o Application Note:
’52 T TLT-0651-AN-MICROEJ-Scheduler

Scheduler-Based Application: Mixing Java and C

In relation to: MICROEJ products

Features

This Application Note explains how to port a scheduler for a C program to a Java Platform using the
MicroEJ® environment and the ST Standard Peripherals Library and how to build it using Keil pVi-
sion.

Description

This Application Note assumes the reader wishes to understand the steps involved in creating a Java
Platform and reuse C code to schedule tasks in a Java application. It explains in detail how to port a
simple scheduler from a C program to a mixed C and Java program.

TLT-0651-AN-MICROEJ-Scheduler-B

Scheduler-Based Application: Mixing Java and C

Table of Contents

R 01004 L1 Lot o) AU UP PP PUPPPPRIN 4
I L 20 Ta T B 16) 2 o (o P 4
12 SCOPE ettt ettt et e et e e et e e et e e et e e et e e et e eaaaanns 4
1.3, PIEIEQUISITES .eevvuunreiiiiieretitieeeetiiaeeerttiaeeetttueeeerunseeeananeseeesnnssesesnnssesssnnseessnnnseesssnnssensnnnns 4
2. The C scheduler t0 De POTtEAuuuuuiiiuiiiiiiiiiiiiiiiieieieierereeerererererereeereeereaerererersrerererereraeere. 5
3. An outline of the TEQUITEA STEPS ..cceeeeeeeeeieie eeeeas 6
4. The StePS N ALATLuuuiiiiii s 7
4.1. Create the Java application that will test the JPF ..., 7
4.2. Build the Java application binary fileccccoiiiiiiiiiriiiee e 9
4.3. Add the new files to the Keil pVision project foldereuvvereeereeeeeeeeeeeeeeereeereeenenn 10
4.4, Configure the Keil HViSiON PIrOJECEuuvvvuvviiiiiiiiiiiiiiiiisiersiersrererrresrrerererererr————. 11
4.5. Build and deploy the C PIOJECEccevviiiiiiiiiiiiiiiiiieiieeieeeeeeeeeeeeeeeee e e e e e e e e e e e e e eeeeeeas 12
5. DOCUMENT HISTOTY .uuuiiiiiieiiiiiiieieiiiie ettt ettt et ettee e e ettae e eettaeseettaaseetaaasseeesnasseerannsenesnnnsaes 13

TLT-0651-AN-MICROEJ-Scheduler-B 2

Scheduler-Based Application: Mixing Java and C

List of Figures

4.1. Creating the Java PrOJECEcciiiiiiiiiiiiiiiccc e 7
4.2. Creating the Main Classcooiiiiiiiiiiiii 8
4.3. Run Configuration - Main tabcccceereieiiieieieieieiereceeeserecere s 10
4.4. Run Configuration - EXeCUtion tabccccoeieiiiiiiiiieiiieieieicse e 10
T O | (I 1 11

TLT-0651-AN-MICROEJ-Scheduler-B 3

Scheduler-Based Application: Mixing Java and C

1 Introduction

1.1 Intended audience

The intended audience for this Application Note are developers who wish to port a simple scheduler
implemented in C to a program that mixes Java and C code.

1.2 Scope

This Application Note describes the steps required to port a simple scheduler implemented in C to a
program that mixes Java and C code. It is an extension of the approach described in the TLT-0649-AN-
CM_ARMCC-STM32x0G-EVAL-BareMetalJava application note.

No operating system (OS) will be used to execute the MicroJvm® virtual machine in this Application
Note. Readers who wish to use an OS should start from the TLT-0625-AN-CM_ARMCC-STM32x0G-
EVAL-FromScratch Application Note instead of the TLT-0649-AN-CM_ARMCC-STM32x0G-EVAL-
BareMetalJava Application Note. Whether the virtual machine runs inside the main C function or inside
a OS task does not change how the Java application works or how to port the scheduler.

1.3 Prerequisites

This Application Note assumes that the reader has already created a Java Platform without an operating
system, as described in the TLT-0649-AN-CM_ARMCC-STM32x0G-EVAL-BareMetalJava Application
Note. All the prerequisites specified in that Application Note apply equally to this Note.

TLT-0651-AN-MICROEJ-Scheduler-B 4

Scheduler-Based Application: Mixing Java and C

2 The C scheduler to be ported

This Application Note comes with a set of C files containing a simple C scheduler. These files re-
place some of the files of the C project created in the TLT-0649-AN-CM_ARMCC-STM32x0G-EVAL-
BareMetalJava application note, to modify it.

Here is a brief description of these files:

* leds.c / leds.h : contain functions to use the LEDs available on a STM3220G-EVAL (or
STM3240G-EVAL) board.

* tasks.c/ tasks.h : contain functions that can be scheduled. They are “cooperative”, meaning that
they don't do infinite loops, use blocking functions, etc. They perform a part of their job, return, and
can resume their work next time they are called.

* main.c : contains the original C program (commented) and the new C program (uncommented). The
original program has an infinite loop and calls tasks sequentially. The new program launches the
virtual machine and implements native methods used by the Java application. In both versions, tasks
are configured in the same config_tasks.h file.

* config_tasks.h : contains the binding of tasks to the functions that implement them, using a #define
pre-processor command. The real functions can be in various files as long as the correct header files
are included. Here, they are all gathered in tasks.c hence only tasks.h needs to be included.

TLT-0651-AN-MICROEJ-Scheduler-B 5

Scheduler-Based Application: Mixing Java and C

3 An outline of the required steps

1.

Create the Java application to test the JPF.

The Java application now schedules the tasks, reusing the C code of the tasks.

. Build the Java application binary file.

The Java project is built in the MicroEJ® environment, targeting the embedded JPF (“embJPF”), to
produce a binary object file that can be linked by Keil pVision.

Add the new files to the Keil pVisions project folder.
The files supplied with this Application Note are added to the C project.

Configure the Keil pVision project.

The properties of the pVision project are modified to include to the files and the Java application.

Build and deploy the C project.
The C project is built and deployed to the target board using the ST-LINK connection.

TLT-0651-AN-MICROEJ-Scheduler-B 6

Scheduler-Based Application: Mixing Java and C

4 The steps in detail

4.1 Create the Java application that will test the JPF

4.1.1 Principle of the Java application
Our goal is to port this scheduler, fully defined in C, to a Java application that will reuse existing C code.

To achieve our purpose, we have to launch the MicroJvm® virtual machine and to perform the schedul-
ing inside the Java world and call our existing C implemented tasks. Hence, the infinite loop will rather
be in the Java world than in the C world and this loop will access the C functions through Java methods
defined as native. Native methods in Java are methods declared and used in the Java world but their
implementation is in the C world. When the Java application is generated by MicroEJ's compiler and
linker it contains unresolved symbols corresponding to the native methods. Keil's linker will resolve
those symbols with the functions implemented in C using a defined naming convention.

The capability of calling C functions from Java code is part of the SNI library and is consequently
defined in the SNI specification. To fully understand this mechanism please read that document.

The file main.c contains both implementations. You can switch between the C and Java versions by
commenting / uncommenting the appropriate macro : #define USE_JAVA_VERSION.

4.1.2 Create the Java Project
Create a new MicroEJ® Java Project. Do this by selecting:

File — New — Java Project

E New MicroE) Project = @
Create a MicroEJ Project O
Create a Java project in the workspace or in an external location, E

Project name: Scheduler_App

Contents

@ Create new project in workspace

Create project from existing source

Ch\Users\pgradoth.microej\workspaces\STM32-EVAL-1.2.0\5chedule Browse

Runtime Environment

Select Microkl libraries:

=), BON-1.2

7] =) CLDC-11
=), ECOM-0.6
=), ECOM-COMM-0.6
=), ECOM-NETWORK-0.6
=i, ECOM-S0CKET-0.6 -

m| s

Project layout

Use project felder as root for sources and class files

@ Create separate folders for sources and class files Configure default...

Working sets
Add project to working sets

'C?:' < Bac | Mext » | [Finish] | Cancel

Figure 4.1. Creating the Java Project

TLT-0651-AN-MICROEJ-Scheduler-B 7

Scheduler-Based Application: Mixing Java and C

Enter the project name Scheduler_App and leave all the other settings unchanged. On pressing Finish a
new project is created.

4.1.3 Create the main class

Right-click on the newly-created Scheduler_App project and select:

New — Class

Create a class called Scheduler in the package com.is2t.examples, and tick the box asking for a main
method to be created:

E New Java Class = @
Java Class —
Create a new Java class. (\Q

Source folder: Scheduler_App/src
Package: com.is2t.examples

[T] Enclosing type: Browse...
MName: Scheduler
Modifiers: @ public I default private protected
[] abstract [~]final static
Superclass: javalang.Object
Interfaces: Add...
Remove

Which methed stubs would you like to create?
public static void main(String[] args)
[7] Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)

D Generate comments

'C?:' [Einish l ’ Cancel

Figure 4.2. Creating the main class

Please note that the package name is important for the naming convention of SNI. Fill in the Java code of
the application, either copying the code shown below or with the Java file provided with this Application
Note:

TLT-0651-AN-MICROEJ-Scheduler-B 8

Scheduler-Based Application: Mixing Java and C

package com.is2t.examples;

public class Scheduler {
// Native functions --> implementation is done in C code
private native static void Task1();
private native static void Task2();
private native static void Task3();
private native static void Task4();
private native static void Task5();

// Java functions

private static int Un = 15;

private static boolean TrivialCyleReached = false;
private static void SyracuseSequence() {

if(TrivialCyleReached == false) { // don't print if trivial cycle has been
reached

System.out.println("Syracuse : " + Un);
}
if(Un % 2 == 0) {
// Even
Un = Un /2;
if(un == 1) {
TrivialCyleReached = true;
}
else {
// 0dd
Un = 3*Un + 1;
}

}

// Main function schedules both C and Java tasks
public static void main(String[] args) {
System.out.println("Java scheduling starts...");

while(true) {
Task1();
Task2();
Task3();
Task4();
Task5();
SyracuseSequence();

An extra task is added. It is fully implemented inside the Java world and can be scheduled the same way
as native tasks. This shows how a ported scheduler can mix C and Java tasks.

4.2 Build the Java application binary file

The next step is to build the Java application into a binary file that can be linked with the C parts of
the platform.

To build the application a suitable launch configuration must be created.

Right-click in the Package Explorer on the Java class created in the previous step, and select:

Run As — Run Configurations...

The Run Configurations dialog will open. Double-click the MicroEJApplication entry in the list to the left
of the dialog to create a new configuration.

The details in the Main tab will be entered already, and should look like this:

TLT-0651-AN-MICROEJ-Scheduler-B 9

Scheduler-Based Application: Mixing Java and C

E Run Configurations @
Create. manage. and run configurations ;*--
* B =R
K] =2 Name: Scheduler
type filter text _ —
X [7] Main . Execution| 3% JPF Configuration | =5, JRE E/Source El Common
[EJ MicroE) Application r
Ej Scheduler [zt
[Es MicroE] Testsuite Scheduler_App
& MicroEl Tool

Main type, Required types

com.is2t.examples.Scheduler
Add types...

Resources
Add...
Filter matched 5 of 12 items
‘f?;‘ [Run] l Close

Figure 4.3. Run Configuration - Main tab

Select the Execution tab. Check the Execute on EmbJPF option, as shown below:

E Run Configurations @
Create, manage, and run configurations ;—;
TBX[E®-

Name: Scheduler

type filter text
7] Main [Execution 42! JPF Configuration| =), JRE | - Source|] Common
[E| MicroEl Application
E| Scheduler et
[Es Microk) Testsuite JPF: | STM32-bareMetalEVAL-ARMCCvé (1.0) VI
2 MicroEl Toal
Execution
) Execute on SimJPF @ Execute on EmbJPF
Settings: {Build & Deploy vI
The application is generated, linked and deployed.
Options
Qutput folder: ${project_locAN_Scheduler_App}
Clean intermediate files [verbose

Filter matched 5 of 12 items

wf'_?:\ [Run] { Close I

Figure 4.4. Run Configuration - Execution tab

Press Run. The application is built into a binary file called com.is2t.examples.SO0AR.o, located in the
com.is2t.examples.Scheduler folder of the Scheduler_App project.

4.3 Add the new files to the Keil uVision project folder

Copy and paste the project folder created in the TLT-0649-AN-CM_ARMCC-STM32x0G-EVAL-
BareMetalJava Application Note. Rename the new folder Scheduler.

Copy the provided files and replace existing files with the same name (e.g, : main.c).

TLT-0651-AN-MICROEJ-Scheduler-B 10

Scheduler-Based Application: Mixing Java and C

The folder content should now look like this (the actual set of files may be different):

E=NECR =)
@'_:j;'l < Proje.. » Sche.. » v|$y|| Rechercher dans : Scheduler DI
Organiser = Inclure dans |a biblicthéque = = == « [l IZ@

Nom . Type Modifié le 1
. MDE-ARM Dossier de fichiers 03/01/2013 12:02
. config_tasks.h Fichier H 02/01/201315:59
_ cpuh Fichier H 26/10/2012 12:53
| leds.c Fichier C 28/12/2012 15:48
| leds.h Fichier H 28/12/2012 15:58
| LLMIVM.c Fichier C 12/12/201211:42
L main.c Fichier C 03/01/201312:00
| micreej.h Fichier H 26/10,/2012 12:53
__ putchar.c Fichier C 26/10/2012 12:53
| sram_driver.c Fichier C 26/10/2012 12:53
. sram_driver.h Fichier H 26/10/2012 12:53
L stm32fde_conf.h Fichier H 20/10/201212:53
|| stm32fdo_it.c Fichier C 26/10/201212:53
| stm32fdio ith Fichier H 26/10/2012 12:53
| system_stm32fduecc Fichier C 26/10/2012 12:53
| tasks.c Fichier C 03/01/201312:16
|| tasks.h Fichier H 02/01,/2013 08:40

‘ m P

17 élément(s)

Figure 4.5. C file list

4.4 Configure the Keil uVision project

The file Project.uvproj in the MDK-ARM folder is a Keil pVision project definition. It has been configured
to suit the original contents of the template Standard Peripherals Library project and must be changed
to suit the Scheduler requirements.

Double-click the Project .uvproj file to open it in the Keil pVision environment.
We will first add the new C files to the project:

* In the Project window, right-click on the User group.

» Select Add Files to Group 'User"....

* Select all the new C files contained in the project folder.

* Click on Add and then on Close.

We also need to change the Java application object file:

* In the Project window, right-click on the file com.is2t.example.S0AR. o (in the MicroEJ group).
» Select Remove file com.is2t.example.SOAR.o and validate.

* In the Project window, right-click on the MicroEJ group.

* Select Add Files to Group 'MicroEJ'....

+ Navigate to the com.is2t.example.Scheduler folder of the Scheduler_App application.

TLT-0651-AN-MICROEJ-Scheduler-B 11

Scheduler-Based Application: Mixing Java and C

* Select the com.is2t.example.SOAR.o file and add it. It may be necessary to select Files of type: All
files (*.*) in the dialog box to see the file. If Keil pVision asks for the type of the file, select Object file.

4.5 Build and deploy the C project

The C code should now compile cleanly. Build it using Project — Build target (F7). It can now be down-
loaded to the target board using the ST-LINK connection. Reset the board to run the application. LEDs
will blink and the following output will appear in the terminal emulator connected to the serial port :

START

VM START

Java scheduling starts...
1th month : 1 couples
Syracuse : 15

2th month : 1 couples
Syracuse : 46

3th month : 2 couples
Syracuse : 23

4th month : 3 couples
Syracuse : 70

5th month : 5 couples
Syracuse : 35

6th month : 8 couples
Syracuse : 106

7th month : 13 couples
Syracuse : 53

8th month : 21 couples
Syracuse : 160

9th month : 34 couples
Syracuse : 80

10th month : 55 couples
Syracuse : 40

11th month : 89 couples
Syracuse : 20

12th month : 144 couples
Syracuse : 10

13th month : 233 couples
Syracuse : 5

14th month : 377 couples
Syracuse : 16

15th month : 610 couples
Syracuse : 8

16th month : 987 couples
Syracuse : 4

17th month : 1597 couples
Syracuse : 2

18th month : 2584 couples
19th month : 4181 couples

()

45th month : 1134903170 couples
46th month : 1836311903 couples
47th month : 2971215073 couples

TLT-0651-AN-MICROEJ-Scheduler-B 12

Scheduler-Based Application: Mixing Java and C

5 Document History

Date Revision Description

January 2nd, 2013 A First release

May 13th, 2013 B Second release : correct minor typographical errors, modify
main.c file to run C or Java version easily.

Headquarters

11, rue du chemin Rouge
44373 Nantes Cedex 3
FRANCE

Phone: +33 2 40 18 04 96
www.is2t.com

© 2013 IS2T All right reserved. Information, technical data and tutorials contained in this document
are IS2T S.A. Proprietary under Copyright Law. Without any written permission from IS2T S.A.,
copying or sending parts of the document or the entire document by any means to third parties is not
permitted including but not limited to electronic communication, photocopies, mechanical reproduc-
tion systems. Granted authorizations for using parts of the document or the entire document do not
mean they give public full access rights.

IceTea®, IS2T®, MicroJvm®, MicroEJ®, S3™, SNI™, SOAR®, Drag Emb'Drop™, IceOS® and
all associated logos are trademarks or registered trademarks of IS2T S.A. in France, Europe, United
States or others Countries.

Java™ is Sun Microsystems' trademark for a technology for developing application software and de-
ploying it in crossplatform, networked environments. When it is used in this documentation without
adding the ™ symbol, it includes implementations of the technology by companies other than Sun.

Java™, all Java-based marks and all related logos are trademarks or registered trademarks of Sun Mi-
crosystems Inc, in the United States and other Countries.

Other trademarks are proprietary of their authors.

TLT-0651-AN-MICROEJ-Scheduler-B 13

	Scheduler-Based Application: Mixing Java and C
	Table of Contents
	1 Introduction
	1.1 Intended audience
	1.2 Scope
	1.3 Prerequisites

	2 The C scheduler to be ported
	3 An outline of the required steps
	4 The steps in detail
	4.1 Create the Java application that will test the JPF
	4.1.1 Principle of the Java application
	4.1.2 Create the Java Project
	4.1.3 Create the main class

	4.2 Build the Java application binary file
	4.3 Add the new files to the Keil µVision project folder
	4.4 Configure the Keil μVision project
	4.5 Build and deploy the C project

	5 Document History

