
TLT-0628-AN-MICROEJ-FrontPanelMock-E

Application Note:
TLT-0628-AN-MICROEJ-FrontPanelMock

Adding a Front Panel Mock

In relation to: MICROEJ products

Features
This Application Note explains how to add a Front Panel Mock to a JPF (Java Platform), so that appli-
cations which use a display or react to input devices events can be run in the Simulator.

Description
This Application Note assumes the reader wishes to understand the steps involved in adding a Front
Panel Mock, which a the visual component of the Simulator, to a Java Platform. It explains in detail
all the steps required to create the Front Panel Mock and test it with a simple application that draws on
the display and reacts to input devices events.

Adding a Front Panel Mock

TLT-0628-AN-MICROEJ-FrontPanelMock-E 2

Table of Contents
1. Introduction .. 4

1.1. Intended audience .. 4
1.2. Scope .. 4
1.3. Prerequisites ... 4

2. An Outline of the Steps .. 5
3. The Steps In Detail ... 6

3.1. Create the JPF configuration ... 6
3.2. Configure and build the JPF ... 7
3.3. Define the Front Panel content and behavior ... 9
3.4. Import the Java application that will test the JPF .. 13
3.5. Run the application in the Simulator ... 14

4. Document History ... 15

Adding a Front Panel Mock

TLT-0628-AN-MICROEJ-FrontPanelMock-E 3

List of Figures
3.1. Java Platform Configuration (architecture selection) ... 6
3.2. Java Platform Configuration (properties set) .. 7
3.3. Java Platform Configuration (modules selection) ... 8
3.4. Java Platform Configuration (project content) .. 9
3.5. MicroEJ workbench .. 13

Adding a Front Panel Mock

TLT-0628-AN-MICROEJ-FrontPanelMock-E 4

1 Introduction

1.1 Intended audience
The intended audience for this Application Note are developers who wish to run applications which use
a display, hardware buttons or touch screen in the simulator.

1.2 Scope
This Application Note describes the steps required to add a Front Panel Mock, supporting buttons and
touch screen, to a JPF.

1.3 Prerequisites
The MicroEJ environment for MicroEJ® (MICROEJ-PKG-STD-MICROEJ-3.1.0 or later) must be in-
stalled and any required licenses obtained.

This Application Note assumes that the reader has already read the TLT-0626-AN-
MICROEJ_MicroUIButtons and TLT-0627-AN-MICROEJ_MicroUIDisplay Application Notes in order
to understand about displays and inputs management. However, adding a Front Panel Mock to a JPF
does not require a C environment, so has fewer prerequisites than either of those Application Notes.

Furthermore, one of the strengths of MicroEJ® is that it allows applications to be developed against a
simulator even before the hardware is available.

For convenience, this Application Note will start from scratch, but it is straightforward to apply the
same steps to an existing JPF.

Adding a Front Panel Mock

TLT-0628-AN-MICROEJ-FrontPanelMock-E 5

2 An Outline of the Steps
To create and use a JPF that includes a Front Panel Mock, following steps needs to be done :

1. Create a JPF configuration project.
A JPF Configuration project is created within the MicroEJ environment. It is based on a supplied
JPF Architecture.

2. Configure and build the JPF.
A JPF is created within the MicroEJ environment. The JPF is built in function of its configuration.

3. Define the Front Panel content and behavior.
This involves creating a definition of the visual and event handling characteristics of the hardware.

4. Import the Java application that will test the input support and use the display of the JPF.
A Java project is created within the MicroEJ environment, and the required code written.

5. Run the application in the simulator.

Adding a Front Panel Mock

TLT-0628-AN-MICROEJ-FrontPanelMock-E 6

3 The Steps In Detail

3.1 Create the JPF configuration
The first step is to create a JPF Configuration based on one of delivered JPF architectures. Here we will
assume use of the CORTEX-M3-based JPF Architecture. Create the JPF Configuration by selecting, in
the MicroEJ environment : File → New → Java Platform

A dialog box appears in order to provide the JPF Architecture selection and to suggest to start from an
JPF example. For the application note, select the CORTEX-M3-based JPF Architecture. To create a JPF
"from scratch", uncheck the option "Create a platform from an example or a template".

Figure 3.1. Java Platform Configuration (architecture selection)

Click on Next. JPF creation wizard continues asking to set a name for the future project and properties
for the created JPF. Please fill the form like following:

Adding a Front Panel Mock

TLT-0628-AN-MICROEJ-FrontPanelMock-E 7

Figure 3.2. Java Platform Configuration (properties set)

The provider can be any name you wish. On pressing Finish, a new project is created containing the
JPF configuration.

3.2 Configure and build the JPF
The next step consists to select necessary modules, configure them and then build the JPF regarding
the configuration.

3.2.1 Select the necessary modules
In order to simulate an application that reacts from user inputs and displays information on a screen, the
JPF needs to be populated by the FrontPanel module. This module depends on MicroUI and Display ones.
These dependencies are listed by the details panel when you click on FrontPanel module.

FrontPanel depends on MicroUI in order to be able to get same EventGenerators indexes than the
ones used by embedded platform (cf. TLT-0626-AN-MICROEJ_MicroUIButtons). The Section 3.3 will
explain how to use them.

FrontPanel depends on Display in order to simulate the bits per pixels value used by the device screen.
Display module configuration needs also some other properties but they are not relevant with simulation.

The Content tab of the FrontPanelJPF.platform file editor allows you to select the modules ; check the
required modules like on following figure :

Adding a Front Panel Mock

TLT-0628-AN-MICROEJ-FrontPanelMock-E 8

Figure 3.3. Java Platform Configuration (modules selection)

3.2.2 Configure the modules
For each module, JPF configuration editor shows module's details like file for module configuration.
Thus, and with the help of User's Manuals, it is possible to configure wanted modules. The following
explains how to configure selected modules to be able to execute an application that handles Buttons
and Pointer events and displays information on a screen :

• FrontPanel : it requires "frontpanel/frontpanel.properties" file. A folder named "frontpanel" needs to
be created on JPF Configuration project, on which we have to create the "frontpanel.properties" file.
This file is provided by the application note ; it defines the mandatory FrontPanel project name. This
project doesn't exist for now, it will be created during the JPF building.

• MicroUI : it requires "microui/microui.xml" file. To understand how to populate this XML file, please
refer to ARM Cortex-Mx - UI User Manual at chapter "Static Initialization". For the application note,
this file is provided. It defines two MicroUI elements : a Display and two EventGenerators (one for
buttons and the other for touch screen).

• Display : it requires "display/display.properties". Please refer to ARM Cortex-Mx - UI User Manual
at chapter "Display" to understand provided property file. This latter defines the display module as the
default one. For this kind of display module, we have to configure the others properties (bpp, layout
and mode). For the application note example, we will simulate a display of 16 bpp.

The JPF Configuration project content should now look like the following figure :

Adding a Front Panel Mock

TLT-0628-AN-MICROEJ-FrontPanelMock-E 9

Figure 3.4. Java Platform Configuration (project content)

3.2.3 Build the JPF
The FrontPanelJPF.platform file editor provides a facility to build the JPF thanks to the Build Platform
link on the Overview tab. By clicking on it, some projects are generated within the workspace after a
process time. Are generated :

• a JPF project, notable by a JFP icon, which name is the concatenation of the JPF name and its version.
It contains JPF source files.

• A FrontPanel project, notable by a FP icon, which name has been defined on properties file. A prop-
erties file named microui.properties is generated by JPF builder from MicroUI configuration. It
contains the EventGenerators names and internal indexes.

The next step consists to define and implement the front panel content. That is the subject of the next
section.

3.3 Define the Front Panel content and behavior
In this section we will describe the use of the Front Panel Designer tool. For further discussion about
the Front Panel Designer, see ARM Cortex-Mx - UI User Manual.

3.3.1 Add Resources
To create a Front Panel Mock, you need to provide an image to use as the visual representation of the
hardware. We have provided an image stm32_skin.png which you can use. Copy this into the resources
folder of the front panel project.

In order to animate button presses, you need to provide an image of a button when pressed and when
not pressed. We have provided images Button_down.png and Button_up.png which you can use. Copy
these into the resources folder too.

3.3.2 Add a Button Listener
In order to simulate a hardware button press, the Front Panel Mock needs to know how to
handle button input events. For the purposes of this Application Note, we will use the sim-
plest possible event handling. Create a class in the src folder of the FrontPanelJPF-fp project,
by selecting the src folder, and then selecting File → New → Class. Enter the package name
com.is2t.example and class name MyButtonListener. Then click the Add... button and select the
com.is2t.microej.frontpanel.input.listener.PushButtonListener interface.

The implementation of MyButtonListener needs to do the same as whatever the hardware button will
do. In this case, we will make it send button pressed and released events :

Adding a Front Panel Mock

TLT-0628-AN-MICROEJ-FrontPanelMock-E 10

package com.is2t.example;

import com.is2t.microej.frontpanel.input.generator.EventGenerator;
import com.is2t.microej.frontpanel.input.listener.PushButtonListener;
import com.is2t.microej.microui.Constants;

public class MyButtonListener implements PushButtonListener {

 /*
 * Name of buttons EventGenerator
 */
 private String eventName = "HWBUTTONS";

 @Override
 public void press(int buttonId) {
 EventGenerator.sendButtonPressedEvent(eventName, buttonId);
 }

 @Override
 public void release(int buttonId) {
 EventGenerator.sendButtonReleasedEvent(eventName, buttonId);
 }

}

The interface PushButtonListener defines two methods that must be implemented that are called when
the virtual button displayed on the Front Panel Mock is pressed and released. The implementation above
sends events to the Buttons event generator by making calls to the static methods of the EventGenerator
class. The methods provided by this class mirror exactly the functions provided by the C equivalent, as
defined in the LLINPUT API (defined in the LLINPUT.h file).

The first parameter of the two EventGenerator methods called is the ID of the event generator that
should process these events, which in this case is the Buttons event generator called HWBUTTONS. The
Constants interface was generated by the JPF builder.

This code is available in the App Note in the file MyButtonListener.java.

3.3.3 Add a Pointer Listener
Like the adding of Button Listener, it is necessary to create a Pointer Listener to simulate a touch hard-
ware press. Create a class named MyPointerListener near MyButtonListener, which implements the
com.is2t.microej.frontpanel.input.listener.PointerListener interface.

The implementation of MyPointerListener needs to do the same as whatever the hardware touch will
do. In this case, we will make it send pointer pressed, moved and released events :

Adding a Front Panel Mock

TLT-0628-AN-MICROEJ-FrontPanelMock-E 11

package com.is2t.example;

import com.is2t.microej.frontpanel.input.generator.EventGenerator;
import com.is2t.microej.frontpanel.input.listener.PointerListener;
import com.is2t.microej.microui.Constants;

public class MyPointerListener implements PointerListener {

 /*
 * Name of touch EventGenerator
 */
 private String eventName = "TOUCH";

 @Override
 public void move(int x, int y) {
 EventGenerator.sendPointerMovedEvent(eventName, x, y, true);
 }

 @Override
 public void press(int x, int y, int pointerId) {
 EventGenerator.sendPointerPressedEvent(eventName, pointerId, x, y, true);
 }

 @Override
 public void release(int x, int y, int pointerId) {
 EventGenerator.sendPointerReleasedEvent(eventName, pointerId);
 }

}

This code is available in the App Note in the file MyPointerListener.java.

3.3.4 Add a Display Extension
In order to simulate a hardware display, the Front Panel Mock needs to know how to convert the MicroUI
representation of colors to and from the display representation of colors. These conversions are coded
in a display extension.

Create a class in the src folder of the FrontPanelJPF-fp project by selecting the
src folder and then selecting File → New → Class. Enter the package name
com.is2t.example and class name MyDisplayExtension. Then specify the superclass :
com.is2t.microej.frontpanel.display.GenericDisplayExtension.

The display extension needs to override 6 methods. The implementation of these methods will be dis-
cussed one at a time :

@Override
public boolean isColor() {
 return true;
}

It is a color display.

Adding a Front Panel Mock

TLT-0628-AN-MICROEJ-FrontPanelMock-E 12

 /**
 * rgb color: xxxx xxxx RRRR Rxxx GGGG GGxx BBBB Bxxx
 * lcd color: RRRR RGGG GGGB BBBB
 * we keep 5 msbits R & B and 6 mbmits for G
 */
 @Override
 public int convertRGBColorToDisplayColor(int rgbColor) {
 /* The RGB value encodes:
 0xf80000 = 1111 1000 0000 0000 0000 0000 - the RED part
 0x00fc00 = 1111 1100 0000 0000 - the GREEN part
 0xf8 = 1111 1000 - the BLUE part
 */
 return ((rgbColor & 0xf80000) >> 8) |
 ((rgbColor & 0x00fc00) >> 5) |
 ((rgbColor & 0xf8) >> 3);
 }

The Front Panel Mock needs to know how to convert colors from the MicroUI representation to the dis-
play representation. The equivalent function is shown in the TLT-0627-AN-MICROEJ_MicroUIDisplay
Application Note in the implementation of display.c for adding support for a display on an actual target.

 /**
 * lcd color: RRRR RGGG GGGB BBBB
 * rgb color: 0000 0000 RRRR R000 GGGG GG00 BBBB B000
 * we keep 5 msbits R & B and 6 mbmits for G
 */
 @Override
 public int convertDisplayColorToRGBColor(int color) {
 /* The display pixel value encodes:
 0xf800 = 1111 1000 0000 0000 - the RED part
 0x07e0 = 111 1110 0000 - the GREEN part
 0x001f = 1 1111 - the BLUE part
 */
 return ((color & 0xf800) << 8) |
 ((color & 0x07e0) << 5) |
 ((color & 0x001f) << 3);
 }

Similarly to convertRGBColorToDisplayColor, the Front Panel Mock needs to know how to convert
colors from the display representation to the MicroUI representation. The equivalent function is shown in
the TLT-0627-AN-MICROEJ_MicroUIDisplay Application Note in the implementation of display.c.

This code is available in the App Note in the file MyDisplayExtension.java.

3.3.5 Configure fp File
The Front Panel Mock is configured using a .fp file. Create a device.fp file within the definitions
folder of the FrontPanelJPF-fp project. Right-click and select Open With → XML Editor.

Then specify the skin – this is the image that is used to visually represent the hardware. In this case, we
have provided a photograph of part of the STM3220G-EVAL board which was previously copied to the
resources folder. To do so, copy the following code :

<?xml version="1.0"?>
<frontpanel
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://xml.is2t.com/ns/1.0/frontpanel"
 xsi:schemaLocation="http://xml.is2t.com/ns/1.0/frontpanel .fp1.0.xsd">
 <description file="widgets.desc"/>
 <device name="STM3220G-EVAL" skin="stm32_skin.png">
 <body />
 </device>
</frontpanel>

Adding a Front Panel Mock

TLT-0628-AN-MICROEJ-FrontPanelMock-E 13

Save the file and open the Front Panel Preview view, if it isn't already open, by selecting Window →

Show View → Other... → MicroEJ → Front Panel Preview. Your MicroEJ workbench should now look
something like this:

Figure 3.5. MicroEJ workbench

Of course, the mock won't respond to input events yet. We need to configure the front panel to identify
where the hardware button is that we want to simulate.

Simulated hardware elements are defined within the <body> tag of the .fp file. We will add a push, a
pointer and a pixelatedDisplay element to represent device hardwares. To know how define these
elements, you can refer to the widgets.desc file on the definitions folder.

• push tag definition defines which images represent button pressed and released states. The
Button_up.png image is a photograph of a hardware button when not pressed, and Button_down.png
is a version of that image made to look like the button is down. They have to be precisely located
to appear in the correct place over the hardware button on the stm32_skin.png image. In this case,
we have located this button in the “wakeup” button location. The button ID is the value passed to the
listener methods. Each button must have a unique ID.

• pointer tag defines the active area, represented by its top-left corner location on skin, its width and
height. Like push element, each touch must have a unique ID.

• pixelatedDisplay tag defines the simulated screen, also represented by its top-left corner location
on skin, its width and height.

The device.fp file should be like the one provided by the Application Note. You can now test the input
elements by clicking on them in the Front Panel Preview using the mouse. The FrontPanelPreviewCon-
sole should show some traces. Output elements are visible by clicking on FrontPanel Preview Outputs
button.

3.3.6 Export the Front Panel Mock
In order to be available in the JPF, the Front Panel Mock must now be exported to it. Select the Front-
PanelJPF-fp project, right click and select Export... → MicroEJ → Front Panel. Press Next followed by
Finish and the Front Panel Mock will be exported into the JPF.

3.4 Import the Java application that will test the JPF
Import the Java Project "FrontPanelApp" delivered with the application note. This operation can be done
using : File → Import... → Existing Projects into Workspace → Select archive file. The project is copied
within the workspace.

Adding a Front Panel Mock

TLT-0628-AN-MICROEJ-FrontPanelMock-E 14

The class DisplayAndInputsApp contains the main method. Execution begins by checking if platform
has well been configured ; it stops if there is no EventGenerator of type Buttons and if no Display is
reachable. Once execution has passed these tests, the application implements a MVC pattern :

• MyModel represents the Model and contains a boolean value.

• MyEventListener plays the Controller role. It is notified of input events, and in case of Buttons ones,
it modified the Model switching the state of its boolean.

• MyView class is the View part of the design pattern. Associated to a Model, a View is requested by
MicroUI to be repainted each time the Model changes.

3.5 Run the application in the Simulator
The application can now be executed using the simulator. Select the class DisplayAndInputsApp, right-
click and select Run As → MicroEJ Application. A dialog appears to choose the JPF that will execute the
application ; select the FrontPanelJPF one.

When the application starts, it opens the Front Panel Mock into a workstation frame. Press any buttons
or touch the screen of the Front Panel Mock by using the mouse ; the application will react to the press
and release events by refreshing the screen and outputting to the console :

button was pressed
button was released

Adding a Front Panel Mock

TLT-0628-AN-MICROEJ-FrontPanelMock-E 15

4 Document History
Date Revision Description
February 19th 2013 A First release
June 20th, 2013 B Removed unnecessary fragment install steps
November 12th 2013 C Product version 2.0.0 compatibility
July 4th 2014 D Product version 3.0.0 compatibility
October 16th 2014 E Product version 3.1.0 compatibility

 Headquarters
 11, rue du chemin Rouge
 44373 Nantes Cedex 3
 FRANCE
 Phone: +33 2 40 18 04 96
 www.is2t.com

© 2014 IS2T All right reserved. Information, technical data and tutorials contained in this document
are IS2T S.A. Proprietary under Copyright Law. Without any written permission from IS2T S.A.,
copying or sending parts of the document or the entire document by any means to third parties is not
permitted including but not limited to electronic communication, photocopies, mechanical reproduc-
tion systems. Granted authorizations for using parts of the document or the entire document do not
mean they give public full access rights.

IceTea®, IS2T®, MicroJvm®, MicroEJ®, S3™, SNI™, SOAR®, Drag Emb'Drop™, IceOS® and
all associated logos are trademarks or registered trademarks of IS2T S.A. in France, Europe, United
States or others Countries.

Java™ is Sun Microsystems' trademark for a technology for developing application software and de-
ploying it in crossplatform, networked environments. When it is used in this documentation without
adding the ™ symbol, it includes implementations of the technology by companies other than Sun.

Java™, all Java-based marks and all related logos are trademarks or registered trademarks of Sun Mi-
crosystems Inc, in the United States and other Countries.

Other trademarks are proprietary of their authors.

	Adding a Front Panel Mock
	Table of Contents
	1 Introduction
	1.1 Intended audience
	1.2 Scope
	1.3 Prerequisites

	2 An Outline of the Steps
	3 The Steps In Detail
	3.1 Create the JPF configuration
	3.2 Configure and build the JPF
	3.2.1 Select the necessary modules
	3.2.2 Configure the modules
	3.2.3 Build the JPF

	3.3 Define the Front Panel content and behavior
	3.3.1 Add Resources
	3.3.2 Add a Button Listener
	3.3.3 Add a Pointer Listener
	3.3.4 Add a Display Extension
	3.3.5 Configure fp File
	3.3.6 Export the Front Panel Mock

	3.4 Import the Java application that will test the JPF
	3.5 Run the application in the Simulator

	4 Document History

