
TLT-0629-AN-MICROEJ-SNIGPIO-D

Application Note:
TLT-0629-AN-MICROEJ-SNIGPIO

Connecting GPIOs Using SNI

In relation to: MICROEJ products

Features
This Application Note explains how to access General Purpose I/O (GPIO) pins from a Java Platform
(JPF) using the Simple Native Interface (SNI) feature.

Description
This Application Note assumes the reader wishes to understand the steps involved in adding GPIO
support to a JPF using SNI. It explains in detail all the steps required to build the platform and test it
with a simple application that controls GPIO pins that are connected to LEDs on a STM32x0G-EVAL
evaluation board.

Connecting GPIOs Using SNI

TLT-0629-AN-MICROEJ-SNIGPIO-D 2

Table of Contents
1. Introduction .. 4

1.1. Intended audience .. 4
1.2. Scope .. 4
1.3. Prerequisites ... 4

2. SNI overview ... 5
3. An outline of the required steps .. 6
4. The steps in detail .. 7

4.1. Create the Java application that will test the JPF .. 7
4.2. Build the Java application binary file .. 9
4.3. Write the required C code .. 11
4.4. Configure the Keil μVision project .. 12
4.5. Build and deploy the C project ... 13

5. Document History ... 14

Connecting GPIOs Using SNI

TLT-0629-AN-MICROEJ-SNIGPIO-D 3

List of Figures
4.1. Launch Configuration - Main tab .. 10
4.2. Launch Configuration - Execution tab ... 11
4.3. μVision Project Content Before Configuration ... 13

Connecting GPIOs Using SNI

TLT-0629-AN-MICROEJ-SNIGPIO-D 4

1 Introduction

1.1 Intended audience
The intended audience for this Application Note are developers who wish to add GPIO support to a Java
Platform, using the Simple Native Interface.

1.2 Scope
This Application Note describes the steps required to add GPIO support to an existing Java Platform
that was built for an STM3220G-EVAL or STM3240G-EVAL board.

1.3 Prerequisites
This Application Note assumes that the reader has already created a Java Platform, as described in
the TLT-0625-AN-CM_ARMCC-FromScratch Application Note. All the prerequisites specified in that
Application Note apply equally to this Note.

Connecting GPIOs Using SNI

TLT-0629-AN-MICROEJ-SNIGPIO-D 5

2 SNI overview
The Simple Native Interface (SNI) provides a mechanism for Java applications to call C functions. A
Java method that is implemented by a C function must :

• be declared as static

• be declared as native

• only use primitive types for its parameters and return value

A Java native method has no body. It is mapped to a C function whose name is Java_ followed by the
fully qualified name of the method in which “.” is replaced by “_”. We will see examples of this later.

Note that the MicroEJ Java Platform created by following the steps described in the TLT-0625-AN-
CM_ARMCC-FromScratch Application Note supports SNI without any further modifications ; SNI is
a standard feature of any MicroEJ Java Platform.

For more information about SNI see the Simple Native Interface for Green Thread Context Profile
Specification (ESR-SPE-0012-SNI-GT).

Connecting GPIOs Using SNI

TLT-0629-AN-MICROEJ-SNIGPIO-D 6

3 An outline of the required steps
To add GPIO support:

1. Create the Java application that will test the JPF
This is implemented by defining and using native methods which will be implemented in C later.

2. Build the Java application binary file
The Java project is built in the MicroEJ environment, targeting the embedded JPF (“embJPF”), to
produce a binary object file that can be linked by μVision.

3. Write the required C source code to implement the native methods.

4. Configure the Keil μVision project
The properties of the μVision project are adjusted to include the C source code that implements the
native methods.

5. Build and deploy the C project
The C project is built and deployed to the target board using the ST-LINK connection.

Connecting GPIOs Using SNI

TLT-0629-AN-MICROEJ-SNIGPIO-D 7

4 The steps in detail

4.1 Create the Java application that will test the JPF
To reduce typing, the Java application is provided with this Application Note as a ready-to-import Mi-
croEJ project. Import it using :

File → Import... → General → Existing Projects into Workspace

click on Next, select Select archive file, click on Browse and select the GPIOsExampleApp.zip archive
file, which is provided with this Note.

Three classes are provided: GPIOsExample, GPIOs and GPIOsNatives :

• GPIOsNatives defines the native methods; these will be implemented as C functions.

• GPIOs provides an API to use the methods defined by GPIOsNatives. The separation of the API from
the natives means that the API class can provide a richer API than the simple native methods.

• GPIOsExample is the class that defines the main method. It is implemented by calling the methods
provided by GPIOs.

In the MicroEJ Package Explorer, browse to the GPIOsExample Java class, which looks like this :

package com.is2t.examples.gpios;

import com.is2t.gpios.GPIOs;

/**
 * Main class of the GPIO example.
 * Creates tasks that toggle the GPIO pins, with each available pin
 * having a period twice the preceding pin.
 */
public class GPIOsExample {
 public static void main(String[] args) {
 int count = GPIOs.getGPIOsCount();

 int halfPeriodInMilliseconds = 60;
 for (int gpioId = 0; gpioId < count; gpioId++) {
 GPIOs.blinkGPIO(gpioId, halfPeriodInMilliseconds);
 halfPeriodInMilliseconds = halfPeriodInMilliseconds * 2;
 }
 }
}

This application calls methods on the GPIOs Java class (which will be shown later) to make each GPIO
“blink” - that is, turn on and off repeatedly - with increasing period.

Now browse to the GPIOs Java class. We will discuss the blinkGPIO and toggleGPIO methods only :

Connecting GPIOs Using SNI

TLT-0629-AN-MICROEJ-SNIGPIO-D 8

/**
 * Blinks a GPIO at fixed rate.
 *
 * @param id the index of the GPIO to blink
 * @param delay the delay between two toggles
 * @throws IllegalArgumentException if the given id is not valid or
 * if the GPIO is already blinking
 */
public static void blinkGPIO(final int id, long delay) throws
 IllegalArgumentException{
 if (id < 0 || id >= getGPIOsCount()) {
 throw new IllegalArgumentException();
 }
 if (isBlinking[id]) {
 throw new IllegalArgumentException();
 }
 isBlinking[id] = true;
 TimerTask task = new TimerTask() {
 public void run() {
 toggleGPIO(id);
 }
 };
 timer.scheduleAtFixedRate(task, 0, delay);
}

private static void toggleGPIO(int id) throws IllegalArgumentException{
 int resultOfToggleGPIO = GPIOsNatives.toggleGPIO(id);
 if (resultOfToggleGPIO == GPIOsNatives.INVALID_ID) {
 throw new IllegalArgumentException(id + " is invalid");
 }
}

This blinkGPIO method is implemented using a Java Timer class ; it calls toggleGPIO to per-
form the GPIO toggling. The toggleGPIO method is implemented as a call to the native method
GPIOsNatives.toggleGPIO.

Now browse to the GPIOs Java class and look at the toggleGPIO method :

/**
 * Toggles the state of a GPIO.

 * Requires that {@link #initGPIOs()} is called before.
 *
 * @param id the index of the GPIO to toggle
 * @return {@link #INVALID_ID} if the given id is invalid
 */
/* package */ static native int toggleGPIO(int id);

This is the native method; it acts as a placeholder so that Java code can compile against this method
while the implementation itself will be in C.

Part of the value added by the GPIOs class is to convert errors returned by the native methods to Java
exceptions – native methods cannot throw exceptions.

Note that the native methods do not need to be public; in fact they could even be private (but could then
only be called by methods defined in the same class). In this example, the native methods are package
visible, so they can only be called by the GPIOs class, which provides the API for use by other Java
code. The point of restricting the access to the native methods, and only providing access through the
API class, is to prevent incorrect use of the native methods. For example, the initGPIOs method should
only be called once. Restricting access to native methods to only the package that defines the API class
reduces the possibility of them being called erroneously, because they cannot be called by Java code in
any other package. If the API class is the only other class in the same package then, provided the API
is correctly implemented, users of the API cannot call the native methods erroneously.

Connecting GPIOs Using SNI

TLT-0629-AN-MICROEJ-SNIGPIO-D 9

4.2 Build the Java application binary file
The next step is to build the Java application into a binary file that can be linked with the C parts of the
platform. Note that this can be done without an implementation of the native methods – they will be
needed when compiling the application in μVision but not for building the Java application.

To build the application a suitable launch configuration must be created.

Right-click in the Package Explorer on the GPIOsExample Java class, and select :

Run As → Run Configurations...

The Run Configurations dialog will open. Double-click the MicroEJApplication entry in the list to the left
of the dialog to create a new configuration.

The details in the Main tab will be entered already, and should look like this :

Connecting GPIOs Using SNI

TLT-0629-AN-MICROEJ-SNIGPIO-D 10

Figure 4.1. Launch Configuration - Main tab

Select the Execution tab. Check the Execute on EmbJPF option, as shown below :

Connecting GPIOs Using SNI

TLT-0629-AN-MICROEJ-SNIGPIO-D 11

Figure 4.2. Launch Configuration - Execution tab

Press Run. The application is built into a binary file called SOAR.o, located in the
com.is2t.example.GPIOsExample folder of the GPIOsExampleApp project.

4.3 Write the required C code
We need to implement C functions with names that correspond to the names of the native methods in
Java. As mentioned earlier, the C function name is Java_ followed by the fully qualified name of the
native method in which “.” is replaced by “_”.

For example, consider the native method initGPIOs in com.is2t.gpios.GPIOsNatives. The C function
that corresponds to this is called Java_com_is2t_gpios_GPIOsNatives_initGPIOs.

Connecting GPIOs Using SNI

TLT-0629-AN-MICROEJ-SNIGPIO-D 12

The C code to implement the native methods for this example is included in this Application Note as
the file gpio.c, which must be copied to the FromScratch C project folder, alongside the other C source
files. Here is the Java_com_is2t_gpios_GPIOsNatives_toggleGPIO function :

/**
 * @brief To toggle output
 * @param Output ID
 * @retval OK or invalid ID
 */
int Java_com_is2t_gpios_GPIOsNatives_toggleGPIO(int id) {
 if (id >= GPIO_COUNT) return INVALID_ID;
 GPIO_ToggleBits((GPIO_TypeDef*) GPIO_PORT_ID[id], GPIO_ID[id]);
 return OK;
}

The name of this function corresponds to the native method toggleGPIO in
com.is2t.gpios.GPIOsNatives. The implementation uses the GPIO_ToggleBits function provided by
stm32f2xx_gpio.c (or stm32f4xx_gpio.c as appropriate).

Note that the GPIOs used in this implementation control the LEDs as well as pins. The GPIO id para-
meter of toggleGPIO maps to :

• id 0: LED1 (PG6, accessible on CN3 pin 24)

• id 1: LED2 (PG8, accessible on CN3 pin 22)

• id 2: LED3 (PI9, accessible on CN1 pin 12)

• id 3: LED4 (PC7, accessible on CN3 pin 20)

4.4 Configure the Keil μVision project
The Keil μVision project file Project.uvproj in the FromScratch/MDK-ARM folder must be changed to
add the extra source files. Double-click the Project.uvproj file to open it in the μVision environment.
The contents of the project will look like this (if it is the one created by following the steps described
in the TLT-0625-AN-CM_ARMCC-FromScratch Application Note) :

Connecting GPIOs Using SNI

TLT-0629-AN-MICROEJ-SNIGPIO-D 13

Figure 4.3. μVision Project Content Before Configuration

The actual files in the User group may vary.

Several different configuration actions are required :

• Add the extra C file
Right-click on the User group of the project, select Add Files to Group 'User'... and select the file gpio.c
that was provided with this Application Note.

• Remove the FromScratch application
Right-click on the SOAR.o file and select Remove File

• Add the GPIOExamples application
Right-click on the MicroEJ group and select Add Files to Group 'MicroEJ'.... Navigate to the
com.is2t.example.GPIOsExample folder of the GPIOsExampleApp application, and select the SOAR.o
file. It may be necessary to select Files of type: All files (*.*) in the dialog box to see the file. Press Add.
If μVision asks for the type of the file, select Object file.

4.5 Build and deploy the C project
The C code should now compile cleanly. Build it using Project → Build target (F7). It can now be down-
loaded to the target board using the ST-LINK connection. Reset the board to run the application and the
relevant GPIO pins will toggle (and the associated LEDs will blink).

Connecting GPIOs Using SNI

TLT-0629-AN-MICROEJ-SNIGPIO-D 14

5 Document History
Date Revision Description
February 19th 2013 A First release
February 25th 2013 B Minor improvements to the text
November 12th 2013 C MicroEJ 2.0.0 compatibility
July 11th 2014 D MicroEJ 3.0.0 compatibility

 Headquarters
 11, rue du chemin Rouge
 44373 Nantes Cedex 3
 FRANCE
 Phone: +33 2 40 18 04 96
 www.is2t.com

© 2012 IS2T All right reserved. Information, technical data and tutorials contained in this document
are IS2T S.A. Proprietary under Copyright Law. Without any written permission from IS2T S.A.,
copying or sending parts of the document or the entire document by any means to third parties is not
permitted including but not limited to electronic communication, photocopies, mechanical reproduc-
tion systems. Granted authorizations for using parts of the document or the entire document do not
mean they give public full access rights.

IceTea®, IS2T®, MicroJvm®, MicroEJ®, S3™, SNI™, SOAR®, Drag Emb'Drop™, IceOS® and
all associated logos are trademarks or registered trademarks of IS2T S.A. in France, Europe, United
States or others Countries.

Java™ is Sun Microsystems' trademark for a technology for developing application software and de-
ploying it in crossplatform, networked environments. When it is used in this documentation without
adding the ™ symbol, it includes implementations of the technology by companies other than Sun.

Java™, all Java-based marks and all related logos are trademarks or registered trademarks of Sun Mi-
crosystems Inc, in the United States and other Countries.

Other trademarks are proprietary of their authors.

	Connecting GPIOs Using SNI
	Table of Contents
	1 Introduction
	1.1 Intended audience
	1.2 Scope
	1.3 Prerequisites

	2 SNI overview
	3 An outline of the required steps
	4 The steps in detail
	4.1 Create the Java application that will test the JPF
	4.2 Build the Java application binary file
	4.3 Write the required C code
	4.4 Configure the Keil μVision project
	4.5 Build and deploy the C project

	5 Document History

