o Application Note:
’52 T TLT-0626-AN-MICROEJ-MicroUIButtons

Adding Support For Inputs

In relation to: MICROEJ products

Features

This Application Note explains how to add support for inputs to a Java Platform using the ST Stan-
dard Peripherals Library, and how to build it using Keil pVision.

Description

This Application Note assumes the reader wishes to understand the steps involved in adding support
for inputs to a Java Platform. It explains in detail all the steps required to enhance the platform and
test it with a simple Java application that outputs text via the board's serial port when a hardware but-
ton is pressed.

TLT-0626-AN-MICROEJ-MicroUlIButtons-D

Adding Support For Inputs

Table of Contents

R 01004 L1 Lot o) AU UP PP PUPPPPRIN 4
I L 20 Ta T B 16) 2 o (o P 4
12 SCOPE ettt ettt et e et e e et e e et e e et e e et e e et e eaaaanns 4
1.3, PIEIEQUISITES .eevvuunreiiiiieretitieeeetiiaeeerttiaeeetttueeeerunseeeananeseeesnnssesesnnssesssnnseessnnnseesssnnssensnnnns 4
2. MicroUI input: principles Of OPerationccccccceeeerooririeiiiiiiiiiiiiaaaeeneneannnnnnnnnnnnnnnns 5
2.1 EVENL FLOW ettt ettt e e e e e ettt e e e e e e ettt aeeaeeeas 5
2.2. EVENE fOITNAL «eeiiiiiiiiiiiiiiiiee ettt ettt e e e e e ettt e e e e e e seibbeee e e e e e s seaanbeeeeeeeeeens 5
3. An outline of the TEQUITEA STEPS ..ceeeeeeeeeeeeeeeeeeee ee e e e e e e eeeeas 7
4. The StePS N AELATLueeeeei s 8
4.1. Enhance the JPF ...ttt ettt e e e e ettt e e e e e e s e 8
4.2. Create the Java application that will test the JPFcccoeiiiiiiiiiiiiiiee e, 9
4.3. Build the Java application binary filecceeeiiiiiiiiiiiiiii e 10
4.4. Write the required C filescceeiiiiiii 11
4.5. Configure the Keil HViSiON PIrOJECEvvvieerieieereiiiiiieeeeeeeeeieteee e e e e eesrerreeeeeseeseneneeees 14
4.6. Build and deploy the C PrOJECtcccieiiiiiiiiiiiiiiiiiciccccceceeeeeeeeeeee e 15
5. DOCUMENT HISTOTY .eeerrniiiieeeieiiiiiiiiee ettt e ettt e e e e e et tteb e e e e e e e teenbaa e e e eeeeeeennnnnannnns 16

TLT-0626-AN-MICROEJ-MicroUlIButtons-D 2

Adding Support For Inputs

List of Figures

2.1 EVEIIE FIOW oottt ettt e e e e ettt et e e e e e s bbbttt e e e e e seaasbbaeeeeeeeens 5
4.1. Launch Configuration - Main Tabccccuiiiiiiiiiiriiiieee et e e 10
4.2. Launch Configuration - EXecution Tabcccoouiiiiiiiiiiiiiiiiiieee e 11
4.3. pVision Project Content Before Configurationccceeeeeeereeereieieisieieieiesesesesesesesesesesesesesenns 14
4.4. pVision Project Content After Configurationccccevvviiiiiiiiiiiie, 15

TLT-0626-AN-MICROEJ-MicroUlIButtons-D 3

Adding Support For Inputs

1 Introduction

1.1 Intended audience

The intended audience for this Application Note are developers who wish to add support for input
devices to a MicroEJ® Java Platform.

1.2 Scope

This Application Note describes the steps required to add support for hardware button inputs to an
existing MicroEJ Java Platform that was built for an STM3220G-EVAL or STM3240G-EVAL board.
Although this Application Note focuses on buttons, the same principles apply to other input devices
associated with user interfaces, such as joysticks, touch screens and screen pointers.

1.3 Prerequisites

This Application Note assumes that the reader has already created a Java Platform with no UI support, as
described in the TLT-0625-AN-MICROEJ-FromScratch Application Note. All the prerequisites speci-
fied in that Application Note apply equally to this Note.

TLT-0626-AN-MICROEJ-MicroUlIButtons-D 4

Adding Support For Inputs

2 MicroUl input: principles of operation

MicroUI™ is the MicroEJ component that supports user-interface input and output devices. In this
Application Note we examine how input actions, such as a button press, are communicated to a MicroEJ
Java ap;ilication. For full details about the operation of MicroUT please consult the UI-PACK Reference
Manual".

2.1 Event flow

The path taken by an event is shown in the diagram below.

Interrupt LLINPUT
Service event sent to event added to
interrupt Routine LLINPUT handler input queue
— —>
I 4 I 4
native (C) code User-provided code shown in blue

Java code

Buttons
event
generator

Application

event read from queue

event sent to
by pump thread

listener

event passed to
event generator

Figure 2.1. Event Flow

When the user presses a hardware button an interrupt is generated, which is handled by a interrupt
service routine (ISR) that forms part of the user-supplied buttons driver. The ISR notifies MicroUI that
the button has been pressed by calling a function in the LLINPUT (“low-level input”) API and passing to
it an integer that describes the event. In this case the event must specify:

+ that the event is related to a button
» which button has been pressed
+ that the button has been pressed (as opposed to released).

The event is added to the input queue. The fixed size of this queue is specified when the application
is built.

A Java thread managed by MicroU]l, called the System Input Pump, executes a loop that reads events
from the input queue and passes them to the appropriate event generator. It determines the appropriate
event generator by examining the contents of the event.

An event generator is a Java class that understands how to handle events sent by a particular kind of
input device. In this case, the event goes to the Buttons event generator.

Each event generator can be associated with a listener object, which is notified of events as they arrive.
In the example described in this Application Note, the Java application is the listener.

2.2 Event format

Although an event is always represented by a 32-bit integer, the format of events sent by drivers is not
the same as the format of events sent to Java listeners. Events sent by drivers have this general format:

LARM Cortex-Mx ARMCC - UI Reference Manual

TLT-0626-AN-MICROEJ-MicroUlIButtons-D 5

Adding Support For Inputs

31

24

23

Generator ID

Event data

MicroUTI has several built-in event generator classes, of which Buttons is one. The LLINPUT implemen-
tation is aware of these built-in event generators, and formats the data part of the event to match with
their expectations when it is asked to add an event to the queue. The exact format used is proprietary 2,

When the Buttons event generator notifies its listener, it uses the following event format, as defined in
the MicroUI Specification (ESR-SPE-002-MicroUI):

31 24

23

16

15

8|7

0

Event type ID

Generator ID

Action

Button number

The event type ID for button-related events is the value 1.

2Users can create their own event generators, and define a suitable format for the data part of the event.

TLT-0626-AN-MICROEJ-MicroUlIButtons-D

Adding Support For Inputs

3 An outline of the required steps
To add support for button inputs:

1.

Enhance the JPF

MicroUTI support is added to the JPF, and the required event generators configured.

. Create the Java application that will test the JPF

A Java project is created within the MicroEJ environment, and the required code written.

Build the Java application binary file

The Java project is built in the MicroEJ environment, targeting the embedded JPF (“embJPF”), to
produce a binary object file that can be linked by pVision.

Write the required C files

Configure the Keil pVision project

The properties of the pVision project are adjusted so that it includes all the required sources and
libraries, and refers to the correct header files.

Build and deploy the C project
The C project is built and deployed to the target board using the ST-LINK connection.

TLT-0626-AN-MICROEJ-MicroUlIButtons-D 7

Adding Support For Inputs

4 The steps in detail

4.1 Enhance the JPF

4.1.1 Modules

A MicroEJ module is a group of related files (Java libraries, scripts, link files, native libraries, mocks,
etc.) that together provide all or part of a platform functionality.

JPF architectures provide a set of modules that can be selected thanks to the JPF configuration file (eg
xxx.platform file). The content tab of the latter provides facilities to select one or several modules. The
Build Platform task then deploys selected modules on the JPF.

Module description can be seen by selecting it on JPF configuration interface. Most of modules needs
to be configured ; if it's the case, module details contain a Configuration item explaining which file has
to be created in order to configure the module.

4.1.2 Select the required modules

To support button inputs, it is necessary to install and configure two modules: microui and input.
Microui module is a Java library that exposes to application features in order to manipulate input devices
(ex: Button.class). Input module is a native library that provides facilities to create event from input
devices drivers. To select them,

* Open the xxx.platform file of your JPF configuration project,
» Go to the content tab,

* On Modules part, check Ul > Input and UI > MicroUl items.

4.1.3 Configure selected modules

The next step is to configure these modules.

* Input module can be configured using an input/input.properties file (cf module details).

Create an input folder on the JPF configuration project and copy the input.properties file provided
by the Application Note on it. This configuration file tells builder to deploy the "default" input module
implementation.

The module configuration is marked as optional ; indeed, without configuration, "default" input mod-
ule implementation is deployed. So, we could not configure this module and result should be the same.

* MicroUI module has to be configured using a microui/microui.xml file (cf module details).

Create an microui folder on the JPF configuration project and copy the microui.xml file provided
by the Application Note on it. For this example, only a very simple configuration is required ; the
file contains the following:

<microui>

<eventgenerators>

<buttons name="HWBUTTONS"/>
</eventgenerators>
</microui>

This specifies that the MicroUI configuration will comprise a single event generator, whose type will
be Buttons and whose name will be HWBUTTONS. A Buttons event generator can handle many buttons,
but this example supports only a single button.

The Build Platform task will generate some output files. In particular, the file xxx-jpf/source/in-
clude/microui_constants.h contains constants that will be used by the C code. The line:

TLT-0626-AN-MICROEJ-MicroUlIButtons-D 8

Adding Support For Inputs

#define MICROUI_EVENTGEN_HWBUTTONS 0

indicates that the Buttons event generator (called HWBUTTONS, as specified in the microui.xml file)
has been allocated an ID of 0.

4.1.4 Update the JPF

In order to enhance the JPF with the display and MicroUI modules, launch the Build Platform task. JPF
source folder is modified to contain modules files.

4.2 Create the Java application that will test the JPF
To reduce typing, the Java application is provided with this Application Note as a ready-to-import Mi-

croEJ project. Import it using: File — Import... — General — Existing Projects into Workspace, press Next,
select the MicroUIButtonsApp.zip archive file, press Next.

In the Package Explorer, browse to the MicroUIButtons Java class, which looks like this:

package com.is2t.example;

import ej.microui.EventGenerator;
import ej.microui.lListener;
import ej.microui.io.Buttons;

public class MicroUIButtons {
public static void main(String[] args) throws Exception {

EventGenerator[] eventGenerators = EventGenerator.get(Buttons.class); ©
if (eventGenerators.length != 1) {
System.out.println("Only expected one event generator but got " +
eventGenerators.length);
return;

}

eventGenerators[0].setListener(new Listener() { ©
public void performAction(int event) {

int buttonID = Buttons.getButtonID(event); ©

if (buttonID != 0) {
System.out.println("Unexpected event for button " + buttonID);
return,

}

if (Buttons.getAction(event) == Buttons.PRESSED) { O
System.out.println("wWakeup button was pressed");

} else if (Buttons.getAction(event) == Buttons.RELEASED) {
System.out.println("wWakeup button was released");

public void performAction(int value, Object object) {
// not used

public void performAction() {
// not used
1)

}

The key lines in the application are marked with numbers:

©® The static method get is called to get references to all the event generators of a specified type
— Buttons, in this case. There should be only one such event generator, because the MicroUI
configuration file specified only one.

® The listener for the event generator is set to be the instance of the anonymous class created on this
line. The event generator will notify this object of all events by calling its performAction(int)
method.

TLT-0626-AN-MICROEJ-MicroUlIButtons-D 9

Adding Support For Inputs

® The event carries with it the ID of the button. The static getButtonID(int) method extracts the
ID from the event. The application only expects events for the button whose ID is 0.

O The event also carries with it the action performed. The static getAction(int) method extracts
the action from the event.

The button ID and action are specified by the buttons driver when the event is created and added to
the input queue.

4.3 Build the Java application binary file

The next step is to build the Java application into a binary file that can be linked with the C parts of
the platform.

To build the application a suitable launch configuration must be created.

Right-click in the Package Explorer on the MicroUIButtons Java class, and select:

Run As — Run Configurations...

The Run Configurations dialog will open. Double-click the MicroEJApplication entry in the list to the left
of the dialog to create a new configuration.

The details in the Main tab will be entered already, and should look like this:

4 Run Configurations @
Create, manage, and run configurations /-—-
1))

A

T— -
o X | S Name: MicroUIButtons
type filter text 3] Main s Execution| }f}f Configuration | =) JRE| E» Source| 5] Common

= Launch Group Project
a4 [T] MicroE) Application

[T MicroUlButtons crotibuttonsapp FOWSE.

[MicroE) Tool Main type, Required types

com.is2t.example.MicroUlButtons Select Main type...
Add types...
Extra types...
Remaove

Resources

Add...

Remaove

Immutables

Add...

Remaove

Filter matched 4 of 11 items

'C?j' [Run] | Close

Figure 4.1. Launch Configuration - Main Tab

Select the Execution tab. Check the Execute on EmbJPF option, as shown below:

TLT-0626-AN-MICROEJ-MicroUlIButtons-D 10

Adding Support For Inputs

4 Run Configurations @
Create, manage, and run configurations /'*'-\
A4
TEX| B3 Name: | MicroUIButtons
type filter text [3] Main | Execution . {1} Configuration | =) JRE| &2 Source| £ Common
= Launch Group Target
4 3 Microkl Application IPF: | STM32-s00-CMA_ARMCC (1.0.0) -
31 MicroUlButtens
T MicroEl Tool B
Execute on SimJPF @ Execute on EmbJPF
Microlvm Mode: |Dafau|t v|
Default Settings: |Bu|ld & Deploy '|
The application is generated, linked and deployed.
Options
Qutput folder: ${project_loc:MicreUlButtonsApp} Browse...
/| Clean intermediate files Verbose
Filter matched 4 of 11 items -
@:‘ I Run] | Close

Figure 4.2. Launch Configuration - Execution Tab

Press Run. The application is built into a binary file called S0AR.o, located in the

com.is2t.example.MicroUIButtons folder of the MicroUIButtonsApp project.

4.4 Write the required C files

The JPF contains a number of C include files that are used by the user-supplied C implementation. These
include files can be found in the xxx-jpf/source/include folder.

The user must provide C code that:

* Implements the LLINPUT API, as defined in the LLINPUT_impl.h include file. This API defines a
number of functions that are called by the MicroUT input stack.

» Detects button presses and requests that events be added to the input queue, using functions defined
in the LLINPUT. h include file.

Suitable C implementations are provided with this Application Note. These files are in addition to those
required for a basic JPF, as supplied with the TLT-0625-AN-MICROEJ-FromScratch Application Note.
This Application Note assumes that the STM32Fxxx_StdPeriph_Lib_Vxxx/Project/FromScratch fold-
er, as defined in JavaFromScratch, is in place and correct.

The additional files supplied with this Application Note, in the extra-files folder, are:

* LLINPUT.c — implements the LLINPUT APL.

* buttons.c — responsible for connecting the low-level driver to the input stack. Adds events to the
input queue.

e buttons.h — header file for buttons.c

The contents of the first two of these files are examined in detail below.

TLT-0626-AN-MICROEJ-MicroUlIButtons-D 11

Adding Support For Inputs

Install the supplied files into a new C project:
1. Create a new folder: STM32Fxxx_StdPeriph_Lib_Vxxx/Project/MicroUIButtons

2. Copy the contents of the STM32Fxxx_StdPeriph_Lib_Vxxx/Project/FromScratch folder (including
sub-folders) into the newly created folder.

3. Copy the files supplied with this Application Note into the newly created folder.

4.4.1 LLINPUT.c

The source file LLINPUT.c contains an implementation of the LLINPUT API, as defined in the
LLINPUT_impl.h include file. Four functions are implemented, as shown below.

uint8_t LLINPUT_IMPL_initialize(void){
buttonsInitialize();
return MICROEJ_TRUE;

}

int32_t LLINPUT_IMPL_getInitialStateValue(int32_t stateMachinesID, int32_t statelD){
// no state on this BSP
return 0;

}

void LLINPUT_IMPL_enterCriticalSection() {
0S_SUPPORT_disable_context_switching();
disableButtonsInterrupts();

}

void LLINPUT_IMPL_leaveCriticalSection() {
enableButtonsInterrupts();
0S_SUPPORT_enable_context_switching();

}

The function LLINPUT_IMPL_initialize is called by the input stack when it starts up to request initial-
ization of all input devices. In this case, only buttons need to be initialized, so the buttonsInitialize
function, implemented in buttons.c, is called.

The function LLINPUT_IMPL_getInitialStatevalue is concerned with support for state machines. We
have not declared any state machines in the MicroUI configuration (in config.microui), so this function
will not be called — however an implementation is still required.

The other two functions provide support for critical sections. Whenever the input stack
wants to ensure that it has exclusive access to the stack and its data structures it calls

LLINPUT_IMPL_enterCriticalSection. When it no longer requires exclusive access it calls
LLINPUT_IMPL_leaveCriticalSection

Calls to these functions are always strictly paired and not nested. There will nev-
er be two calls to LLINPUT_IMPL_enterCriticalSection without an interleaving call to
LLINPUT_IMPL_leaveCriticalSection

In the example created in this Application Note the only asynchronous access to the input stack comes
from the interrupt service routine (ISR) that runs when a button is pressed or released. So for this ex-
ample a satisfactory implementation of LLINPUT_IMPL_enterCriticalSection would be to disable the
button interrupt. However, the implementation shown here copes with the more general case where
asynchronous access to the input stack can come from an ISR or from another operating system task. The
call to 0S_SUPPORT_disable_context_switching ensures that the current task will not be preempted
by another task.

4.4.2 buttons.c

The source file buttons.c contains functions that connect the low-level driver to the input stack.

TLT-0626-AN-MICROEJ-MicroUlIButtons-D 12

Adding Support For Inputs

Most of the functions in buttons.c require no explanation, but two are worthy of some discussion.

void EXTIO_IRQHandler(void) {
enterInterrupt();
BUTTONS_interrupt (BUTTON_WAKEUP) ;
leaveInterrupt();

}

The function EXTI0_IRQHandler is called when an interrupt occurs on the interrupt line to which the
Wakeup button is connected. The function uses the enterInterrupt and leaveInterrupt functions,
implemented in interrupts.c, to keep track of the current execution state. It checks that the button
really does have a pending interrupt, and if it does it calls the BUTTONS_event function, implemented
in the same file and shown below.

// table that records the last state of the button
static uint8_t BUTTON_PRESSED[BUTTONn] = {MICROEJ_FALSE, MICROEJ_FALSE,
MICROEJ_FALSE};

static void BUTTONS_event(Button_TypeDef Button) {
uint8_t pin_is_one;
uint8_t button_pressed;

pin_is_one = GPIO_ReadInputDataBit(BUTTON_PORT[Button], BUTTON_PIN[Button]) ==
Bit_SET;

button_pressed = (pin_is_one && !'BUTTON_REVERSE[Button]) || (!pin_is_one &&
BUTTON_REVERSE[Button]);

if (button_pressed) {
if (!BUTTON_PRESSED[Button]) {
// button was previously released, so this is a press event
if (LLINPUT_sendButtonPressedEvent(MICROUI_EVENTGEN_HWBUTTONS, Button)) { ©
// the event has been queued: we can store the new button state
BUTTON_PRESSED[Button] = MICROEJ_TRUE;
} else {
// the event has not been queued. We must not change the button state to prevent
// sending a future release event when the press event has never been sent!

}

}
} else {
// button is released
if (BUTTON_PRESSED[Button]) {
// button was previously pressed, so this is a release event

if (LLINPUT_sendButtonReleasedEvent(MICROUI_EVENTGEN_HWBUTTONS, Button)) { O

// the event has been queued: we can store the new button state
BUTTON_PRESSED[Button] = MICROEJ_FALSE;

} else {

// the event has not been queued. We must not change the button state to prevent
// sending a future press event when the release event has never been sent!

3
b
b
3

It is this function that requests the creation of events. It remembers the previous state of the button so
that it can avoid sending confusing events if the previous attempt to send the event failed (as it will do
if the input queue becomes full).

The calls that send the events are marked. Call (1) sends the “pressed” event; call (2) sends the “released”
event. Note the parameters to these calls:

» The first parameter is the ID of the event generator that should handle the event. The symbol

MICROUI_EVENTGEN_HWBUTTONS was generated when the config.microui XML file was processed,

as discussed earlier in this document. The HwBUTTONS part of the symbol name corresponds to the
name given to the event generator in the microui.xml file.

TLT-0626-AN-MICROEJ-MicroUlIButtons-D 13

Adding Support For Inputs

The second parameter is the ID of the button. These IDs start at 0, but do not have to correspond
with the number used in the hardware layer. These calls could have used a different value for the
Wakeup button, but, of course, whatever value is used must match with the expectations of the Java

applications.

4.5 Configure the Keil uVision project

The Keil pVision project file Project . uvproj in the MicrouIButtons/MDK-ARM folder must be changed
to add the extra source files.

Double-click the Project .uvproj file to open it in the pVision environment. The contents of the project
will look like this:

Project

? B

E
E

-EIF‘rnject @3::-'.‘- 1} Functions [].,'

=224 STM322x5_EVAL
E-5#=3 MicroEl

..... LLBSP_stm32.c
H LLIMIVI_RTX.c
RTX_Conf_CM.c
interrupts.c

math.c

- | %] microjvrn_main.c
os_support.c

putchar.c

sram_driver.c

- | &) stm32fdao_itc

o |] system_stm32f2wec

----- time_hardware_timer.c

q-{77 STM32_EVAL
b7 STM32F2se_StdPeriph_Driver
B3 CMSIS

.21 system_stm32f2ucc

B-25 MDE-ARM

- startup_stm32f2iocs

Figure 4.3. uVision Project Content Before Configuration

The actual files in the User group may vary.

Several different configuration actions are required:

Add the extra C files
Right-click on the User group of the project and select Add Files to Group 'User'.... Navigate to the

MicroUIButtons folder that holds the C files and select LLINPUT.c and buttons.c.

Remove the FromScratch application.
Right-click on the S0AR. o file and select Remove File

TLT-0626-AN-MICROEJ-MicroUlIButtons-D 14

Adding Support For Inputs

* And replace it by the right application.

Right-click on the MicroEJ group and select Add Files to Group 'MicroEJ.... Navigate to the
com.is2t.example.MicroUIButtons folder of the MicrouIButtonsApp application, and select the
SOAR. o file. It may be necessary to select Files of type: All files (*.*) in the dialog box to see the file.

Press Add. If pVision asks for the type of the file, select Object file.

The project should now look like this:

Project 7 [8

] RTX_Conf_CM.c

1 sram_driver.c
time_hardware_timer.c
1 LLBSP_stm32.c

F-{77 STM3Z_EVAL
B0 S5TM32Fdae_StdPeriph_Driver
B8 CMSIs
systern_stm32fd:oc
B3 MDK-ARM
o startup_stm32fd:ccs
-5 Microkl

-.[#] SOAR.0
...... [#] javaruntime.lib

ﬂ Project |@E-:--:- s | £} Functi [].,T-':mpl

Figure 4.4. uVision Project Content After Configuration

4.6 Build and deploy the C project

The C code should now compile cleanly. Build it using Project — Build target (F7). It can now be down-

loaded to the target board using the ST-LINK connection.

Reset the board to run the application, press the Wakeup button, and the output will appear in the terminal

emulator connected to the serial port.

TLT-0626-AN-MICROEJ-MicroUlIButtons-D 15

Adding Support For Inputs

5 Document History

Date Revision Description
February 19th, 2013 A First release
November 12th, 2013 B MicroEJ ARM Cortex-M (Keil MDK-ARM) 2.0.0 compati-
bility
June 05th, 2014 C MicroEJ ARM Cortex-M (Keil MDK-ARM) 3.0.0 compati-
bility
October 02nd, 2014 D MicroEJ 3.1.0 compatibility
Headquarters
11, rue du chemin Rouge
44373 Nantes Cedex 3
FRANCE

Phone: +33 2 40 18 04 96
www.is2t.com

© 2014 IS2T All right reserved. Information, technical data and tutorials contained in this document
are IS2T S.A. Proprietary under Copyright Law. Without any written permission from IS2T S.A.,
copying or sending parts of the document or the entire document by any means to third parties is not
permitted including but not limited to electronic communication, photocopies, mechanical reproduc-
tion systems. Granted authorizations for using parts of the document or the entire document do not
mean they give public full access rights.

IceTea®, IS2T®, MicroJvm®, MicroEJ®, S3™, SNI™, SOAR®, Drag Emb'Drop™, IceOS® and
all associated logos are trademarks or registered trademarks of IS2T S.A. in France, Europe, United
States or others Countries.

Java™ is Sun Microsystems' trademark for a technology for developing application software and de-
ploying it in crossplatform, networked environments. When it is used in this documentation without
adding the ™ symbol, it includes implementations of the technology by companies other than Sun.

Java™, all Java-based marks and all related logos are trademarks or registered trademarks of Sun Mi-
crosystems Inc, in the United States and other Countries.

Other trademarks are proprietary of their authors.

TLT-0626-AN-MICROEJ-MicroUlIButtons-D 16

	Adding Support For Inputs
	Table of Contents
	1 Introduction
	1.1 Intended audience
	1.2 Scope
	1.3 Prerequisites

	2 MicroUI input: principles of operation
	2.1 Event flow
	2.2 Event format

	3 An outline of the required steps
	4 The steps in detail
	4.1 Enhance the JPF
	4.1.1 Modules
	4.1.2 Select the required modules
	4.1.3 Configure selected modules
	4.1.4 Update the JPF

	4.2 Create the Java application that will test the JPF
	4.3 Build the Java application binary file
	4.4 Write the required C files
	4.4.1 LLINPUT.c
	4.4.2 buttons.c

	4.5 Configure the Keil μVision project
	4.6 Build and deploy the C project

	5 Document History

