
TLT-0649-AN-MICROEJ-BareMetalJava-E

Application Note:
TLT-0649-AN-MICROEJ-BareMetalJava

Building a Bare Metal Java Platform

In relation to: MICROEJ products

Features
This Application Note explains how to create a Java Platform (JPF) to run a multi-threaded Java ap-
plication without an Real Time Operating System (RTOS). Software development tools involved in
this Application Note are the MicroEJ® environment, the ST Standard Peripherals Library, and the
Keil µVision SDK.

Description
This Application Note explains in detail all the steps required to build the platform and to test it with a
simple application using several threads that output text strings over a serial port.

The build process of the JPF and of the Java application are similar to the one described in the
TLT-0625-AN-MICROEJ_FromScratch Application Note. The main difference is that this Note high-
lights the way the MicroJvm® virtual machine is handled by the native code (C language).

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 2

Table of Contents
1. Introduction .. 4

1.1. Intended audience .. 4
1.2. Scope .. 4
1.3. Prerequisites ... 4

2. An outline of the required steps .. 5
3. The steps in detail .. 6

3.1. Create the Java Platform .. 6
3.2. Create the Java application that will test the JPF .. 9
3.3. Build the Java application binary file .. 11
3.4. Create a file structure to hold the C code ... 13
3.5. Add the MicroJvm support files to the C project .. 13
3.6. Configure the Keil μVision project .. 13
3.7. Build and deploy the C project ... 14

4. Discussion .. 16
4.1. The LLVJVM implementation .. 16
4.2. Explanation of the C main function ... 16
4.3. Standard output .. 17

5. Document History ... 19

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 3

List of Figures
3.1. Java Platform Configuration (architecture selection) ... 6
3.2. Java Platform Configuration (properties set) .. 7
3.3. Java Platform Configuration (build platform) ... 8
3.4. MicroEJ workspace .. 8
3.5. Create Java Project ... 9
3.6. Create Main Class .. 10
3.7. Run Configuration - Main tab ... 12
3.8. Run Configuration - Execution tab .. 12
3.9. C file list ... 13

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 4

1 Introduction

1.1 Intended audience
The intended audience for this Application Note are developers who wish to interface a JPF to an exist-
ing native board support package. In this document, we will use the STM32Fxxx Standard Peripherals
Library as board support package.

1.2 Scope
This Application Note describes the steps required to build a full custom JPF for an STM3220G-EVAL
or STM3240G-EVAL board “from scratch” – meaning that the required steps are performed manually
rather than using one of the scripts supplied with the environment.

No RTOS will be used to execute the MicroJvm® virtual machine and application threads. Instead, the
virtual machine is able to run and schedule multiple threads, called "Java threads": this configuration
is often called a “green thread” architecture.

This Application Note does not explain the contents of the C files in the ST Standard Peripherals Library
nor the details of starting the MicroJvm virtual machine. Please consult the SNI Specification for com-
plete information. Nonetheless, a discussion on the implementation of the Low Level MicroJvm API
and the C main function are included.

1.3 Prerequisites
The environment for MicroEJ® (MICROEJ-PKG-STD-MicroEJ-3.1.0 or later) must be installed and
the required license activated.

Keil μVision version 4.54 or later must be installed, and the appropriate license activated.

An STM3220G-EVAL or STM3240G-EVAL board with the ST-LINK USB port connected to a desktop
PC is required to be able to run the application note examples. An RS-232 cable needs to be connected
from the 9-pin connector CN16 to a suitable terminal emulator so that output from the UART can be
captured and displayed on a terminal emulator.

The appropriate Standard Peripherals Library must be downloaded from the ST web site. For the
STM3220G-EVAL board the appropriate library can be found from ST Microelectronics web site.

This document is based on version 1.1.0 of the stm32f2 library, and version 1.0.1 of the stm32f4 library.

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 5

2 An outline of the required steps
The following steps give an overview of the JPF build process :

1. Create the Java Platform (JPF).
A JPF is created within the environment.

2. Create the Java application to test the JPF.
A Java project is created within the environment and the demonstration code is written.

3. Build the Java application binary file.
The Java project is built in the environment, targeting the embedded JPF (“EmbJPF”), to produce a
binary object file that can be linked by Keil μVision.

4. Create a file structure to hold the C code.
The template project provided within the STM32Fxxx Standard Peripherals Library (SPL) is used to
create a project to hold the C code for the application.

5. Add the MicroJvm support files to the C project.
The files supplied with this Application Note are added to the C project.

6. Configure the Keil μVision project.
The properties of the μVision project supplied with the SPL are adjusted so that it includes all the
required sources and libraries, and refers to the correct header files.

7. Build and deploy the C project.
The C project is built and deployed to the target board using the ST-LINK connection.

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 6

3 The steps in detail

3.1 Create the Java Platform
A Java platform (JPF) comprises the MicroJvm virtual machine itself plus supporting libraries and tools.
A JPF is suitable for use on a specific core and toolchain depending on the chosen architecture.

3.1.1 Create the Java Platform configuration
The first step is to create a JPF Configuration project that will be used to parameter the JPF. In this
application note, we will build a JPF compatible with Cortex-M3 MCU. Create the JPF Configuration
by selecting, in the MicroEJ environment : File → New → Java Platform

A dialog box appears in order to choose the JPF architecture and to suggest to start from an JPF example.
For the application note, select the CORTEX-M3-based JPF architecture. To create a JPF "from scratch",
uncheck the option "Create a platform from an example or a template".

Figure 3.1. Java Platform Configuration (architecture selection)

Click on Next. JPF creation wizard continues asking to set a name for the future project and properties
for the created JPF. Please fill the form like following:

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 7

Figure 3.2. Java Platform Configuration (properties set)

The provider can be any name you wish. On pressing Finish, a new project is created containing the
JPF configuration.

3.1.2 Build the Java Platform
The second step is to build the JPF based on the JPF Configuration. Build the JPF by opening the
BareMetal.platform file created on the JPF Configuration project and selecting the Build Platform hyperlink
available on right side of the panel:

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 8

Figure 3.3. Java Platform Configuration (build platform)

The JPF name will be STM32-BareMatel-ARMCCv41. Your workspace should look like the one shown
below :

Figure 3.4. MicroEJ workspace

STM32-BareMetal-CM3_ARMCC-1.0.0 project has been created during the build operation ; it is notable by
a JPF icon and contains JPF source.

1This name is created by concatenating the Device and Name entered in the dialog with the name of the toolchain
being used.

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 9

3.2 Create the Java application that will test the JPF

3.2.1 Create the Java Project

Create a new MicroEJ Java Project. Do this by selecting : File → New → Java Project

Figure 3.5. Create Java Project

Enter the project name BareMetalJava_App and leave all the other settings unchanged. On pressing Finish
a new project is created.

3.2.2 Create the main class

Right-click on the newly-created BareMetalJava_App project and select : New → Class

Create a class called Task in the package com.is2t.example 2, and tick the box asking for a main method
to be created :

2The name of the package is not relevant. You can name it as you want and adapt the following.

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 10

Figure 3.6. Create Main Class

Fill in the Java code of the application. You can copy the code shown below or use the Java file provided
with the Application Note :

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 11

package com.is2t.example;

public class Task implements Runnable {
 // We need to implement the Runnable interface to create a thread

 private final String text;
 private final int countTo;
 private final int delay; // in milliseconds

 // Constructor
 public Task(String text, int countTo, int delay) {
 this.text = text;
 this.countTo = countTo;
 this.delay = delay;
 }

 // The thread will execute this method
 public void run() {
 System.out.println("Thread " + text + " starts...");

 for(int i=1; i<=countTo; i++) {
 System.out.println(text + " : " + i + "/" + countTo);
 try {
 Thread.sleep(delay);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 System.out.println("Thread " + text + " ends");
 }

 // Main function, to test the multithreading capability
 public static void main(String[] args) {
 System.out.println("This is a simple application");

 // Create and start threads
 Thread t1 = new Thread(new Task("A", 15, 900));
 Thread t2 = new Thread(new Task("B", 8, 1600));
 Thread t3 = new Thread(new Task("C", 30, 200));

 t1.start();
 t2.start();
 t3.start();

 // Wait for the threads to finish
 try {
 t1.join();
 t2.join();
 t3.join();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }

 System.out.println("Now, the end");
 }
}

3.3 Build the Java application binary file
The next step is to build the Java application into a binary file that can be linked with the C parts of
the platform.

To build the application, a suitable launch configuration must be created.

Right-click in the Package Explorer on the Java class created in the previous step, and select Run As →
Run Configurations...

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 12

The Run Configurations dialog will open. Double-click the MicroEJApplication entry in the list to the left
of the dialog to create a new configuration.

The details in the Main tab will be entered already, and should look like this :

Figure 3.7. Run Configuration - Main tab

Select the Execution tab. Check the Execute on EmbJPF option, as shown below :

Figure 3.8. Run Configuration - Execution tab

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 13

Press Run. The application is built into a binary file called SOAR.o, located in the
com.is2t.example.Task folder of the BareMetalJava_App project.

3.4 Create a file structure to hold the C code
The next step is to create the file structure for the C code project. This structure is based on the
STM32Fxxx Standard Peripherals Library (SPL).

Unzip the SPL into a suitable location, where it can be edited in-place – much of it can be deleted for
our purposes.

The Project folder of the library contains a template project folder, called
STM32Fxxx_StdPeriph_Templates, that will form the basis of the project for this example. Copy this
folder and rename it to be called BareMetalJava. This will become the project folder for the C files.

The template project contains support for several different C development environments. The files for
use with Keil μVision are in the MDK-ARM folder. Delete all the other sub-folders and files in the folder
BareMetalJava – they are going to be replaced in the next step.

3.5 Add the MicroJvm support files to the C project
The C project requires a number of files that provide platform-specific support to the MicroJvm virtual
machine. The content of some of these files is discussed below. The required files are supplied with this
Application Note. Two sets of files are provided; one set for the STM3220G-EVAL and another for the
STM3240G-EVAL. Copy all the files from the relevant set into the STM32Fxxx_StdPeriph_Lib_Vxxx/
Project/BareMetalJava folder (which will become the C project).

The folder content should now look like this (the actual set of files may be different) :

Figure 3.9. C file list

3.6 Configure the Keil μVision project
The file Project.uvproj in the MDK-ARM folder is a Keil μVision project definition. It has been con-
figured to suit the original contents of the template Standard Peripherals Library project and must be
changed to suit the BareMetalJava requirements.

Double-click the Project.uvproj file to open it in the Keil μVision environment.

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 14

Step1 - We will first add the C files to the project :

• In the Project window, right-click on the User group.

• Select Add Files to Group 'User'....

• Select all the C files contained in the project folder.

• Click on Add and then on Close.

Step 2 - We also need to add files created with the MicroEJ environment :

• In the Project window, right-click on the root of the project.

• Select Add group....

• Name it MicroEJ.

• Right-click on the MicroEJ group.

• Select Add Files to Group 'MicroEJ'....

• Navigate to the com.is2t.example.Task folder of the BareMetalJava_App application.

• Select the SOAR.o file and add it. It may be necessary to select Files of type: All files (*.*) in the dialog
box to see the file. If Keil μVision asks for the type of the file, select Object file.

• Navigate to the source\lib folder of the STM32-BareMetal-CM3_ARMCC-1.0.0.

• Select the javaruntime.lib file, add it and close the window.

Step 3 - Now that all the needed files have been added to the project, we have to configure the include
path so that it can compile properly.

• In the Project window, right-click on the root of the project.

• Select Options for Target 'STM322xG_EVAL'....

• The Target tab is displayed and we can see that None is selected in the Operating System combo box.

• Go to C/C++ tab.

• Press the … button to the right of the Include Paths box.

• Press the New/Insert button (the button on the left, in the right upper corner of the new window).

• Press the ... button of the blank entry.

• Navigate to the source\include folder of the STM32-BareMetal-CM3_ARMCC-1.0.0 project (to find
the location of this, in MicroEJ, right click on the folder and select Properties).

• Press OK to close the configuration window.

3.7 Build and deploy the C project
The C code should now compile cleanly. Build it using Project → Build target (F7). It can now be down-
loaded to the target board using the ST-LINK connection. Reset the board to run the application and the
output will appear in the terminal emulator connected to the serial port :

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 15

START
VM START
This is a simple application
Thread A starts...
A : 1/15
Thread B starts...
B : 1/8
Thread C starts...
C : 1/30
C : 2/30
C : 3/30
C : 4/30

(…)

B : 4/8
C : 25/30
C : 26/30
C : 27/30
A : 7/15
C : 28/30
C : 29/30
C : 30/30
Thread C ends
A : 8/15
B : 5/8
A : 9/15
B : 6/8
A : 10/15
A : 11/15
B : 7/8
A : 12/15
A : 13/15
B : 8/8
A : 14/15
A : 15/15
Thread B ends
Thread A ends
Now, the end
VM END (exit code = 0)
END

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 16

4 Discussion

4.1 The LLVJVM implementation
The document ARM Cortex-Mx ARMCC - User's Manual devotes a section to the LLJVM API. Anyone
who wants to understand how the MicroJvm virtual machine works (with or) without an OS should read
that document first.

The LLMJVM_impl.h file defines a set of functions that developers must implement with native code.
These functions are used by the MicroJvm virtual machine and must be implemented according to the
hardware platform and the native software capability. For instance, if an RTOS is available and the
MicroJvm virtual machine runs as a task of this RTOS, RTOS functions can be used – this is how the
LLMJVM implementation provided with the TLT-0625-AN-MICROEJ_FromScratch application note
works, using Keil's RTX RTOS.

Here, no RTOS function can be used. Instead, we use our own functions and global variables to fulfill
the needs of the LLMJVM_impl.h API. The main requirement is to be able to schedule the requests of the
virtual machine. These are requests to schedule an alarm that will be triggered at a specified time. The
requests are saved with the LLMJVM_IMPL_scheduleRequest() function. When the timeout is reached,
the callback function LLMJVM_schedule(), which is provided by the platform, must be called.

When an RTOS is used, LLMJVM_IMPL_scheduleRequest() asks for the RTOS to trigger an event and
call the callback function. Without an RTOS, we need to find a way to regularly check if next alarm
time has been reached. This can be done in several ways: here we choose to use the SYSTICK timer. The
SYSTICK timer is a feature of the Cortex-M family and regularly generates an interrupt. The associated
routine is SysTick_Handler(). The request scheduling mechanism is as follows :

• the SYSTICK timer is configured to generate an interrupt every 10ms.

• LLMJVM_IMPL_scheduleRequest() memorizes the next request time in the
microjvm_nextWakeupTick variable.

• SysTick_Handler() increments its own counter (microjvm_tick) and compares it to
 microjvm_nextWakeupTick to determine if it is time (or not) to call LLMJVM_schedule().

This method is easy to use since functions are provided by the CMSIS library to configure the SYSTICK
timer.

4.2 Explanation of the C main function
This section briefly describes the C main function. More details about how the virtual machine is started
can be found in the SNI Specification. Two sections of that document are dedicated to this issue: part
2.4 Starting the “Java world” and part 4 JAVA VIRTUAL MACHINE STARTUP.

Since no RTOS is used for this Application Note, the virtual machine is initialized and started in the
C main function itself :

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 17

int main(void)
{
 // Variables
 int32_t err;
 int32_t exitcode;

 // Code
 printf("START\n");
 SRAM_initialize();
 vm = SNI_createVM();

 if(vm == NULL)
 {
 printf("VM initialization error.\n");

 }
 else
 {
 printf("VM START\n");
 err = SNI_startVM(vm, 0, NULL);

 if(err < 0)
 {
 //Error occurred
 if(err == LLMJVM_E_EVAL_LIMIT)

 {
 printf("Evaluation
 limits reached.\n");
 }
 else
 {
 printf("VM execution
 error (err = %d).\n", err);
 }
 }
 else
 {
 //VM execution ends normally

 exitcode = SNI_getExitCode(vm);
 printf("VM END (exit code = %d)\n", exitcode);
 }
 }

 SNI_destroyVM(vm);
 printf("END\n");
}

SNI_startVM() function starts and runs the virtual machine and the Java application linked to the project.
It returns when this Java application ends. Then, we can check the exit code and destroy the virtual
machine.

4.3 Standard output
When the Java application needs to write on the standard output (using a method like
System.out.println()), the virtual machine implicitly calls low level functions from the C library,
namely the putchar() function 3. In fact, putchar() is not a such low level function and calls fputc()
to do the job.

As stated in Keil's documentation 4, one must redefine the fputc() function to behave properly with
available I/O devices. In our case, this function has been redefined to write on the UART output (con-
nector CN16 on the board). The implementation can be found in the putchar.c file provided with this

3Note that native functions like printf() also use putchar().
4See : http://www.keil.com/support/man/docs/armlib/armlib_bajfidff.htm [http://www.keil.com/support/man/
docs/armlib/armlib_bajfidff.htm]

http://www.keil.com/support/man/docs/armlib/armlib_bajfidff.htm
http://www.keil.com/support/man/docs/armlib/armlib_bajfidff.htm
http://www.keil.com/support/man/docs/armlib/armlib_bajfidff.htm

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 18

application note. This is why using printf() in C or System.out.println() in Java results in readable
UART text.

Building a Bare Metal Java Platform

TLT-0649-AN-MICROEJ-BareMetalJava-E 19

5 Document History
Date Revision Description
December 17th, 2012 A First release
May 13th, 2013 B Minor changes in main document. Improve LLMJVM func-

tions, mainly LLMJVM_getCurrentTime().
November 12th, 2013 C MicroEJ 2.0.0 compatibility
July 18th, 2014 D MicroEJ 3.0.0 compatibility
October 1st, 2014 E MicroEJ 3.1.0 compatibility

 Headquarters
 11, rue du chemin Rouge
 44373 Nantes Cedex 3
 FRANCE
 Phone: +33 2 40 18 04 96
 www.is2t.com

© 2014 IS2T All right reserved. Information, technical data and tutorials contained in this document
are IS2T S.A. Proprietary under Copyright Law. Without any written permission from IS2T S.A.,
copying or sending parts of the document or the entire document by any means to third parties is not
permitted including but not limited to electronic communication, photocopies, mechanical reproduc-
tion systems. Granted authorizations for using parts of the document or the entire document do not
mean they give public full access rights.

IceTea®, IS2T®, MicroJvm®, MicroEJ®, S3™, SNI™, SOAR®, Drag Emb'Drop™, IceOS® and
all associated logos are trademarks or registered trademarks of IS2T S.A. in France, Europe, United
States or others Countries.

Java™ is Sun Microsystems' trademark for a technology for developing application software and de-
ploying it in crossplatform, networked environments. When it is used in this documentation without
adding the ™ symbol, it includes implementations of the technology by companies other than Sun.

Java™, all Java-based marks and all related logos are trademarks or registered trademarks of Sun Mi-
crosystems Inc, in the United States and other Countries.

Other trademarks are proprietary of their authors.

	Building a Bare Metal Java Platform
	Table of Contents
	1 Introduction
	1.1 Intended audience
	1.2 Scope
	1.3 Prerequisites

	2 An outline of the required steps
	3 The steps in detail
	3.1 Create the Java Platform
	3.1.1 Create the Java Platform configuration
	3.1.2 Build the Java Platform

	3.2 Create the Java application that will test the JPF
	3.2.1 Create the Java Project
	3.2.2 Create the main class

	3.3 Build the Java application binary file
	3.4 Create a file structure to hold the C code
	3.5 Add the MicroJvm support files to the C project
	3.6 Configure the Keil μVision project
	3.7 Build and deploy the C project

	4 Discussion
	4.1 The LLVJVM implementation
	4.2 Explanation of the C main function
	4.3 Standard output

	5 Document History

