® Application Note:
’SZT TLT-0633-AN-MICROEJ-JavaCSync

Java / C Synchronization

In relation to: MICROEJ products

Features

This Application Note explains how to synchronize a Java thread with one or more C tasks. The ex-
ample shown uses the Keil RTX Kernel.

Description

This Application Note assumes the reader wishes to understand the steps involved in synchronizing a
Java thread with one or more C tasks.

TLT-0633-AN-MICROEJ-JavaCSync-B

Java / C Synchronization

Table of Contents

R 01004 L1 Lot o) AU UP PP PUPPPPRIN
I L 20 Ta T B 16) 2 o (o P
12 SCOPE ettt ettt et e et e e et e e et e e et e e et e e et e eaaaanns
1.3, PIEIEQUISITES .eevvuunreiiiiieretitieeeetiiaeeerttiaeeetttueeeerunseeeananeseeesnnssesesnnssesssnnseessnnnseesssnnssensnnnns
1.4. Files supplied with this Application INOLEuvervruurrrrerererrreeerererererererarerererere———.
B B L = 1 PP PPPPPR
S ha015] (2310 1<) 11 7= (o) RSP R PP PRPOPRRRPRPPPRPPIRE
B B 1= = T 0 - P PR UUPRRUPPPPRPURt
N O 1 - 1 APPSO UPPPPPPR PR PPPPPTPPRt
4. Running the eXamplecooiiiiiiiiiiii e
5. DOCUMENT HISTOTY v.uuiiiiiieiiiiiiieieiiiieetetiiieeteetiieeseettieeeettaeseeetnaseresnnsereennsseresnnsseesennnsesssnnsees

TLT-0633-AN-MICROEJ-JavaCSync-B 2

Java / C Synchronization

List of Figures

200 R 25 €= 010] (VAN o) 0 U Vi (o)
3.1. Java - creating a NEW IMOIILOTcccetturrmuuiereeeeetteriiiiaeeeeeeeeteennaaeeeeeeeenennnaasaeeeeeenernmansseeeeeneens
3.2. Java - entering a MOMITOTccuuueeettuuereerteueeeeteueeeeteueeeeteneeeetenaeeeteneeeetennseeeeenneeenenneeeeennns
3.3. Java - exitiNg @ MOMILOT ...cvuuuieiiiireeiiiie ettt e eetiiee e ettt s ettt settraasseetanasesannnsserssnssanesnnssenees
3.4, MONILOT dAA SIIUCEUTES ...vvvvvveverererererereturetesesesesesesesesesssesesesesesesesesssssesssssssssssssssesssssssnsssssssnnes
3.5. C - Java native for creating @ MOMILOTuuvuuuerurerurerererererrrerererererererererereree——————————..
3.6. C - Java native for entering a MONITOTcccuvviiiiererieeieiiiiieeeeeeeeeeeeeeeeeeeeeeeesnrereeeeeeseesennnnes
3.7. C - Java native for eXiting a MONILOTccceeererrrerrssrrrsssrssssssesssssssssssssssnssnnnsnnsssssnsssssnsnsnnnsnns
3.8. C - Creating @ IMOTILOTvieivuureeiiiereetiiereettueeeettneseettnneseeeenaseeeesnseessnnnseessnnnseesssnssesemnnnsenes
3.9. C - entering @ IMOMILOT ..ccuuuuieetuuureettnuereettnureettnneeettnueaeettnneeetenaeeeeenneseerennsseerennseerennseeeennnns
3.10. C - eXitiNG @ TMOMILOT ..evvuunrieiiuiereeiiiereettuereettueeeettuaeeeettueeettnaseeetunnseertnnnseeresnnseesesnnseeeennnns

TLT-0633-AN-MICROEJ-JavaCSync-B 3

Java / C Synchronization

1 Introduction

1.1 Intended audience

The intended audience for this Application Note are developers who wish to synchronize a Java thread
with one or more C tasks.

1.2 Scope

This Application Note shows a simple implementation of a mutual-exclusion monitor that can be used to:
» ensure that only one Java thread or C task can access a resource at any time, or

+ allow a Java thread to temporarily block execution of a C task, or

+ allow a C task to temporarily block execution of a Java thread.

The example assumes the use of the Keil RTX Kernel ; but the design can be easily ported to other
real-time operating systems.

1.3 Prerequisites

This document assumes the reader is familiar with the process of creating a Java Platform (JPF), and
with the creation of native methods using SNI.

1.4 Files supplied with this Application Note

This application note is packaged with an archive of an Eclipse project in the file JavaCcSync-
example.zip, which can be imported in the normal way.

The project contains four files of particular interest:

» The file JavacSyncExample.java, in the src folder, is a Java application that demonstrates Java / C
synchronization.

 The file java_c_sync_example.c, in the c-src folder, is the C part of the application that demon-
strates Java / C synchronization.

» The file NativeMonitor.java, in the src folder, is a Java class that provides part of the implemen-
tation of a synchronization monitor.

» The file native_monitor.c, in the c-src folder, is a the C part of the implementation of a synchro-
nization monitor.

TLT-0633-AN-MICROEJ-JavaCSync-B 4

Java / C Synchronization

2 Design

The synchronization is provided by a NativeMonitor object. The implementation of this object is split
between a Java part and a C part, although most of the actual synchronization is done in the C part.

The API of a NativeMonitor object consists of two functions, which can be called from either a Java
thread or a C task. These are:

* enter - enter (acquire) the monitor. Only a single Java thread or C task can enter the monitor. If the
monitor has already been acquired this function blocks execution of the Java thread or C task until
the monitor is exited.

* exit - exit (release) the monitor. The monitor becomes available!.

This Application Note is supplied with an implementation of NativeMonitor and an example showing
its use. The example comprises a Java application (the Java class JavaCcSyncExample) and a C task (in
the file java_c_sync_example.c). The behavior of the example is shown in the UML sequence diagram
below.

a Java thread
T
new @ . .
e 2 Native Momtor
efiter @
{ - N - - _
| o | aCtask
I: @ enter T
exit > @
< - — - — 4= — — — — — =
enter F—@
‘-. exit
_— — — — — | _— — = — — =

| |
Figure 2.1. Example Application

Execution of the example starts with the creation of the Java thread. The key points of execution, shown
by numbers on the diagram, are:

1. The Java thread instantiates a NativeMonitor, making it available for use.

The supplied implementation is based on a counting mutex (because that is what the Keil RTX Kernel provides),
so in fact the monitor is only released if the holder makes as many exit calls as enter calls.

TLT-0633-AN-MICROEJ-JavaCSync-B 5

Java / C Synchronization

2. The Java thread enters the NativeMonitor. The Java thread is now holding the monitor.

3. The Java thread invokes the native method startCTask, which creates the C task. The id of the
NativeMonitor is passed to the C task as a parameter of the startCTask method. The Java thread
then sleeps.

4. The C task tries to enter the NativeMonitor, but it cannot because the monitor is held by the Java
thread. Execution of the C task is blocked - it must wait until the monitor is exited.

5. When it awakes from its sleep the Java code exits the NativeMonitor. The monitor can now be given
to the C task, which continues its execution.

6. The C task now sleeps, holding the monitor.

7. The Java thread tries to enter the NativeMonitor, but it cannot because the monitor is held by the C
task. Execution of the Java thread is blocked - it must wait until the monitor is exited.

8. When it awakes from its sleep the C task exits the NativeMonitor. The monitor can now be given
to the Java thread, which continues its execution.

TLT-0633-AN-MICROEJ-JavaCSync-B 6

Java / C Synchronization

3 Implementation

3.1 Java part

We will start by looking at the Java part of the implementation of NativeMonitor, as implemented in
the Java class of the same name. For the most part, the implementation merely calls native methods -
these are discussed below.

public NativeMonitor() {
id = newNativeMonitor();
if (id < 0) {
throw new IllegalMonitorStateException("Unable to create Native Monitor");
}

Figure 3.1. Java - creating a new monitor

To create the C part of the monitor the constructor invokes a native method called newNativeMonitor.
We will see the implementation of that method later. The native method returns the id used by the C
code to identify the monitor. This id is held by the Java object. A negative id indicates a problem, which
in this implementation can only be that no more monitors are available.

Note that in the supplied implementation monitors are immortal - no facility is provided for their dis-
posal.

public void enter() throws IllegalMonitorStateException {
synchronized (this) {
if (owner != null && owner != Thread.currentThread()) {
throw new IllegalMonitorStateException("Monitor " + id + " is already
taken by another thread");
} else {
owner = Thread.currentThread();
}

}
while (!tryEnter(id));

Figure 3.2. Java - entering a monitor

It is a restriction of this implementation that the monitor can be used by only a single Java thread.
Therefore an exception is thrown if a different thread attempts to enter the monitor. The monitor holds
the owning thread in a field.

The intention of this method is to block the caller until the monitor is available, and the native method
tryenter will suspend the calling thread if the monitor is unavailable. However, if the C task exits the
monitor while this is taking place the Java thread may not suspend, so it is essential to retry the native
call until its return code indicates that the monitor was entered.

public void exit() throws IllegalMonitorStateException {
synchronized (this) {
if (owner != Thread.currentThread()) {
throw new IllegalMonitorStateException("Monitor " + id + " is held by a
different thread");

exit(id);
owner = null;

Figure 3.3. Java - exiting a monitor

Except for checking that the Java thread exiting the monitor is the same thread as the one that entered
it, this method relies on the native method exit.

TLT-0633-AN-MICROEJ-JavaCSync-B 7

Java / C Synchronization

3.2 C part

We will now examine the C part of the implementation of NativeMonitor. It is important when reading
this code to bear in mind that it relies on specific features of the real-time operating system, which in
this example is the Keil RTX Kernel. The parts that are OS-specific are highlighted.

The implementation is based on use of a RTX "mutex" - a resource that can be acquired by only one
RTX task. At any moment the mutex is either:

* available, or
» owned by the RTX task that is executing the MicroJvm® virtual machine, or
» owned by some other RTX task.

Each Java instance of NativeMonitor is matched in the C code with a simple data structure comprising
two fields, as shown in the figure below.

typedef struct {
int32_t javaRequester;
0S_MUT osMonitor;

} NativeMonitor;

#define NUMBER_OF_MONITORS 3
static int32_t next_monitorIndex = 0;
static NativeMonitor monitors[NUMBER_OF_MONITORS];

Figure 3.4. Monitor data structures

The javaRequester field holds the id of the Java thread waiting for this monitor, if any. The osMonitor
field holds an OS-specific data structure used to manage the mutex.

An array of these data structures is declared, and the monitor's id is the array index. Although the supplied
implementation supports 3 monitors the example uses only one of them.

3.2.1 Java native implementations

int32_t Java_com_is2t_examples_NativeMonitor_newNativeMonitor(void) {
return new_native_monitor();
}

Figure 3.5. C - Java native for creating a monitor

The behavior for creation of a monitor by the Java thread is the same as for a C task, hence the newNa-
tiveMonitor native merely delegates to the function used by C tasks, as shown later.

int32_t Java_com_is2t_examples_NativeMonitor_tryEnter(int32_t monitorID) {
NativeMonitor* monitor = &monitors[monitorID];
monitor->javaRequester = SNI_getCurrentJavaThreadID();
OS_RESULT result = os_mut_wait(&monitor->osMonitor, 0);
if (result == 0S_R _TMO) {
SNI_suspendCurrentJavaThread(0);
return JFALSE;
} else {
monitor->javaRequester = JINULL;
return JTRUE;

Figure 3.6. C - Java native for entering a monitor

The essence of this native method is that it must attempt to acquire the mutex, and if that succeeds (re-
sult != 0S_R_TMO) return a success code to the Java thread. The second parameter to the os_mut_wait

TLT-0633-AN-MICROEJ-JavaCSync-B 8

Java / C Synchronization

is 0, indicating that the caller should not be blocked if the mutex is unavailable. If the monitor cannot be
acquired the calling Java thread is suspended, and a failure code returned. In this case the Java thread
must try to enter the monitor again once it has been resumed.

void Java_com_is2t_examples_NativeMonitor_exit__ I(int32_t monitorID) {
NativeMonitor* monitor = &monitors[monitorID];
os_mut_release(&monitor->osMonitor);

Figure 3.7. C - Java native for exiting a monitor

The exit native method simply releases the mutex.

3.2.2 Functions for use by C tasks

int32_t new_native_monitor(void) {
if (next_monitorIndex == NUMBER_OF_MONITORS) {
return -1;

int32_t id = next_monitorIndex++;
NativeMonitor* monitor = &monitors[id];
os_mut_init(&monitor->osMonitor);
return id;

Figure 3.8. C - creating a monitor

This function allocates a monitor data structure and initializes the mutex in an OS-specific way. The
id of the monitor (which is the index into the array of structures) is returned. Note that this function is
not thread-safe - a full implementation should use another mutex to put the incrementing and testing of
next_monitorIndex in a critical section.

void native_monitor_enter(int32_t monitorID) {
NativeMonitor* monitor = &monitors[monitorID];
OS_RESULT result = os_mut_wait(&monitor->osMonitor, OXFFFF);

Figure 3.9. C - entering a monitor

The enter function called by C tasks just acquires the mutex in an OS-dependent manner. The second
parameter to the os_mut_wait is 0xFFFF, indicating that the caller should be blocked indefinitely if the
mutex is unavailable.

void native_monitor_exit(int32_t monitorID) {
NativeMonitor* monitor = &monitors[monitorID];
os_mut_release(&monitor->o0sMonitor);
int32_t javaRequester = monitor->javaRequester;
if (javaRequester != JNULL) {
int32_t result = SNI_resumeJavaThread(javaRequester);
}

Figure 3.10. C - exiting a monitor

When a C task exits the monitor the mutex is released and if a Java thread is waiting it is resumed.

TLT-0633-AN-MICROEJ-JavaCSync-B 9

Java / C Synchronization

4 Running the example

To run the example you must already have a suitable Java Platform (JPF), possibly a "Basic" JPF created
using the Java Platorm Example feature of the MicroEJ workbench.

1.

Import the Eclipse project provided with this Application note. The project is in the file JavacSync-
example.zip.

. Create a suitable "EmbJPF" launch configuration to build the JavacSyncExample application, and

run it.

Copy the files java_c_sync_example.c and native_monitor.c from the c-src folder to the src
folder of your BSP project.

Copy the file native_monitor.h from the c-src folder to the inc folder of your BSP project.

In Keil pVision, add the files java_c_sync_example.c and native_monitor.c to your pVision
project.

Ensure that the object file built by running the "EmbJPF" launch in the earlier step is available to
your pVision project - the projects created using the Java Platorm Example feature assume that the
Java object file is in the xxxJPF/source/1ib folder, so either your launch should copy it there or you
should reconfigure the pVision project to access it from wherever the launch puts it.

Build, deploy and run your Keil pVision project.

TLT-0633-AN-MICROEJ-JavaCSync-B 10

Java / C Synchronization

5 Document History

Date Revision Description

March 20th 2013 A First release

November 12th 2013 B MicroEJ CM_ARMCC 2.0.0 compatibility

Headquarters

11, rue du chemin Rouge
44373 Nantes Cedex 3
FRANCE

Phone: +33 2 40 18 04 96
www.is2t.com

© 2013 IS2T All right reserved. Information, technical data and tutorials contained in this document
are IS2T S.A. Proprietary under Copyright Law. Without any written permission from IS2T S.A.,
copying or sending parts of the document or the entire document by any means to third parties is not
permitted including but not limited to electronic communication, photocopies, mechanical reproduc-
tion systems. Granted authorizations for using parts of the document or the entire document do not
mean they give public full access rights.

IceTea®, IS2T®, MicroJvm®, MicroEJ®, S3™, SNI™, SOAR®, Drag Emb'Drop™, IceOS® and
all associated logos are trademarks or registered trademarks of IS2T S.A. in France, Europe, United
States or others Countries.

Java™ is Sun Microsystems' trademark for a technology for developing application software and de-
ploying it in crossplatform, networked environments. When it is used in this documentation without
adding the ™ symbol, it includes implementations of the technology by companies other than Sun.

Java™, all Java-based marks and all related logos are trademarks or registered trademarks of Sun Mi-
crosystems Inc, in the United States and other Countries.

Other trademarks are proprietary of their authors.

TLT-0633-AN-MICROEJ-JavaCSync-B 11

	Java / C Synchronization
	Table of Contents
	1 Introduction
	1.1 Intended audience
	1.2 Scope
	1.3 Prerequisites
	1.4 Files supplied with this Application Note

	2 Design
	3 Implementation
	3.1 Java part
	3.2 C part
	3.2.1 Java native implementations
	3.2.2 Functions for use by C tasks

	4 Running the example
	5 Document History

