, Renderable renderable) {
Button button = (Button) renderable;
g.setColor(Colors.WHITE);
g.fillRect (0, O, button.getWidth(), button.getHeight());
g.setColor(Colors.BLACK);
g.drawString(button.getText(), button.getwidth() / 2, button.getHeight() / 2,
GraphicsContext.HCENTER | GraphicsContext.VCENTER);
if (button.hasFocus()) {
g.setStrokeStyle(GraphicsContext.DOTTED);
g.drawRect (1, 1, button.getWidth()-3, button.getHeight()-3);

}

public int getPadding() {
return 4;

}

The render method asks the button if it has focus using the hasFocus method. If it does, the renderer
indicates this by drawing a dashed rectangle just inside the bounds of the widget. To leave room for
this we need to allow some space around the text. Rather than just changing the size calculated by
getPreferredContentWidth and getPreferredContentHeight we override the inherited getPadding
method and return the number of pixels we want between the outer edge of the widget and its content
(the text on the button).

4.3 Running Example 3

There are a couple of points to note when running Ex3.

You must execute the application on a platform which one of its input devices generates the SELECT
command. To know which events are generated by a platform, an example named "Check Input Events"
can be executed. This application logs received events during an input device usage.

When you first start the application no widget has focus, so pressing whatever button you have config-
ured to generate SELECT will not “press” the button widget. You can see that this is the case because
the button is not outlined on the display. First use the mouse pointer to press the button, which will give
the button widget focus. Then you can use the SELECT command.

TLT-0664-AN-MICROEJ-MWTTutorial-B 13

MWT Tutorial

5 Widgets, Renderers and the MVC pattern

5.1 Model-View-Controller

The design of MWT is based on a long-established pattern for GUIs: the Model-View-Controller (MVC)
pattern. MVC was first described by Trygve Reenskaug in 1979 and has been the basis for most GUI
design approaches since. As the name implies, MV C revolves around three concepts, each with its own
responsibilities, and their interactions.

The Model holds some data, or state, that needs to be represented in some way in the GUI. It knows
nothing about how the state will be displayed or how the user will interact with the GUI to amend it. It
does not even know whether there are any current representations of it in the GUI.

The View is responsible for rendering the state of the model.

The Controller is responsible for accepting user inputs, interpreting them, and using them to update the
model. If has no knowledge of how the model is rendered in the View.

Render User inputs
reques:tsl Requests for help in :
interpreting user
_ inputs
WView o Controller ——»

Notifications that
the view needs

repainting
hanges to
Get model state mude?stﬂte
Clja.ngistu.mciﬁel stalt_te . Motifications that the
originating in other parts o model has changed
> - :
the system Model (and the viewneeds
repainting)

Figure 5.1. MVC pattern

In the diagram the arrows represent method calls. There are three main flows of control:

» The user makes an input that implies a change in the state of the Model. The Controller accepts the
user input, deduces the required model change (possibly with help from the view), and calls a method
of the Model to effect the change. The Model reacts to this by notifying the environment that its state
has changed. The environment asks the View to re-render the Model.

» The user makes an input that implies a change in the View but not the Model, such as navigating from
one sub-element of the View to another. In this case the Controller notifies the environment, and the
environment asks the View to re-render itself.

» The Model is updated by some other part of the system (for example, a regularly recurring timer
task).The Model notifies the environment that its state has changed. The environment asks the View
to re-render the Model.

The notifications from the Model to the View are typically implemented using an observer (or listener)
pattern, similar to the mechanism we used earlier to connect the button to the main application. An
important feature of MVC is that the same Model can simultaneously be represented in the GUI by more

TLT-0664-AN-MICROEJ-MWTTutorial-B 14

MWT Tutorial

than one View, each with its own Controller. The Model neither knows nor cares how many Views are
open on it. When its state changes the notification is passed to all the Views that depend on it.

There are two key benefits of the MVC approach:

* The domain logic (in the Model) is cleanly separated from the presentation logic (in the View and
Controller).

» There is no direct coupling between the Model and the View/Controller, making it easy to have mul-
tiple simultaneous and different views of a model.

5.2 Widget-Renderer-Presenter

Now let us try to interpret MV C in the context of MWT. In the widgets we have been using so far, the
widget has played the role of both the Controller and the Model. If has held the state (the text of the
label or button, and implicitly a Boolean indicating whether or not the button is pressed) and handled
user inputs. The renderer has played the role of the View. There has also been another concept in our
examples: the Presenter (the Exn class). It is the Presenter that has been notified of changes in model
state (e.g. when the button is pressed).

Reguests for help in

Render interpreting user
requests inputs # Uzerinputs
Renderer Widget
View Get widget Controller
ctate
| g Notifications that
the widget needs
Motifications of changes to repainting
model state i >
Presenter et model
state
Model

| i)

Changesto model state

Figure 5.2. WRP pattern

This interpretation of MVC is found very frequently in widget-based architectures. The Presenter takes
responsibility for assembling the GUI widgets needed for the application and uses notifications from
the widgets to affect the state of the application.

MWT says nothing about how the Presenter should be designed but care is needed to ensure that the
Presenter deals only with the GUI interactions and does not contain domain logic.

A disadvantage of this Widget-Renderer-Presenter approach is that the model is encapsulated in the
widget. If several widgets need to display different aspects of the same model, with all the widgets
updating together as the model updates, then this will need to be explicitly coordinated by the Presenter.

5.3 Widget-Renderer-Model-Presenter

A more flexible, but more complex, approach is to keep the model as a separate concept rather than
encapsulating it in the widget.

TLT-0664-AN-MICROEJ-MWTTutorial-B 15

MWT Tutorial

Render o s for el
ot equests for help in)
requests i interpreting user i User inputs
inputs
Renderer < Widget
View . Controller
Get widget state Notifications that
P the widget needs
repainting
———»
Get'Set model stats
Get'Set
maodel
Presenter state
——» Model

MWetiications that the model haz changed Mofiications that the model has changed

Figure 5.3. WRMP pattern

In this approach the same model can be attached to multiple widgets. More importantly, the model
can contain domain logic. This is one way of dealing with the risk that domain logic will leak into the
Presenter.

We will see this approach used in section "Using explicit model objects". It is common for widget
libraries to contain some widget classes that use the Widget-Renderer-Presenter approach and others
that use this Widget-Renderer-Model-Presenter approach.

TLT-0664-AN-MICROEJ-MWTTutorial-B 16

MWT Tutorial

6 Redisplaying a widget

So far in our examples we have not made any updates to the display (other than showing changes in
focus, which happened automatically). In the next example we will create a ToggleButton whose model
is a Boolean and where each press of the button toggles the button's state. We want the button to be
rendered in a way that shows whether the button is currently on or off, so we will need to ensure the
button is repainted each time it is pressed. In addition, we will run an asynchronous timer task that
periodically toggles the button.

The example illustrates the two control flows that result in repainting:

» There is a user input (button press in this case) that causes the widget to decide that a repaint is
required,

» Some other part of the system (a timer task in this case) updates the state of the widget.
The normal practice when designing MWT widgets is for the widgets to take responsibility for getting

themselves redisplayed, rather than requiring the Presenter or some other object to do that. The widget
is in the best position to understand the nature of the change and take the most appropriate action.

6.1 Repainting

Here is the code of the example:

public class Ex4 {

public static wvoid main(String[] args) {
MicroUIl.errorLog(true):;

MWT .RenderingContext.add (new TutorialTheme ()):

Desktop desktop = new Desktopl():

Panel panel = new Panel();

final ToggleButton button = new ToggleButton ("Press Me™):;
button.setlistener (new Listener() {

public wvoid performfiction (int wvalue) {
System.out.println("Button iz " + (value=—0?"off":"on"}):

public void performiction() {}

public void performBction {int value, Object object) {}
s
panel.setWidget (button) ;
panel.show (desktop)
desktop.show () ;
TimerTask task = new TimerTask() {

public void run() {

button.=setOn (!button.isCn)})

i

new Timer () .=schedule(task , 3000, 3000);

Figure 6.1. Example 4 source code

We are now using the one-argument version of performAction to communicate from the button to the
Presenter (the Ex4 class) so that we can pass the current state of the button, using zero for off and non-
zero for on. The highlighted statement in the timer task is toggling the state of the button every three
seconds.

The ToggleButton class looks like this:

TLT-0664-AN-MICROEJ-MWTTutorial-B 17

MWT Tutorial

public class ToggleButton extends Label {

private Listener listener;
private boolean isCmn;

public ToggleButton (String text) {
super (text) ;
isCm = false;

public void setlistener(Listener listener) {
this.listener = li=stener;

public boolean i=On() {
return i=s0m;

public volid setOmn(boolean isOm) |
this.i=slm = is0mn;
repaint () :

Figure 6.2. ToggleButton source code

The key line here is the one highlighted. A call to repaint() schedules an asynchronous repainting of
the widget receiving the call, and only that widget. The repaint request is added to an event queue and
when executed will result in the widget's renderer receiving a render request.

A call to repaint does not cause the panel will not be laid out again (what MWT calls revalidation), so
the widget's size remains unchanged. Therefore it is only appropriate to use repaint when the change
to the widget is a change that will not affect its size. In the next example we will see how to handle
updates that do change the size of the widget.

The renderer for the ToggleButton is very similar to the renderer we used for our previous buttons:

TLT-0664-AN-MICROEJ-MWTTutorial-B 18

MWT Tutorial

public class ToggleButtonRenderer extends WidgetRenderer {

public Clas=s getManagedType() {
return ToggleButton.class:

public int getPreferredContentWidth (Widget widget) {
ToggleButton button = (ToggleButton) widget:
String text = button.getText():
return DisplayFont.getDefanltFont () .stringWidth (text) ;

public int getPreferredContentHeight (Widget widget) {
return DisplayFont.getDefaultFont () .getHeight (),

public void render (GraphicsContext g, Renderable renderable) {
ToggleButton button = (ToggleButton) renderable;
g.setColor (button.isCn () ?Colors.RED:Colors . WHITE) ;
.fillRect (0, 0, button.getWidth(), button.getHeight()):
.2etColor (Colors .BLACK) ;
.drawString (button.getText (), button.getWidch() / 2, button.getHeight() / 2,
GraphicsContext.HCENTER | GraphicsContext.VCENTER) ;
if (button.hasFocus{()) {
g.setStrokeStyle (GraphicsContext . DOTTED) ;
g.drawRect (1, 1, button.getWidth()-3, button.getHeight()-3):

==y

Figure 6.3. ToggleButtonRenderer source code

(We have omitted the getPadding method to save space.) The highlighted line sets the background color
of the button to reflect its state: red = on, white = off.

6.2 Revalidating

Sometimes the state of a widget will change in a way that requires the panel to be laid out again, usually
because the size of the widget has changed. This layout action is called validation, and is initiated by
calling revalidate() on the panel or any widget in it. This call will also cause the panel to be repainted
after validation.

Revalidation can be an expensive operation: the sizes and positions of all the widgets on the panel must
be calculated, and the entire panel must be repainted. Therefore we do not want to revalidate unless we

need to. That is why revalidation is distinct from repainting.

Here is an example that shows revalidation:

TLT-0664-AN-MICROEJ-MWTTutorial-B 19

MWT Tutorial

public clas=s ExS {

public =static void main{String[] args) {
MicroUI.errorLog(true);
MWT .RenderingContext.add (new TutorialTheme ()) ;
Desktop desktop = new Desktopl():
Panel panel = new Panel ()
final ToggleButton button = new ToggleButton ("Press me™);
button.setListener (new Listener() f{
public void performAction(int wvalue) {
boolean isCn = (value==07false:true);
if (i=Cm) {
button.=setText ("Press me again to turn off");
} else {
button.setText ("Press me") ;

System.out.println ("Button i=s "™ + (isOn?"on™:"off")):

public void performhction() {}
public void performAction(int walue, Object object) {}
Py:
panel.=setWidget (button) ;
panel. show (desktop) ;
desktop.show() ;

Figure 6.4. Example 5 source code

We have added to our label widget a method that allows us to change the text of the label, and because
ToggleButton inherits from Label we can use it for those, too. In this example we change the text of
the button when the button is pressed. You will recall that the preferred size of the button is calculated
from the text it must display.

Setting the text of the button is clearly a change that affects the size of the widget, so this requires
revalidation rather than repainting. Here is the method we have added to Label:

public void =setText (String text) {
this.text = text;
revalidate (),

Figure 6.5. Label enhancement

The key line here is the one highlighted. A call to revalidate() schedules an asynchronous revalidation
of the whole panel of which the widget is part. The revalidation request is added to an event queue and
when executed will result in the validation process described in the next section.

Eagle-eyed readers may have noticed that we have added a DesktopRenderer to the theme in this ex-
ample. Any Renderable object (which includes desktop, panel, and all widgets including composites)
can have an associated renderer. In this example, when the button changes its size we need to ensure that
the background is repainted to avoid leaving a mess. We can do this by including a simple renderer for
the desktop that just fills the whole desktop area. Desktop and panel renderers extend the MWT class
Renderer, rather than widgetRenderer.

6.3 Packing

A panel has two important attributes: its size, and a flag that indicates whether it should be packed. In
the examples so far we have not explicitly set either of these attributes. When a panel is constructed
using its no-argument constructor, as we have done, its size is 0,0 and its packed flag is true.

The packed flag is used when the panel is validated (laid out). If the flag is true then after the panel has
laid out its contents it is resized so that just big enough to hold its content. So although we haven't been
able to see it, in all the examples so far the panel has been resized to fit its contents.

TLT-0664-AN-MICROEJ-MWTTutorial-B 20

MWT Tutorial

There is another panel constructor (Panel(int x, int y, int width, int height)) that allows the panel's size
and position on the desktop to be specified. This constructor has the side-effect of setting the packed
flag to false. So if you use this constructor the panel will not be resized when it is validated.

There is a short-cut if you want the panel to occupy the whole of the desktop:

panel.show(desktop, true);

With the second parameter set to true this will cause the size of the panel to be set to the size of the
desktop and the packed flag set to false, as well as causing the panel to be shown on the desktop.

6.4 The validation process

As a widget designer it is important to understand how the process of validation works because more
complex widgets will need to participate in it.

A call to revalidate() schedules an asynchronous revalidation of the whole panel. When the asynchronous
layout is performed the validate() method of the panel is called. This:

+ calls the validate(int, int) method of its child widget, passing in the available space,

+ asks the child for its preferred size (which the child will have computed during its execution of
validate(int, int)),

* sets the bounds of the child widget to the child's preferred size, taking into account the child's margin
and its own padding,

« if it is packed, sets its own bounds to suit those of its child widget,

+ forces a repaint of the whole panel.

The arguments passed to the validate call at step 1, called the widthHint and the heightHint respec-
tively, depend on whether the panel has a defined size. If it has no defined size it will send O for both

arguments. It has a defined size if:

» The panel's size was set on construction or subsequently and has not subsequently been set to be
packed (using setPacked(true)), or

* The panel is implicitly set to the desktop size by using show(desktop, true).

The validate(int, int) method of a widget must compute and store its preferred size. The default im-
plementation in the Widget class determines the preferred size by calling its renderer's getPreferred-
ContentWidth and getPreferredContentHeight methods, which we have seen in earlier examples, and
adding on twice the defined padding. If the hint is O the computed size is stored, otherwise the stored
value is the maximum of the computed size and the hint: the hints constrain the preferred size.

6.5 Summary, and impact on renderers

To summarize:

« If an attribute of a widget changes in a way that will not affect its size call repaint () on the widget.
Only the area occupied by the widget will be repainted.

+ If an attribute of a widget changes in a way that will affect its size call revalidate() on the widget
or any object in the widget's panel hierarchy.

There are two important implications of this:

TLT-0664-AN-MICROEJ-MWTTutorial-B 21

MWT Tutorial

* When a renderer is computing the preferred size of a widget in its getPreferredContentwidth and
getPreferredContentHeight methods it can only use attributes of the widget that if changed would
cause revalidation.

* We said earlier that it is normally the widget class that takes responsibility for deciding when redisplay
is necessary and, if it is, deciding whether to call repaint() or revalidate(). But widgets do not
know how they are rendered — that is the responsibility of renderers. - so how can they tell which
attributes are going to be used to determine the preferred size of the widget?

The usual resolution of this apparent conundrum is for the widget designer simply to take an informed
view about which of the widget's attributes are allowed to affect the preferred size, and hence will cause
revalidation if changed, and which are not, and hence will simply repaint if changed. These decisions
are documented in the API of the widget class and look-and-feel designers must respect them when
designing renderers.

If for some reason the widget designer felt it was essential to have more flexibility then a protocol can
be established between the widget and its renderers where the widget will ask the renderer to make the
“repaint or revalidate?” decision each time an attribute changes.

6.6 Synchronizing display updates

This section includes some advanced material you may wish to skip on first reading.

As we have mentioned before, calls to repaint() and revalidate() are not processed synchronously.
Instead they cause events to be added to the MicroUI event queue. This is the same queue that is used
for input events, such as pointer button presses. There is a single thread that processes the event queue,
so events are processed strictly sequentially.

MicroUT performs some event merging to optimize system execution. For example, consecutive repaint
events for the same object are merged. It follows, therefore, that if several widgets are being modified
at the same time, causing multiple repaints and/or revalidates, there can be a performance advantage in
ensuring that none of the resulting events are processed until all the events have been generated.

If the modifications are being made as a result of a call to a handleEvent method then the modifica-
tions are being made by the event thread, so none of the resulting events can be processed until the
handleEvent method returns, which is exactly what we want. But we need to be more careful if the
modifications are being made by some other thread, because then the event thread might start processing
the resulting events before all the updates have been made.

This is not just a performance issue. Sometimes correct application behavior requires that we ensure
that a set of updates to widgets are completed as a unit before any re-rendering takes place; animations
are a good example.

MicroUI provides a facility to run any code you want as an event on the event thread. By using this
feature you can ensure that the code will complete before any of the resulting events are processed. This
feature is accessed via the Display.callSerially(Runnable) method. The code you need will look
something like this:

desktop.getDisplay().callSerially(new Runnable() {
public void run() {
// your code here

}
1

Bear in mind that you only need to use callserially when:
* You are making several updates to widgets that need to be done as a unit, and

» The updates are not being done by the event thread.

TLT-0664-AN-MICROEJ-MWTTutorial-B 22

MWT Tutorial

7 Composites

A panel can hold only one widget but typically we want to include several widgets on the panel, which
means using a composite. A composite is a widget that holds several other child widgets, and has built-
in rules for laying them out. MWT provides the abstract class Composite that can hold multiple children
but has no layout rules. A composite class has two responsibilities:

* It must implement the validate(int widthHint, int heightHint) method to encode its layout
rules. As we saw in the previous section this method is called by the panel when it needs to be validated
(laid out).

+ Tt must ensure that focus navigation between its children works correctly. This may mean overriding
the getNext(int from, int direction) method.

The validate method of a composite must always do the following:

» Call validate on each child, with the appropriate arguments,

+ Call setBounds on each child, to set its size and position it within the composite,

» Call setPreferredSize to store the preferred size of the composite.

The preferred size of a composite should always be large enough to allow all its children to be seen.

Composites are themselves widgets, so it is possible to build more complex user interfaces by putting
composites inside other composites.

When a composite is painted all its children are also painted.

7.1 A simple composite

In this section we will create a simple composite class, called HorizontalStack, that lays out its children
in a row, giving each component as much space as it needs. Ex6 shows an example with five buttons:

public class Ex6 {

public static void main(String[] args) {
MicroUI.errorLog(true);
MWT .RenderingContext.add(new TutorialTheme());
Desktop desktop = new Desktop();
Panel panel = new Panel();
Composite composite = new HorizontalStack();
for (int i = 0; i < 5; i++) {
final int buttonNumber = 1i;
Button button = new Button("Button " + buttonNumber);
button.setListener(new Listener() {
public void performAction() {
System.out.println("Button " + buttonNumber + " pressed");

public void performAction(int value) {}
public void performAction(int value, Object object) {}

1

composite.add(button);

panel.setWidget (composite);
panel.show(desktop);
desktop.show();

3
}

The HorizontalStack is constructed and in the loop each button is added to it. The panel's widget is
now the composite. The HorizontalStack class contains just one method: its implementation of validate:

TLT-0664-AN-MICROEJ-MWTTutorial-B 23

MWT Tutorial

public class HorizontalStack extends Composite {

public void wvalidate (int widthHint, int heightHint) {

Widget[] widgets = getWidgets():

int totalWidth = 0;

int maxHeight = 0;

for (imt i = 0; i < widgets.length; i++) {
Widget widget = widgets[i]:
widget.validate (0, heightHint}):;
widget.setBounds (totalWidth, 0, widget.getPreferredWidth (), widget.getPreferredHeight()):
totalWidth += widget.getPreferredWidth():
maxHeight = Math.max (maxHeight, widget.getPreferredHeight()):

setPreferredSize (totalWidth, maxHeight):

Figure 7.1. HorizontalComposite validate method

The three highlighted lines fulfill the three requirements of a validate method, as given earlier. The first
asks the child to validate, with no constraint on the width and the supplied constraint on the height. The
second line sets the bounds of the child so that its top left corner is in the correct place and its size is its
preferred size. The third line sets the preferred size of the composite to the computed width and height.

If you run Ex6 you should see something like this:

- [—

Buttond Button1 ButtonZ Button3 Buttond

Figure 7.2. Example 6 executed on simulator

It doesn't look very nice because all the buttons are touching each other — we will see how to improve
this in the next example.

If you have configured a joystick or cursor keys so that they generate Command . LEFT and Command . RIGHT
you will be able to use those to move the input focus from button to button. The default implementation
of getNext, which simply selects the next or previous child in the composite's list, works for our simple
composite; for more complex composites it may be necessary to override and implement it.

7.2 Bounds, Margins and Padding

You will notice that the buttons displayed in example Ex6 are tightly packed against each other. We
would like to leave some space between them. To understand how to do that we need to explore the
concept of margin.

The margin is the amount of space, in pixels, that should be left clear around the widget. The button
widget's parent (the HorizontalStack in this case) should ask the widget what margin it requires when
allocating space to it.

TLT-0664-AN-MICROEJ-MWTTutorial-B 24

MWT Tutorial

Margin
@ Reserved area bounds
[} Content bounds
: et Widget bounds
Padding

Figure 7.3. WidgetRenderer bounds

Composites should always always attempt to reserve an area for the widget that is at least as large as
the widget's preferred size (which is the preferred content size computed by the widget's renderer plus
twice the padding size as returned by getPadding()) plus twice the margin size. Note that the required
margin and padding are defined by the widget's renderer and not by the widget itself.

The bounds of a widget define its position (relative to its parent) and its size. These bounds are set as
part of the process of laying out a set of widgets on a panel, as we have already seen. When the render
method is called on a renderer the origin of the supplied GraphicsContext is set to the top left of the
widget's bounds. The renderer can only paint the area defined by the bounds — painting outside that area
will be clipped.

From a composite's point of view, its “content” is made up of its children, where each child is surrounded
by a margin and any padding defined for the composite itself. It follows, then, that we could obtain space

between the buttons in the previous example either by defining a margin for the button or by creating a
renderer for the composite and having it specify some padding, or by doing both.

7.3 Implementing margins and padding
In example Ex7 we will modify the HorizontalStack so that it respects any settings of margins and
padding. We will specify a margin for buttons, and we will create a renderer for the composite that
specifies padding. First we modify the ButtonRenderer to include a new method:
public class ButtonRenderer extends WidgetRenderer {

public int getMargin() {

return 3;

}

.

This specifies a margin of 3 pixels around each button.
Next we create a HorizontalStackRenderer that includes the method:

public class HorizontalStackRenderer extends Renderer {

public int getPadding() {
return 6;

}

.

This specifies a padding of 6 pixels between children in the composite.

TLT-0664-AN-MICROEJ-MWTTutorial-B 25

MWT Tutorial

Finally, we must enhance the validate method of HorizontalStackRenderer to take these settings into
account. Unfortunately, although this does not affect the structure of the code it does make it look much
more complicated:

public class HorizontalStack extends Composite [

public woid wvalidate{int widthHint, int heightHint) {
Widget [] widgets = getWidgets():
int totalWidth = 07
int maxHeight = 0O;
Renderer myRenderer = getRenderer():
int myPadding = myRenderer==null ? 0 : myRenderer.getPadding():
heightHint -= myPadding * 2;
for (int i = 0; i < widgets.length; i++) {
Widget widget = widgets[i]:
Renderer widgetRenderer = widget.getRenderer():
int widgetMargin = widgetRenderer=null ? 0 : widgetRenderer.getMargin();
widget.validate {0, heightHint < (widgetMargin * 2) 2 0 : heightHint - (widgetMargin * 2)):
widget .setBounds {totalWidth + myPadding + widgetMargin, myPadding + widgetMargin
widget .getPreferredWidth(), widget.getPreferredHeight()):
totalWidth += widget.getPreferredWidth{) + {(widgetMargin * 2} + myPadding;
maxHeight = Math.max({maxHeight, widget.getPreferredHeight() + (widgetMargin * 2} + (myPadding * 2)):
}

getPreferredSize (totalWidth + myPadding, maxHeight):

Figure 7.4. Margin and padding management on composite

The first highlighted line obtains the padding specified for the composite. The second line obtains the
margin specified for the child widget. Notice how the height hint passed to the child is reduced by both
the composite's padding and the widgets margin to reflect the actual height available to the child.

We have added code to the HorizontalStackRenderer to make the bounds of each child obvious. The
output of Ex7 looks like this:

T e ek

Button 0 Button 4 Button 2 Button 4

Figure 7.5. Example 7 executed on simulator

The background of the panel is blue and the background of each button's bounding box is red. The red
rectangle is the margin area around each child and the blue space is the padding added by the composite.

In practice, having to create a renderer for a composite just to define padding for it can be tedious, so
it is usually better if padding for the composite can be set on the composite itself, with this value being
used in the absence of a renderer. The composite could define its own getPadding method, and the
highlighted line in the HorizontalStack code above would become:

iﬁf myPadding = myRenderer==null ? getPadding() : myRenderer.getPadding();

TLT-0664-AN-MICROEJ-MWTTutorial-B 26

MWT Tutorial

The padding could be held in a field in the composite and set from the application.

7.4 Nested composites

As we have mentioned already, the child of a composite can be another composite, allowing the applica-
tion designer to assemble widgets into complex panel structures. As a simple example we have created a
variant of HorizontalStack called verticalStack that arranges its children one above the other rather
than side by side. We can use a combination of a HorizontalStack and a VerticalStack to create a
grid (albeit one with imperfect alignment), as in Ex8:

public class Ex8 {
public static void main(String[] args) {

Composite rows = new VerticalStack();
for (int rowNumber = 0; rowNumber < 3; rowNumber++) {
Composite row = new HorizontalStack();
for (int colNumber = 0; colNumber < 5; colNumber++) {
final int buttonNumber = rowNumber*5 + colNumber;
Button button = new Button("Button " + buttonNumber);
button.setListener(new Listener() {
public void performAction() {
System.out.println("Button " + buttonNumber + " pressed");

public void performAction(int value) {}
public void performAction(int value, Object object) {}

1)
row.add(button);
rows.add(row);

panel.setWidget(rows);

o
}

This example arranges 15 buttons in three rows of five. The output looks like this:

e e e — ——— T

Eutton O @ BUtton-1 @ Button 2 @ Button.3 | BUtton 4
EuttonS g BUtCon & W Buttony @ EUTTons | BUCton3
Eutton 10 @ Button 11 | Button 12 @ Button 13 @ EUTTON 14

Figure 7.6. Example 8 executed on simulator

7.5 What if the children won't fit?

Our implementations of HorizontalStack called verticalStack do not deal with the possibility that
the stack of children will not fit in a single row or column across the panel. Try modifying Ex7 to make
the button labels longer. The right-hand buttons are no longer visible. Possible strategies for coping
with this are:

TLT-0664-AN-MICROEJ-MWTTutorial-B 27

MWT Tutorial

* Do nothing, as we have done in our examples. This strategy takes the view that the child widgets
will have set the smallest preferred sizes they can and so if they don't fit the only solution is for the
application designer to change their panel design.

» Enhance the composite so that it reduces the space made available to each child. A typical approach
is to iterate over the children calling validate (0, 0) on each and computing the preferred total size,
then calculating a factor by which each child must be reduced in size, and then iterating over the
children again calling validate and setBounds with the computed size available to the child. Note
that just calling setBounds in this second pass is not acceptable because the child (which might be a
composite) must be given the opportunity to determine a new layout in the reduced area.

» Develop a scrolling composite that lets the user scroll or pan across the composite to see the children
that would otherwise be hidden.

TLT-0664-AN-MICROEJ-MWTTutorial-B 28

MWT Tutorial

8 Widget control

8.1 Visibility

We can control whether or not a widget is visible. Widgets default to visible when constructed but can
set invisible by calling setvisible, as in this example:

public class Ex5 {
public static wvoid main(String[] args) {

Composite composite = new HorizontalStack();

final Label lakel = new Label ("Here are the details");
lakbel ..s=etVisibkle (false) ;

composite.add (label) ;

ToggleButton button = new ToggleButton ("Show/Hides Details");

button.s=stListener (new Listener () {
public void performBiction(int walue) |
System.ocut.println("Button is " + (value==02"off":"on"));

lakel .setVisible (value==0?fals=s:trus) ;
h
public wvoid performiiction() {}
public void performifiction(int walue, Cbject cbject) {}
I
composite.add (button) ;
panel.setWidget (composite) ;

Figure 8.1. Example 9 source code

The label is initially invisible but becomes visible when the button is pressed. A call to setvisible
automatically schedules revalidation of the panel, as do several other Widget methods such as setSize
and setLocation.

8.2 Disabled widgets

Widgets can be disabled. A disabled widget is still visible but it cannot gain focus and cannot receive
events. A widget is enabled on construction and can be disabled (or re-enabled) by calling its setEnabled
method.

In the example below there are two buttons on the panel. The right button is used to enable and disable
the left button. Here is the main class of the example:

TLT-0664-AN-MICROEJ-MWTTutorial-B 29

MWT Tutorial

public class Ex9a {
public static void main (String[] args) {

Composite composite = new HorizontalStack();
final ToggleButton button = new ToggleButton ("Press Me");
button.setlistener (new Listener() {
public woid performfiction(int walue) |
System.out.println("Button is " + (value==02"off":"on"});
¥
public void performfiction() {}
public void performiiction(int walue, Cbject object) {}
bi:
ToggleButton enablingButton = new ToggleButton ("Enable/Disable");
enablingButton.setOn (trus);
enablingButton.setListener (new Listensr () {
public woid performliction(int walue) |
button.setEnabled (value==07false:trus);
h
public wvoid performfiction() {}
public void performfiction(int walue, Cbject object) {}
i
composite.add (button) ;
composite.add (enablingButton) ;
panel.setWidget (composite) ;

Figure 8.2. Example 9a source code

The highlighted line enables or disables the left button. The call to setEnabled automatically causes
the widget to be repainted.

It is normal to render a disabled widget in a different way, so that the user knows it is disabled. We
have changed the render method of the toggle button renderer to use different background colors when
the button is disabled:

public void render (GraphicsContext g, Renderable renderabls) [
ToggleButton button = (ToggleButton) renderakle;
g.setColor (button.ison() ?
button.isEnabkled() ?Ceolors.RED:Colors. MARQON

button.isEnakled() ?Colors .WHITE:Colors.GRAY) ;

g-fillRect (0, 0, button.getWidth(), button.getHeight());

g.setColor (Colors.BLACK) ;

g.drawString (button.getText (), bkutton.getWidth() / 2, button.getHeight ()
GraphicsContext . HCENTER GraphicsContext.VCENTER) ;

1f (kbutton.hasFocus()) {

g.setStrokeStyle (GraphicsContext.DOTTED) ;

g.drawRect (1, 1, button.getWidth()-3, button.getHeight()-3);

!

2

r

Figure 8.3. ToggleButtonRenderer extended

Some widgets should always be disabled. For example, the Label widget we created earlier should
always be disabled because it cannot accept user input. In the next example we have extracted an abstract
superclass from Label, which both Label and ToggleButton extend, so that the Label subclass can
ensure labels are disabled on construction.

TLT-0664-AN-MICROEJ-MWTTutorial-B 30

MWT Tutorial

9 Look and Feel

The look and feel of an MWT user interface is defined by a theme — realized as an instance of a subclass
of the MWT class Theme. Each theme holds a coherent set of renderers and a Look, which defines
visual properties such as colors. By “coherent” we mean that the renderers share some common style
elements — maybe they all use rounded rectangles, for example. We have already created a theme, the
TutorialTheme class we have used in the examples so far. But that class has not so far been associated
with a Look. In the next example we create a look (the class Tutoriallook that implements the Look
interface), and refer to it in the renderers to eliminate the hard-coded references to colors and fonts.

9.1 Look

A look comprises:
 An array of fonts, and

» A map that relates constants identifying logical colors and fonts to actual colors and indexes into the
font array.

The two important methods of a look are:
» DisplayFont[] getFonts(), which returns an array of the fonts configured for the look, and
* int getProperty(int), which returns the value associated with the constant that is the int argument.

Renderers obtain a reference to the current look using getLook () and retrieve information from the look
using those two methods.

A standard set of property constants is defined in the Look interface, but provided the theme's renderers
and the theme's look use a consistent set of constants the designers can define whatever constants he
or she wants. However, there are some implications with using non-standard constants, as discussed
below. The property constants in Look assume that the information required by a renderer falls into one
of these categories:

* A color to be used for the background,

¢ A color to be used for a border,

* A color to be used for the foreground,

* A style of font.

For each category Look defines a separate property constant for each of these possible states or aspects
of the widget of widget component:

e Default,
» Content,
* Focused,
» Disabled,
* Selection.

The meanings of these states are not defined by MWT, although their intent can be guessed. There are
four categories and five states, making a total of 20 property constants. Even if the Look is using only

TLT-0664-AN-MICROEJ-MWTTutorial-B 31

MWT Tutorial

the standard constants it doesn't have to implement them all, although again there are some implications
of not doing so, as we will discuss later.

Here is our implementation of a look for the tutorial (in the com.is2t.mwt.tutorial.ex10 package):

public class TutoriallLook implements Look {
private static final DisplayFont[] fonts;

static {
fonts = new DisplayFont[]{
DisplayFont.getDefaultFont()};

public DisplayFont[] getFonts() {
return fonts;

}

public int getProperty(int resource) {
switch(resource) {
// Borders use this for all borders
case Look.GET_BORDER_COLOR_DEFAULT:
return Colors.BLACK;
// Backgrounds use this for desktop background
case Look.GET_BACKGROUND_COLOR_DEFAULT:
return Colors.GRAY;
// Background of widgets that are enabled and not selected
case Look.GET_BACKGROUND_COLOR_CONTENT:
return Colors.WHITE;
// Background of widgets that are disabled and not selected
case Look.GET_BACKGROUND_COLOR_DISABLED:
return OxAAAAAA; // light gray
// Background of widgets that are disabled and selected
case Look.GET_BACKGROUND_COLOR_FOCUSED:
return 0xAAGOOO; // dull red
// Background of widgets that are enabled and selected
case Look.GET_BACKGROUND_COLOR_SELECTION:
return Colors.RED;
// Foregrounds use this for all foreground
case Look.GET_FOREGROUND_COLOR_DEFAULT:
return Colors.BLACK;
// Font indexes
case Look.GET_FONT_INDEX_ DEFAULT:
return 0;
default:
throw new IllegalArgumentException();
}

b
3

The first thing to notice is that we have not defined all 20 properties, but just the subset we need for our
simple set of widgets. Notice also that we have defined using comments what we expect each property

to be used for. Following this guide, renderer developers can select the correct property.

Let us take a look at how the look is used on one of our renderers:

TLT-0664-AN-MICROEJ-MWTTutorial-B 32

MWT Tutorial

public class LabelRenderer extends WidgetRenderer {

public Class getManagedType() {
return Label.class;

}

public int getPreferredContentWidth(wWidget widget) {
TextHolder label = (TextHolder) widget;

String text = label.getText();

return getNormalFont().stringwWidth(text);

}

public int getPreferredContentHeight(Widget widget) {
return getNormalFont().getHeight();
}

public void render(GraphicsContext g, Renderable renderable) {

TextHolder label = (TextHolder)renderable;
.setColor(getLook().getProperty(Look.GET_BACKGROUND_COLOR_CONTENT));
.fillRect (0, 0, label.getwidth(), label.getHeight());
.setColor(getLook().getProperty(Look.GET_FOREGROUND_COLOR_DEFAULT));
.setFont(getNormalFont());

.drawString(label.getText(), label.getwidth() / 2, label.getHeight() / 2,

GraphicsContext.HCENTER | GraphicsContext.VCENTER);

QO QQ®

private DisplayFont getNormalFont() {
return getLook().getFonts()[getLook().getProperty(
Look.GET_FONT_INDEX_ DEFAULT)];
}

}

(We have omitted the getMargin and getPadding methods to save space.) As you can see, all the hard-
coded references to colors and fonts have been replaced with calls to the look. Although this makes it
much easier quickly to change the look-and-feel it does tend to make the renderer code less readable,
so it is best to create helper methods for the more long-winded look-ups, as we have done with getNor -
malFont. In fact, when creating a theme it is common to create a base class for all the renderers in the
theme that can hold these helper methods, and provide default implementations of the getMargin and
getPadding methods, which will typically return the same values for every renderer in the theme. You
will see a base class of this kind in later examples.

Try running Ex10 to see the standard look-and-feel in action.

9.2 Changing looks and themes at run-time

A theme has a default Look, returned by the getDefaultLook method, and that look will be used by all
renders in the theme unless it is explicitly changed. The look of a theme can be changed by calling the
theme's setLook method, passing in the the look to be used. Obviously, care must be taken to ensure
that the new look provides all the properties required by the renderers in the theme. A typical call might
be like this:

myTheme.setLook(new OtherLook());

A new look for all the themes currently registered with the rendering context can be requested by calling
the rendering context's setLook method, passing in the look to be used. The new look will only be set
on themes that reply true to isStandard. A theme should reply true to isStandard if the renderers that
make it up request only those look properties defined by the constants in the Look interface. The idea is
to provide a simple way of changing the look for the entire GUI without impacting themes that rely on
special look properties. It follows, then, that when making a call like:

MWT .RenderingContext.setLook(new PlainLook());

The supplied look must support all the properties defined in Look because the caller is guaranteeing that
the look will work with any theme that guarantees its renderers use only the standard properties.

TLT-0664-AN-MICROEJ-MWTTutorial-B 33

MWT Tutorial

We have already seen how to add a theme to the rendering context. All the examples include a statement
such as this:

MWT.RenderingContext.add(new TutorialTheme());

The theme as added at the end of the list of registered themes. Additional themes can be added at any
time. When a new theme is added its renderers immediately become available for use, but if two or more
renderers are equally suitable for rendering a widget the renderer that is nearest the front of the list is
used. So if you want to replace a theme by a different but equivalent theme then first add the new theme
and then remove the previous theme using:

MWT.RenderingContext.remove(myTheme);

TLT-0664-AN-MICROEJ-MWTTutorial-B 34

MWT Tutorial

10 Widgets Library

Before we create any more widgets, let us take stock of what we have done so far, and consider what
we mean by a “widget library”. Consider this UML class diagram:

whMW Ty
winterfaces
- V| Look I ~ .
P - whWTw s -
Theme
T
TR .
/ \\ 1
/
MW | ToggleButtonRendsrer |%| Tutoria|Theme| | AtternativeTheme «MNT»
WidgetRenderer| < / WidgetRenderar

M e
LabelRendererf=q AN S~
<}—| N -

«MWTw

Widget

Figure 10.1. Widgets library UML class diagram
The classes shaded pink are the widgets we have built so far in this tutorial. The classes shaded yellow
are the look-and-feel we have created. The classes shaded orange are an alternative look-and-feel that
we might create but we haven't yet. Together with our two composite classes (not shown on the diagram)
these classes constitute the beginnings of a widget library.
So Widgets library comprises:
* A set of widget classes (including composites),

* One or more themes, with their renderers and default looks,

+ Optionally, other looks that could be used.

TLT-0664-AN-MICROEJ-MWTTutorial-B 35

MWT Tutorial

11 Widget and Renderer Collaboration

We will now create a more complex widget it and use it to explain some other features of MWT. Our
new widget will have as its model a bounded integer. We will call this widget a scale. Renderers will
be able to render this widget to show and adjust its value.

11.1 Renderer contracts

Most of the design of the Scale class is straightforward, but there is one tricky issue. With the buttons
we created in earlier examples handling pointer events was simple: the widget only receives the event
if the pointer button is pressed when the pointer is over the widget, and any such press is considered to
have “pressed” the button widget. The there are many different ways in which a scale could be rendered,
for example:

» As aslider,
* As aread-only text box with up and down buttons,
» As arotary control (a knob).

Each of these would require very different handling of pointer events. So for the scale widget we de-
cide to delegate responsibility for handling pointer events to the renderer, by calling a special method
of the renderer. Since there can be many different renderers for Scale we define an interface, called
ScaleRendererContract, that specifies this special method, and all renderers than wish to render scales
must implement it.

A related problem is that the scale's renderer may need to keep track of what's happening with the user
interaction. For example, the renderer may wish to render the scale differently if a pointer drag is in
progress. Renderers cannot store widget-related state because they are used to render many widgets. So
we define a Scale attribute called renderingState and provide accessors to it that the renderer can use.
The scale has no idea what its renderer is using this for, if indeed it is using it. This is slightly risky
in that if the theme is changed at run-time the new renderer may misinterpret the state stored by the
previous renderer, but the effect is unlikely to be serious.

public boclean handleEwvent (int ewvent)
int type = Event.getType (event) ;
if (type == Ewvent.POINTER)
ScaleRendererContract renderer =
ScaleRendererContract) getRenderer(]);
int action = Pointer.getAction (ewvent) ;

Pointer pointer =
(Pointer)Ewvent.getGenerator (event) ;

int x pointer.getX () ;

int ¥y pointer.get¥ () ;

return renderer.processPointerEvent (this, action,
®x - gethbsoluteX(), y - gethAbsolute¥());

}

return super.handleEvent (event) ;

Figure 11.1. Scale widget source code

The highlighted lines show the use of the ScaleRenderercontract. You can also see the definition of
the renderingState attribute.

For this example we will create a renderer that renders the scale using a slider control, called Scaleren-
derer. Most of the code in that class is concerned with the intricacies of drawing the slider and figuring
out where the “thumb” — the knob on the slider that the user drags — should be. But the method that
handles the pointer events is worth reviewing;:

TLT-0664-AN-MICROEJ-MWTTutorial-B 36

MWT Tutorial

public boolean processPointerEvent (3cale scale, int action, int x,int y) {
switch (action) {
case Pointer.PRE3SED:
if (thumbContains (scale, x, v)) |
scale.setRenderinqStatetSTATE_ADJUSTINS);
scale.repaint();
1
return true;
case Pointer.RELERSED:
scale.setRenderingState (STATE IDLE) ;
scale.repaint () ; B
return true;
case Pointer.DRAGGED:
if (scale.getRendering3tate () == 3TATE ADJUSTING) {
scale.setValue (computeValue (scals, x, v));
1
return true;
¥

return false;

Figure 11.2. ScaleRenderer source code

You can see that the renderer is using two state constants to implement a trivial state machine, with the
current state held in the widget's renderingState attribute. When the renderer decides that the widget's
value should change it calls back to the widget, as in the highlighted line. The setvalue method causes
a repaint, which is why the renderer does not request one in this case. Note that this method returns true
or false to indicate whether the event has been consumed; the widget propagates that back it its caller.

The main class Ex11 demonstrates the use of Scale and ScaleRenderer by displaying two sliders next
to each other. The right-hand slider is disabled. The output looks like this:

Figure 11.3. Example 11 executed on simulator

11.2 Renderer contracts

All the renderers we have created so far in this tutorial always paint the background color over the entire
bounding rectangle of the widget. In some cases that is correct — for example, that is probably what we
want for buttons. But for the slider we just created it would look better if the renderer painted only the
center strip and the thumb, leaving the rest of the area to match the background of the parent. We could
try adjusting the TutorialLook properties to make the backgrounds match, but that will not solve the
general problem — imagine if the desktop background was an image, for example.

TLT-0664-AN-MICROEJ-MWTTutorial-B 37

MWT Tutorial

In MWT widgets can be transparent, meaning their renderers should not paint the background, just those
elements they need to paint. So that the background is shown correctly (for example, when the slider
thumb is moved the area previously occupied by it must be repainted) MWT will ask the widget's parent
to repaint itself, with the painting clipped to the area of the widget, before calling the renderer's render
method. If the parent is itself transparent the repaint request is propagated up the panel hierarchy until
a non-transparent element is found.

A widget is deemed to be transparent if it replies true to isTransparent(). Obviously any widget
class can override this method to implement any logic it likes, but the Widget class provides a simple
default. By default, isTransparent will reply true if no renderer can be found for the widget and false
otherwise. This means that by default widgets that are being rendered on the display are non-transparent.

All widget renderers must call isTransparent() on the widget being rendered to determine whether or
not to paint the whole background area.

There are various strategies the widget designer can adopt with regard to transparency:
* Opverride isTransparent to return true in those widget classes that should be treated as transparent,

* Implement a flag in the widget class that can be set as required in each instance, and use the state of
that flag to decide how to respond to isTransparent,

* When isTransparent is called, delegate the decision to the renderer,

* A combination of options 2 and 3: provide a flag but also take into account the preference of the
renderer.

Option 1 is simple but not very flexible. Option 2 is flexible but requires extra memory in every widget.
Option 3 is good if it is unlikely that different instances of the widget that are rendered in the same way
would need different transparency settings. Option 4 is the most flexible but also the most complex.

In Ex12 we will show examples of options 2 and 3. We decide that all widgets that derive from Tex-
tHolder (i.e. labels and buttons) will have a transparency flag, while the Scale class will defer to the
renderer. The changes required to the TextHolder class (compared to its previous appearance in Ex10)
are:

TLT-0664-AN-MICROEJ-MWTTutorial-B 38

MWT Tutorial

public abstract class TextHolder extends Widget {

protected String text;
protected booclean transparent;

public TextHolder (String text) |

super () ;
this.text = text;
transparent = false;
}
public String getText ()} {
return text;
}

public void setText (String text) {
this.text = text;
revalidate();

}

public booclean isTransparent() {

return getRenderer () == null || transparent;

}

public void setTransparent (boolean transparent) |
this.transparent = transparent;

}

Figure 11.4. TextHolder source code

Note that the flag is initialized to false, so TextHolder objects default to non-transparent. Note also
that the widget is always transparent if it has no renderer; this is the MWT standard.

The changes required to the Label class (compared to its previous appearance in Ex10) are:

public class Label extends TextHolder |

public Label (String text) [
super (text) ;
setEnabled (false) ;
setTransparent (true) ;

Figure 11.5. Transparent Label source code

We want labels to be transparent by default, so the Label constructor sets the transparency attribute.
The LabelRenderer must now respect that setting:

public void render (GraphicsContext g, Renderable renderable)
TextHolder label = (TextHolder)renderable;
if (!label.isTransparent()) {
g.setColor (getloock() .getProperty (Look.GET BACEGROUND COLOR NORMRL)) ;
g.fillRect (0, 0, label.getWidth(), label.getHeight());

g.setColor (getLook() .getProperty (Look.GET_FOREGROUND COLOR_NORMAL)) ;

g.setFont (getNormalFont());

g.drawString(label.getText (), label.getWidth() / 2, label.getHesight() / 2,
GraphicsContext .HCENTER GraphicsContext.VCENTER) ;

Figure 11.6. Renderer handling tansparency

TLT-0664-AN-MICROEJ-MWTTutorial-B 39

MWT Tutorial

The Scale implementation of isTransparent will ask the renderer. So we add another method to the
ScaleRendererContract and call it in isTransparent():

public class Scale extends Widget {
bﬁblic boolean isTransparent() {

ScaleRendererContract renderer = (ScaleRendererContract) getRenderer();
return renderer == null || renderer.isTransparentPreferred();

3
,

The renderer can now state its preference in the isTransparentPreferred method. The ScaleRenderer
prefers to treat the widget as transparent:

public class ScaleRenderer extends WidgetRenderer implements ScaleRendererContract {

public boolean isTransparentPreferred() {
return true;

3
,

The reader will notice that we have included in the render method of ScaleRenderer the same condi-
tional logic we put in LabelRenderer, even though the renderer expects the widget to be transparent.
This is good practice — maybe the Scale class will change its logic one day.

The Ex12 main class illustrates the difference between the two renderers. It creates two labels and a
scale, with one of the labels transparent and the other not:

public class Ex1Z2 {

public static void main(String[] args)
MicroUI.errorLog (true);
MWT .RenderingContext.add({new TutorialThems());
Desktop desktop = new Desktop();
Panel panel = new Panel () ;
Scale scale = new Scale (0, 100);
Label labell = new Lakel ("Trans");
Lakbel lakel? = new Label ("!Trans");

lakel2.setTransparsent (false);
HorizontalStack row = nmew HorizontalStack();
row.add (lakbell) ;

row.add (labelZ) ;

VerticalStack rows = new Vertical3tack();
rows.add (row) ;

rows.add (scale) ;

panel.setWidget (rows) ;

panel.show(desktop) ;

desktop.show() ;

Figure 11.7. Example 12 source code

Labels default to transparent, so the highlighted line changes this setting.

You can see the results in the output:

TLT-0664-AN-MICROEJ-MWTTutorial-B 40

MWT Tutorial

Figure 11.8. Example 12 executed on simulator

To make things more obvious we have changed the desktop renderer to paint a fading color pattern on
its background.

11.3 Selecting renderers by style

Throughout this tutorial we have repeatedly made the point that a widget can be rendered in different
ways by different renderers, but so far we have only had one renderer capable of rendering each type of
widget. Now we will show how you can have multiple renderers.

The primary way in which MWT selects an appropriate renderer for a widget is by comparing the class
returned by the renderer's getManagedType method with the class of the widget. The best possible match
is that the two classes are the same, but if there is no exact match then MWT will select a renderer that
indicates it is capable of rendering a superclass of the widget.

If there are two renderers whose getManagedType response exactly matches the class of the widget then
MWT will select the first such renderer registered, via its theme, with the RenderingContext. How,
then, can we put two instances of Scale on a panel and have them rendered by different renderers?

We already have one renderer for Sscale widgets, the ScaleRenderer. In this example we will create
another renderer, called the HangingBoxRenderer, which is also capable of rendering Scale widgets.

One way in which we could achieve our goal of having two Scale widgets on the panel, one rendered
by the ScaleRenderer and the other by the HangingBoxRenderer, is to create a subclass of Scale that
adds no behavior and make the getManagedType method of HangingBoxRenderer return that subclass.
Then in our application we would create one instance of Scale and one instance of the subclass. MWT
would find exact matches for both classes and so select the desired renderer. Although that will work it
is very inconvenient, and MWT provides an easier and more flexible way.

The widget class implements the method getStyle() that returns the integer 0. The Renderer class
implements the method getManagedStyle() that also returns 0. These methods can be overridden by our
widget and renderer classes respectively to return non-zero values. MWT will then use these methods to
resolve situations where it finds two equally suitable renderers for a widget based on class matching. It
does this by calling the widget's computeScore(Renderer) method with each possible renderer in turn
and selecting the renderer that gives the highest score. The default implementation of computeScore in
widget simply compares the widget's getStyle value with the renderer's getManagedstyle value and
returns the number of 1-bits in the two integers that match.

Everything above applies equally to desktops and panels as it does to widgets: the same technique of
matching by style can be used with them, too.

TLT-0664-AN-MICROEJ-MWTTutorial-B 41

MWT Tutorial

Now let us look at how this feature has been used in the example (Ex13). The existing ScaleRenderer
class has been enhanced to define a style constant and override the getManagedstyle method:

public class ScaleRenderer extends WidgetRenderer implements ScaleRendererContract {
public static final int STYLE = 1,

public int getManagedStyle() {
return STYLE;
}

.

The new HangingBoxRenderer class extends ScaleRenderer and overrides getManagedStyle to return
a different value. It also overrides render to render to Scale widget differently:

public class HangingBoxRenderer extends ScaleRenderer {
public static final int STYLE = 2;

bﬁblic int getManagedStyle() {
return STYLE;

public void render(GraphicsContext g, Renderable renderable) {

o
}

We change the Scale class to add an extra argument to its constructor that allows us to specify the
required style. This style is then returned by the scale's getStyle method:

public class Scale extends Widget {
private int style;

public Scale(int lowerBound, int upperBound, int style) {
super();
this.lowerBound = lowerBound;
this.upperBound = upperBound;
this.style = style;

}

public int getStyle() {
return style;

3
,

The main class Ex13 looks like this:

TLT-0664-AN-MICROEJ-MWTTutorial-B 42

MWT Tutorial

public class Exl3 {

public =static void main (String[] args) {
MicroUI.errorLog(true);
MWT . RenderingContext.add (new TutorialTheme()) ;
Desktop desktop = new Desktop();
Panel panel = new Panel();
Scale scalel = new Scale(0, 100, SliderRenderer.STYLE) ;
scalel.setListener (new Listener () |

public woid performRAction(int walue) {
System.out.println("Value(l) is now

"

+ walue);
h
public woid performBction() {}
public woid performiiction(int walue, Object object) {!}
b
Scale scale2 = new Scale(0, 100, HangingBoxRenderer.S3STYLE) ;
scale?.setListener (new Listener () |
public woid performiiction(int walue) {

System.out.println("Valu=s(2) is now "

+ walue);
}
public woid performRAction() {}
public woid performiiction(int walue, Object object) {!}
b
HorizontalS8tack composite = new HorizontalStack() ;
composite.add(scalel) ;
composite.add(scalel) ;
panel.setWidget (composite) ;
panel.show (desktop) ;
desktop.show() ;

Figure 11.9. Example 13 source code

Notice how we are using the style constants defined in the renderer classes to select the style for each of
the scale widgets. If there were lots of renderers for scales we might want to create a separate interface
to hold these constants so that we can keep track of them in one place.

The output from running Ex13 looks like this:

Figure 11.10. Example 13 executed on simulator

TLT-0664-AN-MICROEJ-MWTTutorial-B 43

MWT Tutorial

12 Panels and Dialogs

12.1 Multiple panels

So far we have had only one panel on the desktop, but a desktop can hold many panels, of which only
one will be active. The active panel receives the input events.

To add a panel to a desktop call Panel.show(Desktop) or Panel.show(Desktop, boolean) as we have
seen in previous examples. When you call one of those methods the panel becomes the active panel. To
remove a panel from the desktop call Panel.hide(). You can use panels to tile the desktop, but more
often you use overlapping panels that effectively increase the desktop area. The desktop holds all its
panels in a stack, with the active panel at the top, and when a panel is rendered the drawing is clipped
to reflect that stacking — panels under other panels will not be seen.

A panel becomes active either as a result of calling its show method or if the pointer is clicked on it.
When a panel becomes active its becameActive() method is called. When a panel becomes inactive its
becameInactive() method is called. It is important to note that a panel is not automatically repainted
when it becomes active or inactive, so you will normally want to override those two methods to at least
force a repaint.

Example Ex14 includes two overlapping panels:

public static void main(String[] args) {

ﬁéﬁel panell = new Panel(0, 0, desktop.getwWidth()/3*2, desktop.getHeight()/3*2) {
public void becameActive() {
repaint();

public void becameInactive() {
repaint();

3
Panel panel2 = new Panel(20, 20, desktop.getWidth()/3*2, desktop.getHeight()/3*2) {
public void becameActive() {
repaint();

public void becameInactive() {
repaint();

};

béﬁell.show(desktop);
panel2.show(desktop);
desktop.show();

}

Each panel is explicitly sized to occupy two-thirds of the desktop, with panel2 offset from the top-left
by 20 pixels. Notice the overrides of becameActive and becameInactive to force repainting. Panel2
is initially the active panel because it is the last to be shown on the desktop. In this example we have
defined a panel renderer that clearly shows the active panel: the active panel has a green background
and inactive panels have a yellow background.

If you run Ex14 you will see this output:

TLT-0664-AN-MICROEJ-MWTTutorial-B 44

MWT Tutorial

Avoiding pressing the buttons on the panels, click on the background of panell (the yellow one). It
becomes active and is repainted at the front. Clicking on panel2 brings it to the front again.

Figure 12.1. Example 14 executed on simulator

12.2 Dialogs

A dialog is a panel that once active remains active, and so consumes all events, until it is explicitly
hidden (often called a modal dialog). A common use for dialogs is to create pop-ups that must be dealt

with by the user before he or she can do anything else.

Ex14 includes such a pop-up:

(1)

(2)

(3)

public static void main(String[] args) {

final Panel popUp = new Dialog();
Button panellbutton = new Button("Show pop up");
panellbutton.setlistener (new Listener() {
public void performiAction() {
popUp.show(desktop) ;
t
public void performBction(int wvalue, Object object)
public void performBAction(int wvalue) {}
I
Button panelZbutton = new Button("Panel 2");
Button popUpDismiss = new Button("OR");
popUpDismiss.sstlistener{nsw Listensr() {
public void performBction() {
popUp.hide () ;
|
public void performBction(int walue, Cbject object)
public void performAction(int value) {}
I
panell.setWidget (pansllbutton) ;
panel2.s=tWidget (pans12buttcon) ;
popUp.sstWidgst (popUpDismiss) ;
popUp.validate();
int width = popUp.getPreferredWidth () ;
int height = popUp.gstPreferredHsight () ;

popUp . setBounds ((desktop.getWidth () —-width) /2, (desktop.getHeight()-height)/2,

width, height);

{1

{1

Figure 12.2. Example 14 source code

TLT-0664-AN-MICROEJ-MWTTutorial-B 45

MWT Tutorial

The highlighted lines show (1) the dialog being created; (2) the dialog being shown when the button
on panell is pressed; (3) the dialog being hidden when the button on the dialog is pressed. The code
at the bottom is sizing and positioning the dialog so that it is just big enough to hold its contents and
pops-up in the center of the desktop.

The output below shows the dialog being displayed:

Figure 12.3. Example 14 source code

TLT-0664-AN-MICROEJ-MWTTutorial-B 46

MWT Tutorial

13 Document History

Date Revision Description

November 19th, 2013 A First public release

April 08th, 2014 B Change prerequisites to run the example 3

Headquarters

11, rue du chemin Rouge
44373 Nantes Cedex 3
FRANCE

Phone: +33 2 40 18 04 96
www.is2t.com

© 2014 IS2T All right reserved. Information, technical data and tutorials contained in this document
are IS2T S.A. Proprietary under Copyright Law. Without any written permission from IS2T S.A.,
copying or sending parts of the document or the entire document by any means to third parties is not
permitted including but not limited to electronic communication, photocopies, mechanical reproduc-
tion systems. Granted authorizations for using parts of the document or the entire document do not
mean they give public full access rights.

IceTea®, IS2T®, MicroJvm®, MicroEJ®, S3™, SNI™, SOAR®, Drag Emb'Drop™, IceOS® and
all associated logos are trademarks or registered trademarks of IS2T S.A. in France, Europe, United
States or others Countries.

Java™ is Sun Microsystems' trademark for a technology for developing application software and de-
ploying it in crossplatform, networked environments. When it is used in this documentation without
adding the ™ symbol, it includes implementations of the technology by companies other than Sun.

Java™, all Java-based marks and all related logos are trademarks or registered trademarks of Sun Mi-
crosystems Inc, in the United States and other Countries.

Other trademarks are proprietary of their authors.

TLT-0664-AN-MICROEJ-MWTTutorial-B 47

	MWT Tutorial
	Table of Contents
	1 Introduction
	1.1 What is MWT?
	1.2 About this tutorial
	1.3 Roles
	1.4 Before you start

	2 A Simple Widget
	2.1 Example 1
	2.2 Label
	2.3 LabelRenderer
	2.4 TutorialTheme

	3 Adding Behavior
	3.1 Example 2
	3.2 Button
	3.3 ButtonRenderer

	4 Commands
	4.1 Button Enhancements
	4.2 ButtonRenderer Enhancements
	4.3 Running Example 3

	5 Widgets, Renderers and the MVC pattern
	5.1 Model-View-Controller
	5.2 Widget-Renderer-Presenter
	5.3 Widget-Renderer-Model-Presenter

	6 Redisplaying a widget
	6.1 Repainting
	6.2 Revalidating
	6.3 Packing
	6.4 The validation process
	6.5 Summary, and impact on renderers
	6.6 Synchronizing display updates

	7 Composites
	7.1 A simple composite
	7.2 Bounds, Margins and Padding
	7.3 Implementing margins and padding
	7.4 Nested composites
	7.5 What if the children won't fit?

	8 Widget control
	8.1 Visibility
	8.2 Disabled widgets

	9 Look and Feel
	9.1 Look
	9.2 Changing looks and themes at run-time

	10 Widgets Library
	11 Widget and Renderer Collaboration
	11.1 Renderer contracts
	11.2 Renderer contracts
	11.3 Selecting renderers by style

	12 Panels and Dialogs
	12.1 Multiple panels
	12.2 Dialogs

	13 Document History

