
TLT-0625-AN-MICROEJ-FromScratch-F

Application Note:
TLT-0625-AN-MICROEJ-FromScratch

Building a Java Platform from scratch

In relation to: MICROEJ products

Features
This Application Note explains how to create a Java Platform using the MicroEJ® environment and
the ST Standard Peripherals Library, and how to build it using Keil μVision.

Description
This Application Note assumes the reader wishes to understand the steps involved in creating a Java
Platform. It explains in detail all the steps required to build the platform and test it with a simple ap-
plication that outputs text via the board's serial port.

Building a Java Platform from scratch

TLT-0625-AN-MICROEJ-FromScratch-F 2

Table of Contents
1. Introduction .. 4

1.1. Intended audience .. 4
1.2. Scope .. 4
1.3. Prerequisites ... 4

2. An outline of the required steps .. 5
3. The steps in detail .. 6

3.1. Create the Java Platform .. 6
3.2. Create the Java application that will test the JPF .. 9
3.3. Build the Java application binary file .. 10
3.4. Create a file structure to hold the C code ... 12
3.5. Add the MicroJvm virtual machine support files to the C project 12
3.6. Configure the Keil μVision project .. 12
3.7. Build and deploy the C project ... 14

4. Document History ... 15

Building a Java Platform from scratch

TLT-0625-AN-MICROEJ-FromScratch-F 3

List of Figures
3.1. Java Platform Configuration (architecture selection) ... 6
3.2. Java Platform Configuration (properties set) .. 7
3.3. Java Platform Configuration (build platform) ... 8
3.4. MicroEJ workspace .. 8
3.5. New Java Project ... 9
3.6. New Java Class .. 10
3.7. Run configuration - Main tab .. 11
3.8. Run configuration - Execution tab ... 11
3.9. BSP files ... 12
3.10. μVision Project Content After Configuration ... 14

Building a Java Platform from scratch

TLT-0625-AN-MICROEJ-FromScratch-F 4

1 Introduction

1.1 Intended audience
The intended audience for this Application Note are developers who wish to connect a Java Platform
to an existing BSP (board support package). In this Note we use the STM32Fxxx Standard Peripherals
Library as the board support package.

1.2 Scope
This Application Note describes the steps required to build a MicroEJ Java Platform for a STM3220G-
EVAL or STM3240G-EVAL board “from scratch” - meaning that the required steps are performed
manually rather than by one of the examples supplied with the MicroEJ environment1.

The MicroJvm® virtual machine will execute as a task controlled by the RTX Kernel. The Java threads
are managed by the MicroJvm virtual machine – they execute within the MicroJvm virtual machine task.
This is often called a “green thread” configuration.

This Note does not explain the contents of the C files used to bind the MicroJvm virtual machine to the
RTX Kernel and the Standard Peripherals Library. For information about the content of these files see
Low Level MicroJvm in the platform Reference Manual. For information about the content of main.c
see the SNI Specification.

1.3 Prerequisites
The MicroEJ environment for MicroEJ® (MICROEJ-PKG-STD-MicroEJ-3.1.0 or later) must be in-
stalled and any required licenses obtained.

Keil μVision version 4.54 or later must be installed, with its license.

A STM3220G-EVAL or STM3240G-EVAL board must be available, connected to the desktop PC
through the ST-LINK/V2. An RS-232 cable must connect the 9-pin connector CN16 to a suitable ter-
minal emulator so that output from the board can be viewed.

The Standard Peripherals Library appropriate for the board being used must be downloaded from the
IS2T web site.

For the STM3220G-EVAL board, the appropriate library can be found at: http://www.is2t.com/down-
load/stsw-stm32062.zip

For the STM3240G-EVAL board, the library is at: http://www.is2t.com/down-
load/stm32f4_dsp_stdperiph_lib.zip

1Creating and building a “Java Platform Configuration” based on an example will typically perform the steps de-
scribed in this document automatically.

Building a Java Platform from scratch

TLT-0625-AN-MICROEJ-FromScratch-F 5

2 An outline of the required steps
To create and test a Java Platform:

1. Create the Java Platform (JPF)
A JPF is created within the MicroEJ environment.

2. Create the Java application that will test the JPF
A Java project is created within the MicroEJ environment, and the required code written.

3. Build the Java application binary file
The Java project is built in the MicroEJ environment, targeting the embedded JPF (“embJPF”), to
produce a binary object file that can be linked by μVision.

4. Create a file structure to hold the C code
The template project provided within the STM32Fxxx Standard Peripherals Library (SPL) is used to
create a project to hold the C code for the application.

5. Add the MicroJvm virtual machine support files to the C project
The files supplied with this Application Note are added to the C project.

6. Configure the Keil μVision project
The properties of the μVision project supplied with the SPL are adjusted so that it includes all the
required sources and libraries, and refers to the correct header files.

7. Build and deploy the C project
The C project is built and deployed to the target board using the ST-LINK/V2 connection.

Building a Java Platform from scratch

TLT-0625-AN-MICROEJ-FromScratch-F 6

3 The steps in detail

3.1 Create the Java Platform
A Java platform (JPF) comprises the MicroJvm virtual machine itself plus supporting libraries and tools.
A JPF is suitable for use on a specific core and toolchain depending on the chosen architecture.

3.1.1 Create the Java Platform configuration
The first step is to create a JPF Configuration project that will be used to parameter the JPF. In this
application note, we will build a JPF compatible with Cortex-M3 MCU. Create the JPF Configuration
by selecting, in the MicroEJ environment : File → New → Java Platform

A dialog box appears in order to choose the JPF architecture and to suggest to start from an JPF example.
For the application note, select the CORTEX-M3-based JPF architecture. To create a JPF "from scratch",
uncheck the option "Create a platform from an example or a template".

Figure 3.1. Java Platform Configuration (architecture selection)

Click on Next. JPF creation wizard continues asking to set a name for the future project and properties
for the created JPF. Please fill the form like following:

Building a Java Platform from scratch

TLT-0625-AN-MICROEJ-FromScratch-F 7

Figure 3.2. Java Platform Configuration (properties set)

The provider can be any name you wish. On pressing Finish, a new project is created containing the
JPF configuration.

3.1.2 Build the Java Platform
The second step is to build the JPF based on the JPF Configuration. Build the JPF by opening the
FromScratch.platform file created on the JPF Configuration project and selecting the Build Platform hy-
perlink available on right side of the panel:

Building a Java Platform from scratch

TLT-0625-AN-MICROEJ-FromScratch-F 8

Figure 3.3. Java Platform Configuration (build platform)

The JPF name will be STM32-FromScratch-CM3_ARMCC2. Your workspace should look like the one
shown below:

Figure 3.4. MicroEJ workspace

STM32-FromScratch-CM3_ARMCC-1.0.0 project has been created during the build operation ; it is notable
by a JPF icon and contains JPF source.

2This name is created by concatenating the Device and Name entered in the dialog with the name of the toolchain
being used.

Building a Java Platform from scratch

TLT-0625-AN-MICROEJ-FromScratch-F 9

3.2 Create the Java application that will test the JPF

3.2.1 Create the Java Project

Create a new MicroEJ Java Project. Do this by selecting : File → New → Java Project

Figure 3.5. New Java Project

Enter the project name FromScratchApp and leave all the other settings unchanged. On pressing Finish
a new project is created.

3.2.2 Create the main class
Right-click on the newly-created FromScratchApp project and select:

New → Class

Create a class called FromScratch in the package com.is2t.example, and tick the box asking for a main
method to be created:

Building a Java Platform from scratch

TLT-0625-AN-MICROEJ-FromScratch-F 10

Figure 3.6. New Java Class

Fill in the Java code of the application, as shown below:

 package com.is2t.example;
 public class FromScratch {

 public static void main(String[] args) {
 System.out.println("This is a simple application");
 for (int i = 0; i < 10; i++) {
 System.out.println(i);
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ignore) {
 ignore.printStackTrace();
 }
 }
 }
 }

3.3 Build the Java application binary file
The next step is to build the Java application into a binary file that can be linked with the C parts of
the platform. To build the application a suitable launch configuration must be created. Right-click in
the Package Explorer on the Java class created in the previous step, and select: Run As → Run Configu-

Building a Java Platform from scratch

TLT-0625-AN-MICROEJ-FromScratch-F 11

rations... The Run Configurations dialog will open. Double-click the MicroEJApplication entry in the list
to the left of the dialog to create a new configuration.

The details in the Main tab will be entered already, and should look like this:

Figure 3.7. Run configuration - Main tab

Select the Execution tab. Check the Execute on EmbJPF option, as shown below:

Figure 3.8. Run configuration - Execution tab

Building a Java Platform from scratch

TLT-0625-AN-MICROEJ-FromScratch-F 12

Press Run. The application is built into a binary file called SOAR.o, located in the
com.is2t.example.FromScratch folder of the FromScratchApp project.

3.4 Create a file structure to hold the C code
The next step is to create the file structure for the C code project. This structure is based on the
STM32Fxxx Standard Peripherals Library (SPL).

• Unzip the SPL into a suitable location, where it can be edited in-place – much of it can be deleted
for our purposes.

• The Project folder of the library contains a template project folder, called
STM32Fxxx_StdPeriph_Template, that will form the basis of the project for this example. Rename
that folder to be called FromScratch. This will become the project folder for the C files.

• The template project contains support for several different C development environments. The files
for use with Keil μVision are in the MDK-ARM folder; delete all the other folders.

• Delete all the files in the FromScratch folder – these are going to be replaced in the next step.

3.5 Add the MicroJvm virtual machine support files to the C project
The C project requires a number of files that provide platform-specific support to the MicroJvm virtual
machine. A discussion of the content of these files is outside the scope of this Application Note. The
required files are supplied with this Application Note. Two sets of files are provided; one set for the
STM3220G-EVAL and another for the STM3240G-EVAL. Copy all the files from the relevant set into
the STM32Fxxx_StdPeriph_Lib_Vxxx/Project/FromScratch folder (which will become the C project).

The Standard Peripherals Library structure should now look like this (the actual set of files may be
different):

Figure 3.9. BSP files

3.6 Configure the Keil μVision project
The file Project.uvproj in the MDK_ARM folder is a Keil μVision project definition. It has been con-
figured to suit the original contents of the template Standard Peripherals Library project and must be
changed to suit the FromScratch requirements.

Building a Java Platform from scratch

TLT-0625-AN-MICROEJ-FromScratch-F 13

Double-click the Project.uvproj file to open it in the μVision environment. Several different config-
uration actions are required:

• Configure the project to use the RTX Kernel

Right-click on the root of the project and select Options for Target 'STM322xG_EVAL'.... On the Target
tab select Operating system: RTX Kernel.

• Configure the include paths

Right-click on the root of the project and select Options for Target 'STM322xG_EVAL'.... On the C/C+
+ tab, press the … button to the right of the Include Paths box. Press the New (Insert) button. Press
the … button to the right of the new entry and navigate to the source\include folder of the STM32-
FromScratch-CM3_ARMCC-1.0.0 project (To find the location of this, in the MicroEJ environment,
right click on the folder and select Properties). Press OK.

• Configure the langage level

Right-click on the root of the project and select Options for Target 'STM322xG_EVAL'.... On the C/C+
+ tab, set Misc Controls entry to "--c99".

• Add the extra C files

Right-click on the User group of the project and select Add Files to Group 'User'.... Navigate to the
FromScratch folder that holds the C files and select them all.

• Add the required libraries

Right-click on the root of the project and select Add Group.... Name the group MicroEJ.

Right-click on the new group, and select Add Files to Group 'MicroEJ'.... Navigate to the
com.is2t.example.FromScratch folder of the FromScratchApp application, and select the SOAR.o
file.

Right-click on the new group again, and select Add Files to Group 'MicroEJ'.... Navigate to the source
\lib folder of the STM32-FromScratch-CM3_ARMCC-1.0.0 project, and select the javaruntime.lib
file.

The project should now look like this:

Building a Java Platform from scratch

TLT-0625-AN-MICROEJ-FromScratch-F 14

Figure 3.10. μVision Project Content After Configuration

3.7 Build and deploy the C project
The C code should now compile cleanly. Build it using Project → Build target (F7). It can now be down-
loaded to the target board using the ST-LINK/V2 connection. Reset the board to run the application,
and the output will appear in the terminal emulator connected to the serial port.

Building a Java Platform from scratch

TLT-0625-AN-MICROEJ-FromScratch-F 15

4 Document History
Date Revision Description
February 19th, 2013 A First release
September 2nd, 2013 B Change in document generation
November 12th, 2013 C MicroEJ ARM Cortex-M (Keil MDK-ARM) 2.0.0 compati-

bility
April 29th, 2014 D Update BSP download links
June 5th, 2014 E MicroEJ ARM Cortex-M (Keil MDK-ARM) 3.0.0 compati-

bility
October 1st, 2014 F MicroEJ 3.1.0 compatibility

 Headquarters
 11, rue du chemin Rouge
 44373 Nantes Cedex 3
 FRANCE
 Phone: +33 2 40 18 04 96
 www.is2t.com

© 2014 IS2T All right reserved. Information, technical data and tutorials contained in this document
are IS2T S.A. Proprietary under Copyright Law. Without any written permission from IS2T S.A.,
copying or sending parts of the document or the entire document by any means to third parties is not
permitted including but not limited to electronic communication, photocopies, mechanical reproduc-
tion systems. Granted authorizations for using parts of the document or the entire document do not
mean they give public full access rights.

IceTea®, IS2T®, MicroJvm®, MicroEJ®, S3™, SNI™, SOAR®, Drag Emb'Drop™, IceOS® and
all associated logos are trademarks or registered trademarks of IS2T S.A. in France, Europe, United
States or others Countries.

Java™ is Sun Microsystems' trademark for a technology for developing application software and de-
ploying it in crossplatform, networked environments. When it is used in this documentation without
adding the ™ symbol, it includes implementations of the technology by companies other than Sun.

Java™, all Java-based marks and all related logos are trademarks or registered trademarks of Sun Mi-
crosystems Inc, in the United States and other Countries.

Other trademarks are proprietary of their authors.

	Building a Java Platform from scratch
	Table of Contents
	1 Introduction
	1.1 Intended audience
	1.2 Scope
	1.3 Prerequisites

	2 An outline of the required steps
	3 The steps in detail
	3.1 Create the Java Platform
	3.1.1 Create the Java Platform configuration
	3.1.2 Build the Java Platform

	3.2 Create the Java application that will test the JPF
	3.2.1 Create the Java Project
	3.2.2 Create the main class

	3.3 Build the Java application binary file
	3.4 Create a file structure to hold the C code
	3.5 Add the MicroJvm virtual machine support files to the C project
	3.6 Configure the Keil μVision project
	3.7 Build and deploy the C project

	4 Document History

