® Application Note:
’SZT TLT-0627-AN-CM_ARMCC-MicroUIDisplay

Adding Support For A Display

In relation to: CM_ARMCC products

Features

This Application Note explains how to create a Java Platform with support for a display, using the Mi-
croEJ® environment and the ST Standard Peripherals Library, and how to build it using Keil pVision.

Description

This Application Note assumes the reader wishes to understand the steps involved in creating a Java
Platform with support for a display. It explains in detail all the steps required to build the platform and
test it with a simple application that draws on the display.

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C

Adding Support For A Display

Table of Contents

R 01004 L1 Lot o) AU UP PP PUPPPPRIN 4
I L 20 Ta T B 16) 2 o (o P 4
12 SCOPE ettt ettt et e et e e et e e et e e et e e et e e et e eaaaanns 4
1.3, PIEIEQUISITES .eevvuunreiiiiieretitieeeetiiaeeerttiaeeetttueeeerunseeeananeseeesnnssesesnnssesssnnseessnnnseesssnnssensnnnns 4
2. MicroUI displays: principles of OPerationcceceeeeeeerrrrrrrsieriiesssssssessseee s e 5
2.1, FIOW Of COMEIOL ...eeeiiiiiiiiieieeee ettt e e e e e ettt e e e e e e e aeteeeeeeeeeenanes 5
2.2. APIs, implementations and iNStANCESceerrurrerrreeeerirniiiiieeeeeeeeererirereeeeeeeeeseanrreeeeeas 5
3. An outline of the TEQUITEA STEPS ..ceeeeeeeeeeeeeeeeeeee ee e e e e e e eeeeas 7
4. The StePS N AELATLueeeeei s 8
4.1. Enhance the JPF ...ttt ettt e e e e ettt e e e e e e s e 8
4.2. Create the Java application that will test the JPFcccoeiiiiiiiiiiiiiiee e, 9
4.3. Build the Java application binary fileccoooiiiiiiiiiiiiii e 9
4.4. Write the required C filescceeiiiiiii 11
4.5. Configure the Keil HViSiON PIrOJECEvvvieerieieereiiiiiieeeeeeeeeieteee e e e e eesrerreeeeeseeseneneeees 14
4.6. Build and deploy the C PrOJECtcccieiiiiiiiiiiiiiiiiiciccccceceeeeeeeeeeee e 16
5. DOCUMENT HISTOTY .eeerrniiiieeeieiiiiiiiiee ettt e ettt e e e e e et tteb e e e e e e e teenbaa e e e eeeeeeennnnnannnns 17

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 2

Adding Support For A Display

List of Figures

2.1. Overall FIOW Of COMLIOLccitiiiiiiiiiiiitiieeee ettt ettt e e e ettt e e e e e e eebieeeeeeeeeenas 5
2.2. Native Implementation MOdEluuoieeiiiiiiiiiiiie e e e e e e e e e e eeeaanaeeeeeeeeeaeees 6
4.1. Launch Configuration - Main Tabccccceieioioiiiiiiiciieiicererr s 10
4.2. Launch Configuration - EXecution Tabccccccoieiiiiiiiiiiiiiiiiiicc e 11
4.3. pVision Project Content Before Configurationceeeeeriiiiiiiiieieeeeiinniiiieeeec e 15
4.4. pVision Project Content After Configurationccccceeviiiiiiiii, 16

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 3

Adding Support For A Display

1 Introduction

1.1 Intended audience

The intended audience for this Application Note are developers who wish to add support for a display
to a MicroEJ® Java Platform (JPF).

1.2 Scope

This Application Note describes the steps required to add support for a display to an existing MicroEJ
Java Platform that was built for an STM3220GEVAL or STM3240GEVAL board.

1.3 Prerequisites

This Application Note assumes that the reader has already created a Java Platform with no display sup-
port, as described in the TLT-0625-AN-CM_ARMCC-FromScratch Application Note. All the prerequi-
sites specified in that Application Note apply equally to this note.

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 4

Adding Support For A Display

2 MicroUl displays: principles of operation

This section focuses on those aspects of MicroUI™ relevant to this Application Note. For full details
about the operation of MicroUI please consult the UI Pack Reference Manual.

2.1 Flow of control

The diagram below shows the overall flow of control.

Low-level driver LLDISPLAY

! . Display
implementation

(display_driver.c) stack
(display.c)

native (C) code User-provided code shown in blue
Java code
Application MicroUl
library

Draw operations >

Figure 2.1. Overall Flow of Control

When the application draws on the display the MicroUI Java library interacts with the display stack to
translate the draw requests into pixel updates. The display stack is code that bridges between the Java
and C worlds, and implements the selected display policies. When the display stack wishes to update
the physical display it makes to a request to the user-supplied driver, which is an implementation of an
LLDISPLAY API. In this example the driver is divided into two parts: display.c is a mostly hardware-in-
dependent implementation of the LLDISPLAY API, while display_driver.c handles the interaction with
the hardware.

A number of different display stack implementations are supplied with the MicroEJ Java platform, each
tailored to different hardware capabilities and different buffering policies. This example uses the 16-xy-
copy stack implementation because:

» The display supports 16 bits-per-pixel

» The driver assumes pixels are laid out in the back buffer row-by-row (xy), rather than column-by-
column (yx)

» The display cannot be switched dynamically to refresh from different buffers, so to achieve dou-
ble-buffering the back buffer is copied to the display buffer when drawing is complete.

There are also different versions of the LLDISPLAY API, each tailored to a different buffering policy.
In this case the driver must implement the LLDISPLAY_coPY API because double buffering is achieved

by copying.

2.2 APIs, implementations and instances
The LLDISPLAY_cOPY is defined by two files provided with the JPF:

* LLDISPLAY_COPY.h

LARM Cortex-Mx ARMCC - UI Reference Manual

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 5

Adding Support For A Display

* LLDISPLAY_COPY_IMPL.h

The first of these defines the API that the display stack provides, the second defines the API that the
driver has to implement (i.e. functions that are called by the display stack).

To avoid conflicts in platforms with two or more displays, each implementation of the API must be
given a unique name. C macros are used to create names for the implemented functions that incorporate
the implementation name. The implementation name is defined by the user in the driver source code
using a #define statement.

The implementation must declare a data structure that represents the display at run-time. This data struc-
ture roughly corresponds to the concept of a run-time object instance.

The UML diagram below summarizes these concepts.

Defined by a user-written .c
file. Has a unique name

\\
\
N

API L * limplementation

L

Defined by two header files:
one that defines the usage

API, one that defines the 1.
functions that must be
implemented

Instance

/

Exists only at run-time.
Represented by a data structure,
which is the first parameter of all
calls to the implementation

[

Figure 2.2. Native Implementation Model

The example in this Application Note creates a single implementation, and a single instance of the
implementation.

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 6

Adding Support For A Display

3 An outline of the required steps
To add support for a display:

1. Enhance the JPF

2. Create the Java application that will test the JPF

A Java project is created within the MicroEJ environment, and the required code written.

3. Build the Java application code

The Java project is “run” in the MicroEJ environment to produce a binary object file that can be
linked by pVision.

4. Write the required C files

5. Configure the Keil pVision project

The properties of the pVision project are adjusted so that it includes all the required sources and
libraries, and refers to the correct header files.

6. Build and deploy the C project

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 7

Adding Support For A Display

4 The steps in detail

4.1 Enhance the JPF

This Application Note assumes that you already have a basic JPF, like that created in the TLT-0625-
AN-CM_ARMCC-FromScratch Application Note, and covers the enhancement of the JPF and board
support package (BSP) to add support for a display.

4.1.1 Modules

A MicroEJ module is a group of related files (Java libraries, scripts, link files, native libraries, mocks,
etc.) that together provide all or part of a platform functionality.

JPF architectures provide a set of modules that can be selected thanks to the JPF configuration file (eg
xxx.platform file). The content tab of the latter provides facilities to select one or several modules. The
Build Platform task then deploys selected modules on the JPF.

Module description can be seen by selecting it on JPF configuration interface. Most of modules needs
to be configured ; if it's the case, module details contain a Configuration item explaining which file has
to be created in order to configure the module.

4.1.2 Select the required modules

To support board screen, it is necessary to install and configure three modules: bsp, microui and dis-
play. Microui module is a Java library that exposes to application features in order to manipulate the
screen (ex: Screen.class). Display module is a native library necessary for MicroUI internal function-
ing. BSP module is needed to do the link with C implementation. To select them,

* Open the xxx.platform file of your JPF configuration project,
* Go to the content tab,

* On Modules part, check Build Support > Board Support Package, Ul > Display and Ul > MicroUl items.

4.1.3 Configure selected modules
The next step is to configure these modules.

+ Display module can be configured using a display/display.properties file (cf module details).

Create an display folder on the JPF configuration project and copy the display.properties file
provided by the Application Note on it. This configuration file tells builder to deploy the "default"
display module implementation. This "default" implementation also needs to be configured ; that's
why a properties file is needed to define the number of bits per pixels, the pixel memory layout and
the buffering mode. Those parameters are described in details on UI user manual. Please refer to it
to further understanding.

* MicroUI module has to be configured using a microui/microui.xml file (cf module details).

Create an microui folder on the JPF configuration project and copy the microui.xml file provided
by the Application Note on it. For this example, only a very simple configuration is required ; the
file contains the following:

<microui>
<display name="DISPLAY"/>
</microui>

This spe2cifies that the MicroUI configuration will comprise a single display, whose name will be
DISPLAY".

’The name has no significance when there is only one display.

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 8

Adding Support For A Display

BSP module can be configured using a bsp/bsp.xml file (cf module details on §8.7 of UI Users
Manual).

Create an bsp folder on the JPF configuration project and copy the bsp.xml file provided by the
Application Note on it.

4.1.4 Update the JPF

In order to add input and microui modules on the JPF, launch the Build Platform task. JPF source folder
is modified to contain modules files.

4.2 Create the Java application that will test the JPF

To reduce typing, the Java application is provided with this Application Note as a ready-to-import Mi-
croEJ project.

Create a new MicroEJ Java Project. Do this by selecting:

File — Import... — General — Existing Projects into Workspace

and selecting the MicrouIDisplayApp.zip archive file.

In the Package Explorer, browse to the MicrouIDisplay Java class, which looks like this:

package com.is2t.example;

import ej.microui.Colors;
import ej.microui.io.Display;
import ej.microui.io.GraphicsContext;

public class MicroUIDisplay {

public static void main(String[] args) {

[1] Display display = Display.getDefaultDisplay();
[2] GraphicsContext gc = display.getNewGraphicsContext();

int w = display.getwidth();
int h = display.getHeight();
gc.setColor(Colors.BLUE);

[3] gc.fillRect(®, 0, w / 3 + 1, h);

}

gc.setColor(Colors.WHITE);

gc.fillRect(w / 3, 0, w / 3 + 1, h);
gc.setColor(Colors.RED);

gc.fillRect(2 *w / 3, 0, w / 3 + 1, h);

The key lines in the application are marked with numbers:

1.

The static method getDefaultDisplay is called to get a reference to the display (in this case there
is only one, so the default display is the only display).

. The display is used to get a reference to a GraphicsContext, which supports drawing commands.

This example paints directly on the display; more typically the application would use the MicroUI
framework where a GraphicsContext is passed as a parameter into a paint or repaint method of a
View or Viewable, but a discussion of the MicroUI framework is beyond the scope of this document.

Having set the color that will be used in subsequent drawing commands, the third left part of screen
is filled blue.

4.3 Build the Java application binary file

The next step is to build the Java application into a binary file that can be linked with the C parts of
the platform.

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 9

Adding Support For A Display

To build the application a suitable launch configuration must be created.

Right-click in the Package Explorer on the MicroUIDisplay Java class, and select:

Run As — Run Configurations...

The Run Configurations dialog will open. Double-click the MicroEJApplication entry in the list to the left

of the dialog to create a new configuration.

The details in the Main tab will be entered already, and should look like this:

4 Run Cenfigurations

Create, manage, and run configurations

o Iy . . .
= *| = & Mame: MicroUIDisplay
type filter text
@ Launch Group

4 [3] MicroE) Application

3] Main s Execution | }1} Configuration| =) JRE| B~ Source| = Common

Project

MicrolUIDisplayA,
31 MicroUIDisplay weroispayApep
L Microb) Tool Main type, Required types

com.is2t.example.MicroUIDisplay

Select Main type...

O

Browse...

Resources

il 1

Add types...
Extra types...

Remove

Immutables

Add...

Remaove

Filter matched 4 of 14 items

Add...

Remove

Revert

@ [

) {

Close

Figure 4.1. Launch Configuration - Main Tab

Select the Execution tab. Check the Execute on EmbJPF option, as shown below:

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 10

Adding Support For A Display

4 Run Cenfigurations @

Create, manage, and run configurations ~—

TE X | = Gp v Mame: MicroUIDisplay
type filter text [31 Main | =i Execution . 31! Configuration | =) JRE| & Source| 5 Common
= Launch Group Target
4[] Microk) Application IPF: | STM32-MicroUlDisplay-CMA_ARMCC (1.0.0) v|
7] MicroUlIDisplay
@ MicroE) Tool i
Execute on SimJPF @ Execute on EmbJPF
Microlvm Mode: |Default v|
Default Settings: |Bui|d & Deploy v|

The application is generated, linked and deployed.

Options
Output folder: S{workspace_loc}/MicreUlDisplayApp Browse...
| Clean intermediate files Verbose
Filter matched 4 of 14 items e ==
3
"‘?,' [Run l | Close

Figure 4.2. Launch Configuration - Execution Tab

Press Run. The application is built into a binary file called SO0AR.o, located in the
com.is2t.example.MicroUIDisplay folder of the MicrouIDisplayApp project.

4.4 Write the required C files

This Application Note does not cover creation of the most basic BSP, but assumes you already have a
“java from scratch” (see TLT-0625-AN-CM_ARMCC-FromScratch) or similar BSP.

The JPF (as enhanced earlier) contains a number of C include files that are used by the user-supplied C
implementation. These include files can be found in the xxx-jpf/source/include folder.

The user must provide C code that implements the LLDISPLAY_copYy API, as defined in the
LLDISPLAY_COPY_impl.h include file.

Suitable C implementations are provided with this Application Note. These files are in addition to those
required for a basic JPF, as supplied with the TLT-0625-AN-CM_ARMCC-FromScratch Application
Note. This Application Note assumes that the:

STM32Fxxx_StdPeriph_Lib_Vxxx/Project/FromScratch folder, as defined in JavaFromScratch, is in
place and correct.

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 11

Adding Support For A Display

The additional files supplied with this Application Note are:

* LLDISPLAY_STM32xOGEVAL.c — implements the LLDISPLAY_copY API (which is defined in
LLDISPLAY_COPY_impl.h)

* LLDISPLAY_STM32x0GEVAL.h — header file for LLDISPLAY_STM32x0GEVAL.c
* microui_bsp.c - defines the displays and image decoders

These files include comments which provide some explanation of their content. Nevertheless, some of
these files are examined in further detail in the following section.

Install the supplied files into a new C project:
1. Create a new folder: STM32Fxxx_StdPeriph_Lib_Vxxx/Project/MicroUIDisplay

2. Copy the contents of the STM32Fxxx_StdPeriph_Lib_Vxxx/Project/FromScratch folder (including
sub-folders) into the newly created folder.

3. Copy the files supplied with this Application Note into the newly created folder.

4.4.1 LLDISPLAY_STM32x0GEVAL.h
The file LLDISPLAY_STM32x0GEVAL . h includes the following lines:

[1] #define _LLDISPLAY_STM32Xx0GEVAL
#include "LLDISPLAY_COPY.h"

[2] typedef struct LLDISPLAY_STM32x0GEVAL{
struct LLDISPLAY_COPY header;
// can add some fields
} LLDISPLAY_STM32XOGEVAL;

[3] void LLDISPLAY_STM32XxOGEVAL_new(LLDISPLAY_STM32XOGEVAL* env);

#endif
The key lines are marked with numbers:

1. This defines the name of this implementation of the LLDISPLAY_copY API. This has to match the
mapping of the nativeImplementation name in bsp.xml file that we saw earlier.

2. The data structure for the run-time instance of the display. The header field must be present and be
the first field in the structure, but other fields can be added if required.

3. Declares the new function that is called to initialize the run-time instance. Note that the name of this
function must be [implementation-name]_new.

4.4.2 LLDISPLAY_STM32x0GEVAL.c

The file LLDISPLAY_STM32x0GEVAL.c implements the LLDISPLAY_CcOPY API as defined by
LLDISPLAY_coPY_impl.h. These functions are called by the display stack. All the functions have as
their first parameter a pointer to the instance data structure, the structure of which is defined in the
LLDISPLAY_STM32xOGEVAL.h file.

The contents of LLDISPLAY_STM32x0GEVAL . c are described a section at a time.

uint8_t LLDISPLAY_COPY_IMPL_initialize(LLDISPLAY_COPY* env) {
_STM32xxG_LCD_Init();
LCD_Clear (White);
return MICROEJ_TRUE;
}

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 12

Adding Support For A Display

The initialization function delegates to the display driver.

int32_t LLDISPLAY_COPY_IMPL_convertDisplayColorToRGBColor (
LLDISPLAY_COPY* env,
int32_t color) {
/* The display pixel value encodes:
Oxf800 = 1111 1000 00O OO0 - the RED part
0x07e0 = 111 1110 OGO - the GREEN part
0x001f = 1 1111 - the BLUE part
*/
return ((color & 0xf800) << 8) |
((color & 0x07e@) << 5) |
((color & Ox001f) << 3);

3

int32_t LLDISPLAY_COPY_IMPL_convertRGBColorToDisplayColor (
LLDISPLAY_COPY* env,
int32_t color) {
uint32_t rgbColor = (uint32_t)color;
/* The RGB value encodes:

0xf80000 = 1111 1000 OGOGOO O0OGOO 0000 0000 - the RED part
0x00fco0 = 1111 1100 0000 0000 - the GREEN part
0xf8 = 1111 10600 - the BLUE part
*/

return ((rgbColor & Oxf80000) >> 8) |
((rgbColor & Ox00fce0) >> 5) |
((rgbColor & 0xf8) >> 3);

}

These functions convert the pixel value used by the display into a MicroUI RGB value and vice-versa.
For this display, there are 16 bits per pixel, but MicroUI RGB values are 24 bits per pixel.

The LLDISPLAY_COPY_IMPL_convertDisplayColorToRGBColor function uses the red, green and blue
values from the display value as the most significant bits of the MicroUI RGB value (“expanding” the
16 bit representation into its 24 bit equivalent).

The LLDISPLAY_COPY_IMPL_convertRGBColorToDisplayColor function uses the most significant bits
of the MicroUI RGB value to create a 16 bit equivalent (which, of course, is an approximation — the least
significant bits of the MicroUI RGB values are “lost” in the “compression” from 24 bits into 16 bits).

void LLDISPLAY_COPY_IMPL_copyBuffer (LLDISPLAY_COPY* env,
int32_t xmin, int32_t ymin, int32_t xmax, int32_t ymax) {
[1] uinti16_t* addr = (uint16_t*)MEM_BUFFER + (ymin * WIDTH);
// number of pixels to copy (row aligned)
[2] int32_t cpt = (ymax - ymin + 1) * WIDTH;
LCD_SetCursor(ymin, WIDTH-1);
[3] LCD_WriteRAM_Prepare();

// copy pixels
while(--cpt>=0) {
[4] LCD_BUFFER->LCD_RAM = *(addr);
addr++;

}

The function LLDISPLAY_COPY_IMPL_copyBuffer copies the rectangle of pixels defined by the opposite
corners (xmin, ymin) to (xmax, ymax) from the off-screen section of back buffer into the display memory.
In fact, this implementation ignores the xmin and xmax values because the hardware requires full rows
to be updated.

The key lines in the function are marked with numbers:

1. This calculates the address (within the “back buffer”) of the first pixel value to be copied. If ymin ==
0 then this is the address of the start of the “back buffer”.

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 13

Adding Support For A Display

4.

. This calculates how many pixel values need to be copied.

This sets up the driver ready to copy the pixel values through successive calls of writeLcdPixel.
That is, the way the driver works, we do not need to specify the location of each pixel whose value
we are writing, but can instead stream the pixels in from a known starting position. Note that only
the y starting position is specified because updating always commences at the beginning of a row.

This loop streams the pixel values into the display.

The functions related to the display's backlight and contrast do not need to be implemented for this
example — they are just empty implementations so are not shown here.

4.4.3 microui_bsp.c

This source file contains code that defines the data structures for the display, and provides to the display
stack a function that can be used to initialize the display.

[1] static struct LLDISPLAY_STM32XOGEVAL lcd_driver;

// display creation function to be used in definition of LCD_TABLE below

[2] static void* createLCD(void) {

LLDISPLAY_STM32XxOGEVAL_new(&lcd_driver);
return &lcd_driver;

}
// display stack tables - there is only one

[3] void* LCD_TABLE[] = {createlLCD,0};

// no image decoders are needed in this example, but
// IMAGE_DECODERS_TABLE still needs to be declared

[4] void* IMAGE_DECODERS_TABLE[] = {0};

The key lines in the function are marked with numbers:

1.

Declares the data structure for the display, using the struct defined in display.h.

Defines a function that will be used by the display stack to initialize the display data structure. It
returns the address of the data structure.

Declares a data structure with the well-known name LCD_TABLE initialized with the address of the
createLCD function. This null-terminated list is used by the display stack to initialize the display and
obtain the address of its data structure.

Declares a data structure with the well-known name IMAGE_DECODERS_TABLE initialized with just a
null termination because there are no image decoders in this example.

4.5 Configure the Keil uVision project

The Keil pVision project file Project . uvproj in the MicrouIDisplay/MDK-ARM folder must be changed
to add the extra source files.

Double-click the Project .uvproj file to open it in the pVision environment. The contents of the project
will look like this:

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 14

Adding Support For A Display

Project i @

EES]sTvz266 EvAL
=45 User
; stm32fdie_it.c

main.c

*] interrupts.c
LLMIVM_RTX.c
putchar.c
RTX_Conf_CM.c

srarm_driver.c

v] time_hardware_timer.c
LLBSP stm3Z.c

B0 STM32_EVAL
F-{77 STM32Fdwc_StdPeriph_Driver
£ CMSIS
- [#] system_stm32fdioc.c
E-£5 MDE-ARM
- startup_stm32fdcs
E-25 Microkl

- [#] SOAR.0
b [£] mjvmlib

-EF‘rn_ied: @E-:--:-I':- {} Fund [].,T-':mpl

Figure 4.3. uVision Project Content Before Configuration

The actual files in the User group may vary.

Several different configuration actions are required:

1.

Configure the include path

Right-click on the root of the project and select Options for Target 'STM322xG_EVAL"... On the CIC++
tab press the ... button to the right of the Include Paths box. Press the New (Insert) button. Press the ...
button to the right of the new entry and navigate to the xxx-jpf\source\include folder. (To find the
location of this, in the MicroEJ environment, right click on the folder and select Properties). Press OK.

Add the extra C files

Right-click on the User group of the project and select Add Files to Group 'User'.... Navigate
to the MicrouIDisplay folder that holds the C files and select LLDISPLAY_STM32x0GEVAL.c and
microui_bsp.c.

Remove the FromScratch application.

Right-click on the S0AR. o file and select Remove File

. Add the required libraries

Right-click on the MicroEJ group and select Add Files to Group 'MicroEJ'.... Navigate to the
com.is2t.example.MicroUIDisplay folder of the MicrouIDisplayApp application, and select the
SOAR. o file. It may be necessary to select Files of type: All files (*.*) in the dialog box to see the file.
Press Add. If pVision asks for the type of the file, select Object file.

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 15

Adding Support For A Display

Now navigate to the xxx-jpf\source\1lib folder of the FromScratchJpPF, and select the display.1lib
file. Press Add and Close.

The project should now look like this:

Project o @
F-55 User
- [F] stm32fdncit.c
- main.c
- interrupts.c
- [#] LLMIVM_RTX.c
- putchar.c
- [£] RTX_Conf_CM.c

sram_driver.c
time_hardware_timer.c
LLBSP_stm3Z.c
micraejvim_main.c
¥] math.c
LLDISPLAY _STM32x0GEVAL.c
--[#] microui_bsp.c
-7 STM32_EVAL
-7 STM32Fde StdPeriph_Driver
E-&5 CMAIS
- [#] system_stm32fdic.c
=25 MDE-ARM
- startup_stm32fdoos
=45 Microkl

-..[#] SOAR.0
mjvrm.lib

- | #] display.lib

- EP‘rn_iect @E-:--:-I's {} Funct... []..,T-':mpl...

Figure 4.4. uVision Project Content After Configuration

4.6 Build and deploy the C project

The C code should now compile cleanly. Build it using Project — Build target (F7). It can now be down-
loaded to the target board using the ST-LINK connection. Reset the board to run the application and
the display should show a red cross.

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 16

Adding Support For A Display

5 Document History

Date Revision Description
February 19th, 2013 A First release
November 12th, 2013 B MicroEJ ARM Cortex-M (Keil MDK-ARM) 2.0.0 compati-
bility
June 10th, 2014 C MicroEJ ARM Cortex-M (Keil MDK-ARM) 3.0.0 compati-
bility
Headquarters
11, rue du chemin Rouge
44373 Nantes Cedex 3
FRANCE

Phone: +33 2 40 18 04 96
www.is2t.com

© 2014 IS2T All right reserved. Information, technical data and tutorials contained in this document
are confidential, secret and IS2T S.A. Proprietary under Copyright Law. Without any written permis-
sion from IS2T S.A., copying or sending parts of the document or the entire document by any means
to third parties is not permitted including but not limited to electronic communication, photocopies,
mechanical reproduction systems. Granted authorizations for using parts of the document or the entire
document do not mean they give public full access rights.

IceTea®, IS2T®, MicroJvm®, MicroEJ®, S3™, SNI™, SOAR®, Drag Emb'Drop™, IceOS® and
all associated logos are trademarks or registered trademarks of IS2T S.A. in France, Europe, United
States or others Countries.

Java™ is Sun Microsystems' trademark for a technology for developing application software and de-
ploying it in crossplatform, networked environments. When it is used in this documentation without
adding the ™ symbol, it includes implementations of the technology by companies other than Sun.

Java™, all Java-based marks and all related logos are trademarks or registered trademarks of Sun Mi-
crosystems Inc, in the United States and other Countries.

Other trademarks are proprietary of their authors.

TLT-0627-AN-CM_ARMCC-MicroUIDisplay-C 17

	Adding Support For A Display
	Table of Contents
	1 Introduction
	1.1 Intended audience
	1.2 Scope
	1.3 Prerequisites

	2 MicroUI displays: principles of operation
	2.1 Flow of control
	2.2 APIs, implementations and instances

	3 An outline of the required steps
	4 The steps in detail
	4.1 Enhance the JPF
	4.1.1 Modules
	4.1.2 Select the required modules
	4.1.3 Configure selected modules
	4.1.4 Update the JPF

	4.2 Create the Java application that will test the JPF
	4.3 Build the Java application binary file
	4.4 Write the required C files
	4.4.1 LLDISPLAY_STM32x0GEVAL.h
	4.4.2 LLDISPLAY_STM32x0GEVAL.c
	4.4.3 microui_bsp.c

	4.5 Configure the Keil μVision project
	4.6 Build and deploy the C project

	5 Document History

