Standalone Application

Developer's Guide

MICROEJ,

MicroEJ 4.0

Reference: TLT-0793-DGI-StandaloneApplicationDeveloperGuide-MicroEJ
Version: 4.0
Revision: A

Confidentiality & Intellectual Property

Allrights reserved. Information, technical data and tutorials contained in this document are confidential and proprietary under copyright
Law of Industrial Smart Software Technology (IS2T S.A.) operating under the brand name MicroEJ®. Without written permission from IS2T
S.A., copying or sending parts of the document or the entire document by any means to third parties is not permitted. Granted authorizations
for using parts of the document or the entire document do not mean IS2T S.A. gives public full access rights.

The information contained herein is not warranted to be error-free. 1IS2T® and MicroEJ® and all relative logos are trademarks or registered
trademarks of IS2T S.A. in France and other Countries.

Java™is Sun Microsystems' trademark for a technology for developing application software and deploying itin cross-platform, networked
environments. When it is used in this documentation without adding the ™ symbol, it includes implementations of the technology by
companies other than Sun.

Java™,all Java-based marks and all related logos are trademarks or registered trademarks of Sun Microsystems Inc, in the United States
and other Countries.

Other trademarks are proprietary of their authors.

Revision History

Revision A

07/2016

Initial release

Table of Contents

1. MICTOES OVEIVIEW .uiiiiiiiiieeii ettt ettt ettt ettt e e e ea e e et e eeb e e et eeaaeeenas 1
IO O Tl o = e V1 4 T o - 1

1.2, FIFIMWAIE et ittt ettt ettt ettt ettt et ettt e e ta e e ea e et e e e bt e e eb s e et eeaaeeenes 2
1.2.1. Bootable Binary With COre SErviCesouuuviiiiiiiiiiiii e e 2

1.2.2, SPECITICALION L.iitiiiie ittt e e et e et e et e e et e e et e e et e eaaeeaanees 2

2. MicroEJ SDK Getting STart@dcouuiiiiiiiiiiii ettt 3
2.1, Introducing MICIrOEJ SDKuuiiiiniiiiiiiiieeiiie et et e et e et e e eieeete e et s eaaneeeanseatnneasaeeees 3

2.2, SEtUP MICIOEJ SDK ouiniiniiiiiieiie ettt et e et e et et et et et et eaateanasneanernennenns 3
2.2.1. Download and Install a MicroEJ Platformccouuiviiiiiiiiiiiiiiniiiie e, 3

2.2.2. SEtUP IVY REPOSITONY ouiiniiiiiiiiie ittt e e e e e e e e 6

2.3. Build and Run an ApPlICationc.ueiiiiiiiiniii et e e e et e e e e e e ee 6
2.3.1. Create a MicroEJ Standalone Applicationccceoviiiiiiiiieiiiece e, 6

2.3.2. RUN 0N the SIMULAtOTciiiiiiiiiii et 12

2.3.3. RUN 0N the HardWare DEVICEcuuiiuniiiieiie et e e e e e e e e e e 13

2.4, Application DEVEIOPMENTivvuiiiiiiiiiei ettt et e e et e e et e et e e e e eeaneeeaaeees 13

I el o] SN I @ =1 o - d [P 15
3.1, Application ClassSPath ...c...iiiuiiii e e e e eeans 15

3.2. Classpath Load MOELivniiiiiiiiiee e e e e e e e e e e e e e eanas 16

3.3, Classpath ELEMENTSiuuniiii ittt et e et e et e e e e e et s e et e e aaaeaaanes 17
3.3.1. Application ENtry POINES ...cveieiie e e 17

G 207 Y/ 0 1< PP 18

3.3.3. RAW RESOUICTES ..eneniiiiieie ettt ettt et e et e et e e et eneeeneanenees 18

3.3.4. IMMULADLE ODJECES ..iiiiiiiiieii ittt e et e et s e et e e aaeeees 18

3.3.5. SYSLEM ProPerties .ouueunieiiiiiiie ittt e e s e e e e e e aans 19

G N ST 11 0 = =T TN 19

G TN (R 210 11 £ PP PPR 22

3.4. Foundation vS Add-0n LiDrari@scceuuueeeeiiuieeeiiine ettt et eeeeie e eeeieeeeenens 24

3.5. Library Dependency Man@ZEr euuueeiunieiiee et et et e et et et e et et e ea e eaaaae 24

3.6, CeNtral REPOSITONY ..ivvuniiiiiiii ittt et e e e e e etn e et s e et e e et e eebaeeaaaneesaneaeens 25

Yo [o [4o 0 F= Y B e Yo -3 26
4.1 FONT DESIZNEN ittt ettt ettt et et et e et e et e et e et e e e e e s s esaeesaearneannees 26

Y A - [N = ol T =Y T [N 26

List of Figures

1.1. MicroEJ OS Development TOOIS OVEIVIEWiivuiiiinriiineeiiineiineeiineetieetineeenneersneeenenernnnaens 1
1.2. MicroEJ Firmware ArChitECIUIEcouu ittt et e e e e e 2
2.1, MicroEJ Platform IMPOItceue et et e e e e e et s e et e e et s e et saaaneaannanes 4
2.2. MIicroEJ Platform SElECHIONciiuueeiiiiiiie ettt e e et e e e et e eeeaaaes 5
2.3. MICrOEJ PLatform LISteeeeieeiiiiiie ettt e et eeeb e e e eebaaes 5
2.4. New MicroEJ Standalone Application Projectc..ceeuuiiiiiiiiiiiiiieie et 6
2.5. MicroEJ Standalone Application Project Configurationcceveiiiviiiiniiiiniiiinieiin e, 7
T T Y 1 N 8
2.7. MicroEJ Application Build Pathcoouueiiiiiiiiiii e 9
2.8. MicroEJ Application DEPENENCIEScvuuiieieiiiiiee et e e et et e e e e et e e e e ean e e e enn e e aannas 9
2.9, NEW PACKAEZE «.uiiiiiiiei ittt ettt e e e e e et e et s e et e e et s e et s eaansaatnseaeaneasnsannnnas 10
2.10. NEW CLaSS eruneetuneeti ettt ettt ettt e et e e et et ta e e ta e e et e eta e etu e eeba e eeta s eatneeanneeanaeaeen 11
2.11. MicroEJ Application CONTENTcuuuiiiiniiiiieiiiie ettt et e e e e e et e e et e e e e eeaneeeaans 12
2.12. MicroEJ OS Development TOOLS OVEIVIEWivuniieiiieiiieeii e e e et e e e e e e e ean e 12
2.13. MIicroEJ Platform GUIAEcceuuuiiiiiiiie ettt e 13
3.1. MicroEJ Application Classpath Mappingc.cceeuuiiiiiiiiiiiei e et 16
3.2. Classpath Load PrinCIPLeccuuiiiiiiiiiie ittt et e e et s e et e et e eaa s e aaneeaanaas 17
3.3. Image Generator *. i mages. | i St File EXamplecoouvviiiiiiiiiiiiiiieeciec e 20
3.4, Unchanged IMage EXamMPLE ..oouniiieiiiii ittt e e e e e e tn e et s e e e eaan e eaanns 20
3.5. Display Output FOrmat EXampPle ... cuuiuniiiii et e e e e e e e e e e e e a e eaneeans 21
3.6. Generic Output FOrmat EXAmMPLESviveniiiiiiiiieiii e et e e e e e e e aa e eeans 21
3.7. RLE1 Output FOrmat EXampPLle ...cueieeiiieie et e e e e e e e e e e e e e e e e e e eans 22
3.8. Font Generator *. f ont S. [i St File EXamplecevuiiiiiiiiiiiiiiiiiiin e 23
3.9. MicroEJ OS Foundation and Add-On Librariesceeuueeiuiiiiiiieeieeii ettt eei e 24
4.1, Code tO DUMP @ StACK TFACE ..uiiiiiiiiiiii ettt et e ettt e et e e et e e et e eet e eetn e eabneasaneaannsaes 26
] v Yol I = Yol I @ LU o 11 | 26
4.3. Select Stack Trace REAEr TOOL ...uuiiiiruieeiiiiiiee ettt ettt e et e e eenaaees 27
4.4, Stack Trace Reader Tool Configurationcuuueveiiiiiiieiiiiie e e e e e e 27
4.5. REAd the STACK TraCe ..uuiiiiii ittt ettt ettt e ettt e e e eeb e e e eeba e e e eabaeeeeennas 28

Chapter 1. MicroEJ Overview

1.1. MicroEJ Editions

MicroEJ offers a comprehensive toolset to build the embedded sofware of a device. The toolset covers
two levels in device software development:

« MicroEJ SDK for device firmware development
+ MicroEJ Studio for application development

The firmware will generally be produced by the device OEM, it includes all device drivers and a specific
set of MicroEJ OS functionalities useful for application developers targeting this device.

Figure 1.1. MicroEJ OS Development Tools Overview

Firmware developer host 4 Application developer host N\

Virtual Device

Import

Platform
Sources

v | Rt ek MicroEJ
Application

F|rmware

flash
/5%3,&%33‘ g}: S EEEH }‘ E

Using the MicroEJ SDK tool, a firmware developer will produce two versions of the MicroEJ OS binary,
each one able to run applications created with the MicroEJ Studio tool:

« Afirmware binary to be flashed on OEM devices
« AVirtual Device which will be used as a device simulator by application developers
Using the MicroEJ Studio tool, an application developer will be able to:

+ Import Virtual Devices matching his target hardware in order to develop and test applications
on the simulator.

+ Deploy the application locally on an hardware device equipped with the MicroEJ OS firmware

+ Package and publish the application on a store, enabling remote end users to install it on their
devices.

MicroEJ Overview

1.2. Firmware

1.2.1. Bootable Binary with Core Services

A MicroEJ firmware is a binary software program that can be programmed into the flash memory of a
device. A MicroEJ firmware includes an instance of a MicroEJ OS linked to:

+ underlying native libraries and BSP + RTOS,

« MicroEJ libraries and application code (C and Java code).

Figure 1.2. MicroEJ Firmware Architecture

Application

Add-On Libraries

MicroUl

Display

Driver Driver Driver Driver Driver Driver Driver
BSP

RTOS

C runtime

Storage

Hardware

1.2.2. Specification

The set of libraries included in the firmware and its dimensioning limitations (maximum number
of simultaneous threads, open connections, ...) are firmware specific. Please refer to http://
devel oper. microej.conm getting-started. ht m firmware release notes.

Chapter 2. MicroEJ SDK Getting Started

2.1. Introducing MicroEJ SDK

MicroEJ SDK provides tools based on Eclipse to develop software applications for MicroEJ-ready de-
vices. MicroEJ SDK allows application developers to write MicroEJ applications and run them on a vir-
tual (simulated) or real device.

This document is a step-by-step introduction to application development with MicroEJ SDK. The pur-
pose of MicroEJ SDK is to develop for targeted MCU/MPU computers (loT, wearable, etc.) and it is there-
fore a cross-development tool.

Unlike standard low-level cross-development tools, MicroEJ SDK offers unique services like hardware
simulation and local deployment to the target hardware.

Application development is based on the following elements:

+ MicroEJ SDK, the integrated development environment for writing applications. It is based on
Eclipse and is relies on the integrated Java compiler (JDT). It also provides a dependency man-
ager for managing MicroEJ Libraries (see Section 3.5, “Library Dependency Manager”). The cur-
rent version of MicroEJ SDK is built on top of Eclipse Mars (htt p: // www. ecl i pse. or g/
downl oads/ packages/ r el ease/ Mar s/ 2).

+ MicroEJ Platform, a software package including the resources and tools required for building
and testing an application for a specific MicroEJ-ready device. MicroEJ platforms are imported
into MicroEJ SDK within a local folder called MicroEJ Platforms repository. Once a MicroEJ plat-
form is imported, an application can be launched and tested on simulator. It also provides a
means to locally deploy the application on a MicroEJ-ready device.

« MicroEJ-ready device, an hardware device that will be programmed with a MicroEJ firmware. A
MicroEJ firmware is a binary instance of MicroEJ OS for a target hardware board.

Starting from scratch, the steps to go through the whole process are detailed in the following sections
of this chapter:

« Download and install a MicroEJ Platform
« Build and run your first application on simulator

« Build and run your first application on target hardware

2.2. Setup MicroEJ SDK

2.2.1. Download and Install a MicroEJ Platform

MicroEJ SDK being a cross development tool, it does not build software targeted to your host desktop
platform. In order to run MicroEJ applications, a target hardware is required. Several commercial tar-
gets boards from main MCU/MPU chip manufacturers can be prepared to run MicroEJ applications, you
can also run your applications without one of these boards with the help of a MicroEJ Simulator.

MicroEJ SDK Getting Started

A MicroEJ Platform is a software package including the resources and tools required for building and
testing an application for a specific MicroEJ-ready device. MicroEJ Platforms are availableatht t p: / /
devel oper. mcroej.confgetting-started. htnl.

After downloading the MicroEJ Platfom, launch MicroEJ SDK on your desktop to start the process of

Platform installation :

« Open the Platform view in MicroEJ SDK, select W ndow > Preferences > McroE] >
Pl at f or ns. The view should be empty on a fresh install of the tool

Figure 2.1. MicroEJ Platform Import

™ Preferences

type filter text Platforms Ll T

- General ~
- Ant
» CfC++
Checkstyle
EasyantdEclipse
- Help Deselect All
Install/Update
. vy
- Java
MicroE)
Architectures Get UID

Add or remove platfarms.
Platforms, Virtual Devices and Architectures:
Narme Version Lic... Select All
Import...

Uninstall

N

Maming Convention
Platforms in workspace
Updates
- Mylyn
Plug-in Development
- PMD

< >

@

Cancel

« Presslnport... button.

» ChooseSel ect File... andusetheBr owse optionto navigatetothe. j pf file containing

your MicroEJ Platform, then read and accept the license agreement to proceed.

MicroEJ SDK Getting Started

Figure 2.2. MicroEJ Platform Selection

0 Import Platforms, Virtual Devices and Architectures - g “

Import Platforms. Virtual Devices and Architectures

Select a directory/file to search for available platforms, virtual devices and architectures.

() Select directory: Browse...
(®) Select file: C:\Users\ MicroEJPlatform jpof Browse...

Platforms, Virtual Devices and Architectures:

MName Yersion Select All

) MicrofJPlatform 2,11 Deselect Al
MICROEJ LICENSE AGREEMENT ~
PREAMELE

THIS SOFTWARE LICENSE AGREEMENT (THE « AGREEMENT =) APPLIES TO PRODUCTS LICENSE
On purchase of any Licensed Product from 152T or an 152T Partner or an 152T Distributer, the relz
THE LICENSEE, AS A USER OF THE LICENSED PRODUCTS REFERRED TO ABOVE AND ON THE REI

1 DEFINITIONS

< >

[+]1 agree and accept the above terms and conditions and | want to install the copyrighted Software

The MicroEJ Platform should now appear in the Pl at f or ns view, with a green valid mark.

Figure 2.3. MicroEJ Platform List

0 Preferences =0 n

type filter text Platforms Lol M
> General ~

- Ant
» CfC++ Platforms, Virtual Devices and Architectures:

Checkstyle Name Version Lic.. Select Al

EasyantdEclipse
211
. Help {3 Micro£J Platform 4 Deselect All

> Install/Update
s vy
> Java
MicroE)
Architectures Get UID
Maming Convention
Platforms in workspace
Updates
> Mylyn
> Plug-in Development
> PMD
n_m Restore Defaults Apply

@

Add or remove platforms,

Impart.

Uninstall

N

MicroEJ SDK Getting Started

2.2.2. Setup lvy Repository

MicroEJ SDK uses an lvy repository which provides a set of libraries. MicroEJ SDK is already configured
to use an online Ivy repository. For offline use, you can download the offline repository available on
website htt p: / / devel oper. m croej.com 4. 0/i vy/, and follow the described steps to use
this repository.

2.3. Build and Run an Application

2.3.1. Create a MicroEJ Standalone Application

+ Create a project in your workspace. SelectFil e > New > M croEJ St andal one Ap-
plication Project.

Figure 2.4. New MicroEJ Standalone Application Project

File | Edit Source Refactor MNavigate Search Project Run Window Help

Mew Alt+Shift+N » | (% MicroEJ Standalone Application Project -
Open File... 3% MicroEJ Standalone Example Project
Close Ctrl+W B Rty
= .
Close Al Crbe Shift+ W Aol A=
g Microk) Sandboxed Application Project
Save CrtsS | % | prgject..
Save As...
F¥ MireaFl Fant

« IntheNew M cr oEJ Proj ect window,fill Pr oj ect nane and uncheck the MicroEJ library
EDC- 1. 2intheRunt i ne Envi r onment list. Clickon Fi ni sh.Younow have an application
project created in MicroEJ SDK.

MicroEJ SDK Getting Started

Figure 2.5. MicroEJ Standalone Application Project Configuration

'ﬂ' Mew MicroE) Project =C “
Create a MicroE. Project —
Create a Java project in the workspace or in an external location,

Project name: | MyTest

Use default lecation

E\Users\gbalan'.microgj\werkspaces\MicroE)-SDK-4.0.00M Browse...

Runtime Envirenment
Select Microb) libraries:

[] = BON-1.2 N
[] @) CHECKHELPER-1.1.0

[] =4 DEVICE-1.0

[] =4 ECOM-1.1

[] =4 ECOM-COMM-1.1

[= EDC-1.2 v

Project layout

Use project folder as root for sources and class files

® Create separate folders for sources and class files Configure default...

Working sets
[Add project to working sets

doc Select...

(i) The wizard will autematically configure the JRE and the project layout based on the
existing socurce.

?\ < Back Mext > Cancel

« Next step consists in specifying the classpath of your application using Ivy dependencies. Right
click on the project and select New > Fil e.Fillthe Fil e name: nodul e. i vy. Click on
Fi ni sh.

MicroEJ SDK Getting Started

Figure 2.6. New lvy File

™ Mew File - o IEl

File

Create a new file resource.

= |

Enter or select the parent folder:

My Test

(=
o = MyTest A

File narne: | module.i\-j,-i

Advanced >>

« TheEclipseinternal text editor allows you to edit the new created file. Copy / paste the following
lines and save the file:

<i vy-nodul e version="2.0">
<i nfo nodul e=""/>
<dependenci es>
<dependency org="ej.api" nanme="edc" rev="1.2. +"/>
<dependency org="ej.api " name="bon" rev="1.2.+"/>
</ dependenci es>
</ivy- modul e>

+ Rightclick onthe projectand selectBui | d Pat h > Add Li brari es.Selectl vyDE Man-
aged Dependenci es and click on Next . Fill thel vy Fi | e name: nodul e. i vy. Finally,
clickon Fi ni sh and on K.

MicroEJ SDK Getting Started

Figure 2.7. MicroEJ Application Build Path

® Add Library - o IEl

hwvDE Managed Libraries

Choose ivy file and its configurations.

Main | Settings | Classpath | Source/Javadoc | Advanced

Iy File: | module.ivy

Default | | Project... | Workspace... | | File System... | | Variables..,

Select every configuration

MName Description All
default
MNone

Up
Configurations
Down

< >

Reload the list of configurations

® < Back MNext = Cancel

The project now uses some lvy dependencies. You can see them opening the | vy tree:
Figure 2.8. MicroEJ Application Dependencies

a = MyTest
(8 src

vy module.ivy [*]
e edc-1.2.3.jar - C:\Users'\gk

s bon-1.2.3jar - C:\Users' gl

o

settings
|K| .classpath

|X| .project
ko module.ivy

+ Right click on the source folder src and select New > Package. Give a name:
com nyconpany. Clickon Fi ni sh.

MicroEJ SDK Getting Started

Figure 2.9. New Package
"} Mew Java Package - o “
Java Package
Create a new Java package. £
Creates folders corresponding to packages.

Source folder: | MyTest/src Browse...

Mame: com.mycompany

[] Create package-info.java

« The package com nyconpany is available under sr ¢ folder. Right click on this package and
select New > (ass. Give a name: Test and check the box public static void
mai n(String[] args).ClickonFini sh.

10

MicroEJ SDK Getting Started

Figure 2.10. New Class

"} Mew Java Class - B n
Java Class —=
Create a new Java class, @
Source folder: MyTest/src Browse...
Package: com.mycompany Browse...
[[JEnclosing type: Browse...
MName: Test
Muodifiers: (®) public () package private protected
[]abstract [|final static
Superclass: java.lang.Object Browse...
Interfaces: Add...
Remaove

Which method stubs would you like to create?
Epublic static void main(String[] argsk

[] Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here

[] Generate comments

« The new class has been created with an empty mai n() method. Fill the method body with the
following lines:

Systemout.printin("hello world!");

11

MicroEJ SDK Getting Started

Figure 2.11. MicroEJ Application Content

hoy module.ivy [J] Testjava 52

package com.mMycCompany;

[TV S

public class Test {

= public static void main(String[] args) {
System.ocut.println("hello world!™);

I |

SO

The test application is now ready to be executed. See next chapters.

2.3.2. Run on the Simulator

To run the sample project on Simulator, select it in the left panel then right-click and select Run >
Run as > M croEJ Application.

Figure 2.12. MicroEJ OS Development Tools Overview

a4 |l MyT™-= 1 package coll.mycompany;
) MNew 3
4 Go Into

2

public class Test {
Open in New Window public static void main

Open Type Hierarchy F4 System.out.println|

Show In Alt+Shift+W » ¥

Copy Ctrl+C 3}
Copy Qualified Name

Paste Ctrl+V
¥ Delete Delete

B & o

Build Path 3
Source Alt+Shift+5 »
Refactor Alt+Shift+T »

Impaort...
Export...

E B

w Refresh F5
Close Project
Close Unrelated Projects
Assign Working Sets...

.Run As 3
.Debug As r
Profile As r
Validate

B Ruild with FacwAnt

1Java Applet Alt+5hift+X, A
2 Java Application Alt+Shift+X, J
3 MicrokE) Application Alt+5hift+X, M

I E

Run Cenfigurations...

MicroEJ SDK console will display Launch steps messages.

12

MicroEJ SDK Getting Started

S e [lnitialization Stage] S e
======c=c=c=c=c=c=c== [Launching on Si mul at or] ======c=c=c=c=c=c=c==

======c=c=c=c=c=c=c== [Cbnpleted SUCCESSfU"y] ======c=c=c=c=c=c=c==

2.3.3. Run on the Hardware Device

Compile an application, connect the hardware device and deploy on it is hardware dependant. These
steps are described in dedicated documentation available inside the MicroEJ Platform. This documen-
tation is accessible from the MicroEJ Resources Center view.

Note

MicroEJ Resources Center view may have been closed. ClickonHel p > M croEJ Re-
sources Center toreopen it.

Open the menu Manual and select the documentation [har dwar e device] M croEJ Pl at -
f or mwhere[har dwar e devi ce] isthename of the hardware device. This documentation features
a guide to run a built-in application on MicroEJ Simulator and on hardware device.

Figure 2.13. MicroEJ Platform Guide

MicroE) Resource Center 23

type filter text

- @& Javadoc

4 |[§LJ] Manual

[Hordware Device MicroE) Platform

2.4. Application Development

The following sections of this document shall prove useful as a reference when developing applications
for MicroEJ. They cover concepts essential to MicroEJ applications design.

In addition to these sections, by going to htt p: / / devel oper . m croej . conf, you can access a
number of helpful resources such as:

« Libraries,

13

MicroEJ SDK Getting Started

« Application Examples, with their source code,

« Documentation (HOWTOs, Reference Manuals, APIs javadoc...)

14

Chapter 3. MicroEJ Classpath

MicroEJ applications run on a target device and their footprint is optimized to fulfill embedded con-
straints. The final execution context is an embedded device that may not even have a file system. Files
required by the application at runtime are not directly copied to the target device, they are compiled
to produce the application binary code which will be executed by MicroEJ OS core engine.

As a part of the compile-time trimming process, all types not required by the embedded application
are eliminated from the final binary.

MicroEJ Classpath is a developer defined list of all places containing files to be embedded in the final
application binary. MicroEJ Classpath is made up of an ordered list of paths. A path is either a folder or
a zip file, called a JAR file (JAR stands for Java ARchive).

« Section 3.1, “Application Classpath” explains how the MicroEJ classpath is built from a MicroEJ
application project.

« Section 3.2, “Classpath Load Model” explains how the application content is loaded from Mi-
crokEJ Classpath.

« Section 3.3, “Classpath Elements” specifies the different elements that can be declared in Mi-
croEJ Classpath to describe the application content.

« Section 3.4, “Foundation vs Add-On Libraries” explains the different kind of libraries that can be
added to MicroEJ Classpath.

+ Finally, Section 3.5, “Library Dependency Manager” shows how to manage libraries dependen-
ciesin MicroEJ.

3.1. Application Classpath

The following schema shows the classpath mapping from a MicroEJ application project to the MicroEJ
Classpath ordered list of folders and JAR files. The classpath resolution order (left to right) follows the
project appearance order (top to bottom).

15

MicroEJ Classpath

Figure 3.1. MicroEJ Application Classpath Mapping

v ‘;'.9 MyApplication
(#® src/main/java
(# src/main/resources Compiled code and copied resources

. T . .) .
(src/.generated-/ java located in folder MyApplication/bin
([src/.generated~/.resources

v B vy module.ivy [*]
e framework-1.2.2 jar - cache\gj.library.wadapps\framework\jars
@ components-3.0.2,jar - C:\cache\ej.library.runtime\componentsjars
@4 logging-1.0.3.jar - C:\cache\ej.library.eclas
(4 properties-1.0.1jar - C:\cache\gj.library.eclasspa ertiesjars
A4 bufferedstreams-1.0.1.jar - C:\cache\ej library.eclasspath\bufferedstreams\jars

. VIItEryars | vy transitive

3 progress-1.0.3jar - Ci\c .

y observable-1.0.2,jar ej.lib able\jars depe ndencies

a3 edc-12.3jar - C:\cache\ej.api\edc\jars JAR files located in

@ kf-1.4.2jar - C:\cache\ej.api\kf\jars Ivy cache folder
w8 microui-2.0-api-2.04 jar - C:\cache\ej.api\microui\jars

B

printwriter-1.0.1,jar - C:\cache\gj.library.eclasspa

B

B

|mia bcln—1,2,3-jar- Ci\cache g).api\bon\jars
v B Referenced Libraries Additional JAR file located in

v & :;I___;ﬂ_z:j:r MyApplication/META-INF/libraries/extra.jar

(= certificate
w [= libraries

g extrajar
(= properties

13apip Uolintosay HivdssSY 1D

(= services
& MANIFEST.MF

3.2. Classpath Load Model

A MicroEJ Application classpath is created via the loading of :
« anentry point type
« all*. [extension].list filesdeclaredin a MicroEJ Classpath.

The different elements that constitute an application are described in Section 3.3, “Classpath Ele-
ments”. They are searched within MicroEJ Classpath from left to right (the first file found is loaded).
Types referenced by previously loaded MicroEJ Classpath elements are loaded transitively.

16

MicroEJ Classpath

Figure 3.2. Classpath Load Principle

Folderl

afA.class

main {
D.foo();

Folder2

a.types.list

a.B.class

_r

a/B.class

afC.class

7

—— Entry
—> Resolution

Imgl.png

S

a.resources. list

Imgl.png —

N

Jar2

CLASSPATH Resolution Order

3.3. Classpath Elements

The MicroEJ Classpath contains the following elements:

Jarl Folder3
a/D.class afE.class
foo() { 1}
Img2.
——=>| a.images.list I
Img2.png — Vv
Img3.ong
L7
a/B.class
e

W

javaflang/Object.class

Selected Elements

[Folderl]/a/A.class
[Jarl/a/D.class
[Jar2]/java/lang /Object.class
[Folder1]/a/B.class
[Folder2]/Imgl.png
[Folder3]/Img2.png

« An entrypoint described in section Section 3.3.1, “Application Entry Points”

« Typesin. cl ass files, described in section Section 3.3.2, “Types”

« Raw resources, described in section Section 3.3.3, “Raw Resources”

« Immutables Object data files, described in Section Section 3.3.4, “/Immutable Objects”

« Images and Fonts resources

« *. [extension].list files, declaring contents to load. Supported list file extensions and

format is specific to declared application content and is described in the appropriate section.

3.3.1. Application Entry Points

MicroEJ application entry pointis aclassthatcontainsapubl i ¢ static void mai n(String[])
method. In case of MicroEJ Sandboxed Application, this entry point is automatically generated by Mi-

17

MicroEJ Classpath

croEJ Studio from declared Activity and/or BackgroundService types. In case of a MicroEJ Standalone
application, this has to be defined by the user.

3.3.2. Types

MicroEJ types (classes, interfaces) are compiled from source code (. j ava) to classfiles (. cl ass).
When a type is loaded, all types dependencies found in the classfile are loaded (transitively).

Atype can be declared as a Required type in order to enable the following usages:
+ to be dynamically loaded from its name (with a callto Cl ass. f or Nanme(Stri ng))
« toretrieve its fully qualified name (with a call to Ol ass. get Nane())

A type that is not declared as a Required type may not have its fully qualified name (FQN) embedded.
Its FQN can be retrieved using the stack trace reader tool (see Section 4.2, “Strack Trace Reader”).

Required Types are declared in MicroEJ Classpath using*. t ypes. | i st files. Thefile formatis a stan-
dard Java properties file, each line listing the fully qualified name of a type. Example:

Example 3.1. Required Types *. t ypes. | i st File Example

The followi ng types are marked as M croEJ Required Types
com nyconpany. Myl npl enent ati on
java.util. Vector

3.3.3. Raw Resources

Raw resources are binary files that need to be embedded by the application so that they may be dynam-
ically retrieved with a call to Cl ass. get Resour ceAsStrean(j ava. i o. | nput St ream . Raw
Resources aredeclared in MicroEJ Classpathusing* . r esour ces. | i st files. Thefile formatisastan-
dard Java properties file, each line is a relative / separated name of a file in MicroEJ Classpath to be
embedded as a resource. Example:

Example 3.2. Raw Resources *. r esour ces. | i st File Example

The followi ng resource is enbedded as a raw resource
com nmyconpany/ MyResour ce. t xt

3.3.4. Immutable Objects

Immutables objects are regular read-only objects that can be retrieved with a call to
ej . bon. I mut abl es. get (St ri ng) . Immutables objects are declared in files called immutable

18

MicroEJ Classpath

objects data files, which format is described in the [B- ON] specification (htt p: // e-s-r. net).Im-
mutables objects data files are declared in MicroEJ Classpath using * . i nmrut abl es. | i st files. The
file formatis a standard Java properties file, each lineisa/ separated name of a relative file in MicrokJ
Classpath to be loaded as an Immutable objects data file. Example:

Example 3.3. Immutable Objects Data Files *. i mrut abl es. | i st File Example

The following file is | oaded as an I mutabl e objects data files
conl nyconpany/ Myl nmrut abl es. dat a

3.3.5. System Properties

System Properties are key/value string pairs that can be accessed with a call to
System get Property(String). System properties are declared in MicroEJ Classpath
* properties.|ist files. The file format is a standard Java properties file. Example:

Example 3.4. System Properties *. properti es. | i st File Example

The followi ng property is enbedded as a System property
com myconpany. key=com nyconpany. val ue

3.3.6. Images

3.3.6.1. Overview

Images are graphical resources that can be accessed with a call to
ej . mcroui.display. | mge. createl mage().Tobedisplayed, these images have to be con-
verted from their source format to the display raw format. The conversion can either be done at :

+ build-time (using the image generator tool)
+ run-time (using the relevant decoder library)

Images that must be processed by the image generator tool are declared in MicroEJ Classpath
*.images. | i st files. The file format is a standard Java properties file, each line representing a /
separated resource path relative to the MicroEJ classpath root referring to a standard image file (e.g.
. pNng,. j pg). Theresource may be followed by an optional parameter (separated by a:) which defines
and/or describe the image output file format (raw format). When no option is specified, the image is
embedded as-is and will be decoded at run-time (although listing files without format specifier has no
impact on the image generator processing, it is advised to specify them in the *. i mages. | i st files
anyway, as it makes the run-time processing behavior explicit). Example:

19

MicroEJ Classpath

Figure 3.3. Image Generator *. i mages. | i st File Example

The followi ng i mage i s enbedded
as a PNG resource (decoded at run-tinme)

coni nyconpany/ Myl magel. png

The followi ng i mage i s enbedded

as a 16 bits format w thout transparency (decoded at build-tine)
coni nyconpany/ Myl mage2. png: RGB565

The followi ng i mage i s enbedded

as a 16 bits format with transparency (decoded at build-tine)
coni nyconpany/ Myl nage3. png: ARGB1555

3.3.6.2. Output Formats

3.3.6.2.1. No Compression

When no output format is set in the images list file, the image is embedded without any conversion /
compression. This allows you to embed the resource as well, in order to keep the source image char-
acteristics (compression, bpp etc.). This option produces the same result as specifiying an image as a
resource in the MicroEJ launcher.

Advantages:

+ Preserves the image characteristics.
Disadvantages:

+ Requires an image runtime decoder.

+ Requires some RAM in which to store the decoded image

Figure 3.4. Unchanged Image Example

i mgel

3.3.6.2.2. Display Output Format

This format encodes the image into the exact display memory representation. If the image to en-
code contains some transparent pixels, the output file will embed the transparency according to the
display'simplementation capacity. When all pixels are fully opaque, no extra information will be stored
in the output file in order to free up some memory space.

Advantages:

« Drawinganimage is very fast.

+ Supports alpha encoding.

20

MicroEJ Classpath

Disadvantages:

« No compression: the image size in bytes is proportional to the number of pixels.

Figure 3.5. Display Output Format Example

i magel: di spl ay

3.3.6.2.3. Generic Output Formats

Depending on the target hardware, several generic output formats are available. Some formats may
be directly managed by the BSP display driver. Refer to the platform specification to retrieve the list
of natively supported formats.

Advantages:

+ The pixels layout and bits format are standard, so it is easy to manipulate these images on the
C-side.

« Drawing an image is very fast when the display driver recognizes the format (with or without
transparency).

+ Supports or not the alpha encoding: select the most suitable format for the image to encode.
Disadvantages:

+ Nocompression: theimage size in bytes is proportional to the number of pixels, the transparen-
cy, and the bits-per-pixel.

Select one the following format to use a generic format:
+ ARGBB8888: 32 bits format, 8 bits for transparency, 8 per color.
+ RGBB888: 24 bits format, 8 per color. Image is always fully opaque.
+ ARGB4444: 16 bits format, 4 bits for transparency, 4 per color.
« ARGB1555: 16 bits format, 1 bit for transparency, 5 per color.
+ RGB565: 16 bits format, 5 or 6 per color. Image is always fully opaque.

+ A8: 8 bits format, only transparency is encoded. The color to apply when drawing the image, is
the current GraphicsContext color.

« A4: 4 bits format, only transparency is encoded. The color to apply when drawing the image, is
the current GraphicsContext color.

+ A2:2 bits format, only transparency is encoded. The color to apply when drawing the image, is
the current GraphicsContext color.

« Al: 1 bit format, only transparency is encoded. The color to apply when drawing the image, is
the current GraphicsContext color.

Figure 3.6. Generic Output Format Examples

i mgel: ARGB8888
i mge2: RGB565
i mge3: A4

21

MicroEJ Classpath

3.3.6.2.4. RLE1 Output Format

The image engine can display embedded images that are encoded into a compressed format which
encodes several consecutive pixels into one or more 16-bits words. This encoding manages a maximum
alpha level of 2 (alpha level is always assumed to be 2, even if the image is not transparent).

« Several consecutive pixels have the same color (2 words).
« First 16-bit word specifies how many consecutive pixels have the same color.
« Second 16-bit word is the pixels' color.

« Several consecutive pixels have their own color (1 +n words).
« First 16-bit word specifies how many consecutive pixels have their own color.
« Next 16-bit word is the next pixel color.

+ Several consecutive pixels are transparent (1 word).
+ 16-bit word specifies how many consecutive pixels are transparent.

Advantages:

« Supports 0 &2 alpha encoding.

« Good compression when several consecutive pixels respect one of the three previous rules.
Disadvantages:

« Drawing an image is slightly slower than when using Display format.

Figure 3.7. RLE1 Output Format Example

i mgel: RLE1

3.3.7. Fonts

3.3.7.1. Overview

Fonts are graphical resources that can be accessed with a call to
ej . microui.display. Font. get Font (). To be displayed, these fonts have to be converted at
build-time from their source format to the display raw format by the font generator tool. Fonts that
must be processed by the font generator tool are declared in MicroEJ Classpath*. f ont s. | i st files.
The file format is a standard Java properties file, each line representing a/ separated resource path
relative to the MicroEJ classpath root referring to a MicroEJ font file (usually with a. ej f file extension).
The resource may be followed by optional parameters which define :

« some ranges of characters to embed in the final raw file

« therequired pixel depth for transparency.

22

MicroEJ Classpath

By default, all characters available in the input font file are embedded, and the pixel depthis 1 (i.e 1
bit-per-pixel). Example:

Figure 3.8. Font Generator*. font s. | i st File Example

The following font is enbedded with all characters
W t hout transparency
com nmyconpany/ MyFont 1. ej f

The followi ng font is enbedded with only the latin
uni code range w thout transparency
com nmyconpany/ MyFont 2. ejf:latin

The following font is enbedded with all characters
with 2 |l evel s of transparency
com nmyconpany/ MyFont 2. ejf::2

MicroEJ font files conventionally end with the . ej f suffix and are created using the Font Designer (see
Section 4.1, “Font Designer”).

3.3.7.2. Font Range

Thefirst parameter is for specifying the font ranges to embed. Selecting only a specific set of characters
to embed reduces the memory footprint. Several ranges can be specified, separated by ; . There are
two ways to specify a character range: the custom range and the known range.

3.3.7.2.1. Custom Range
Allows the selection of raw Unicode character ranges.
Examples:
« nyfont: 0x21- 0x49: Embed all characters from 0x21 to 0x49 (included).

« nyfont: 0x21- 0x49, 0x55: Embed all characters from 0x21 to 0x49 and character 0x55

« nyfont: 0x21- 0x49; 0x55: Same as previous, but done by declaring two ranges.

3.3.7.2.2. Known Range

A known range is a range defined by the "Unicode Character Database" available on http://
www. uni code. or g/ . Each range is composed of sub ranges that have a unique id.

Examples:
« nyfont:|atin:Embed alllatin characters.
« nyfont:latin(5):Embedall latin characters of sub range 5 (0x D8 to OXF6).
« nyfont:|latin(1l-5):Embed alllatin characters of sub ranges 1 to 5.
« nyfont:latin(1l-5,7):Embed alllatin characters of sub ranges1to5 and 7.

« nyfont:latin(1l-5);1atin(7):Same asprevious, but done by declaring two ranges.

23

MicroEJ Classpath

« nyfont:latin(1l-5); han: Embedalllatincharactersof subranges1to5,andall hanchar-
acters.

3.3.7.3. Transparency
The second parameter is for specifying the font transparency level (1, 2, 4 or 8).
Examples:

« nyfont:|atin:4:Embed all latin characters with 4 levels of transparency

« nyfont:: 2:Embed all characters with 2 levels of transparency

3.4. Foundation vs Add-On Libraries

A MicroEJ Foundation Library is a MicroEJ Core library that provides core runtime APIs or hardware-de-
pendent functionality. A Foundation library is divided into an APl and an implementation. A Foundation
library APl is composed of a name and a 2 digits version (e.g. EDC- 1. 2, MAT- 2. 0) and follows the se-
mantic versioning (ht t p: / / senver . or g) specification. A Foundation library APl only contains pro-
totypes without code. Foundation library implementations are provided by MicroEJ Platforms. From a
MicroEJ Classpath, Foundation library APIs dependencies are automatically mapped to the associated
implementations provided by the platform on which the application is being executed.

A MicroEJ Add-On Library is a MicroEJ library that is implemented on top of MicroEJ Foundation Li-
braries (100% full Java code). A MicroEJ Add-on Library is distributed in a single JAR file, with most
likely a 3 digits version and provides its associated source code.

Foundation and add-on libraries are added to MicroEJ Classpath by the application developer using
Ivy (see Section 3.5, “Library Dependency Manager”).

Figure 3.9. MicroEJ OS Foundation and Add-On Libraries

Add-On Libraries

Fourldation Librarie

MicroUl NET SS5L

3.5. Library Dependency Manager

MicroEJuseslvy (htt p: // ant . apache. or g/ i vy) asits dependency manager for building MicroEJ
classpath.

An Ivy configuration file must be provided in each MicroEJ project to solve classpath dependencies.
Multiple Ivy configuration file templates are available depending on the kind of MicroEJ application
created.

24

MicroEJ Classpath

Example 3.5. Ivy File Template for a Sandboxed Application

<i vy-nmodul e version="2.0">

<i nfo nodul e=""/>

<dependenci es>
<I-- Declare a Foundation Library APl dependency -->
<dependency org="ej.api" nane="edc" rev="1.2. +"/>
<dependency org="ej.api" nane="bon" rev="1.2.+"/>

<l-- Declare an Add-On Library dependency -->
<dependency org="org. kxm 2" nane="kxnl 2" rev="2.3.1"/>
</ dependenci es>
</i vy- modul e>

Dependencies are declared within the <dependenci es> tag

+ Foundation libraries are declared using the " €] . api " organization. Without this, they will be
considered as a regular Add-On libraries and will not be mapped to the associated implemen-

tation provided by the platform.

+ Add-On libraries are declared with the default runtime configuration. All their declared depen-

dencies will be fetched transitively.

3.6. Central Repository

The MicroEJ Central Repository is the lvy repository maintained by MicroEJ. It contains Foundation li-
brary APIs and numerous Add-On Libraries. Foundation libraries APIs are distributed under the organi-
zation] . api . All other artifacts are Add-On libraries.

For more information, please visitht t ps: / / devel oper. m croej . com

25

Chapter 4. Additional Tools

4.1. Font Designer

MicroEJ Font Designer allows to create embedded fonts files (see Section 3.3.7, “Fonts”) from standard
font files formats. The Font Designer documentation is available at: Hel p > Hel p Contents >
Font Desi gner User GCui de.

4.2. Strack Trace Reader

When an application is deployed on a device, stack traces dumped on standard output are not directly
readable: non required types (see Section 3.3.2, “Types”) names, methods names and methods line
numbers may not have been embedded to save code space. A stack trace dumped on the standard
output can be decoded using the Stack Trace Reader tool.

Starting from the MicroEJ application example (see Section 2.3, “Build and Run an Application”), write
a new line to dump the currently executed stack trace on the standard output.

Figure 4.1. Code to Dump a Stack Trace

by modula.ivy [J] Testjava &3

package com.myCOmpany;:

[PR % B B

public class Test {

public static void main(String[] args) {
Syvstem.out.println ("hello world!™):;
new Exception () .printStackTrace () ;I

On successful deployment, the application is started on the device and the following trace is dumped
on standard output.

Figure 4.2. Stack Trace Output

hello world!

Exception in thread "main™ java.lang.Exception

at java.lang.System. @M: 0x800a054: 080020643

at java.lang.Throwable.@M:0x800b6e0: 0x800b6E6E
at java.lang.Throwakle.@M:0x800ca7c:0x800caal@
at java.lang.Exception.@M:0x800c9%e0:0x800c9f0@
at com.mycompany.Test.EM:0x800b5e0: 0x8000h608E
at java.lang.MainThread.@M:0x800c920:0x800c2364
at java.lang.Thread.@M:0x8002d58:0x800ede4@

hread.@H: 0x800edc8: 0

0}

at java.lang.
VM EHD (exit code

I ==

26

Additional Tools

To create a new MicroEJ Tool configuration, right-click on the application project and click on Run
As... > Run Configurations....

In Execut i ontab, selectthe St ack Trace Reader tool.

Figure 4.3. Select Stack Trace Reader Tool

= X | = Name: | Stack Trace Reader
type filter text A Execution - 84 Configuration| g, JRE| [C] Common
[E] C/C++ Application Target
o dunit Platform: | STM32F746GDISCO-Wadapps-VirtualDevics (1.52) Browse...

= Launch Group
30 MicroE) Application
~ [g Microt) Tool
[Stack Trace Reader

Execution
Settings: | Stack Trace Reader ~
Reads stack trace generated by MicroEl OS core engine.

Options

Qutput folder ‘ S{workspace_loc} Browse...

Clean intermediate files [Jverbose

InConf i gur at i on tab, browse the previously generated application binary file with debug informa-
tion (appl i cati on. out)

Figure 4.4. Stack Trace Reader Tool Configuration

0 Run Configurations n

Create, manage, and run configurations —

P

=)
= x| E & Mame: | Stack Trace Reader
type filter text i Execution | 3! Configuration g, JRE| [C] Common
[€] C/C++ Application Stack Trace Reader Application
Ju JUnit —
= Launch Group Executable file: | MyTest\com.mycompany.Test\application.out Browse...

> [T MicroE) Application

—— Additional object files:
4 [Og MicroE) Tool

D@ Stack Trace Reader Add

Remove

"Trace port" interface for Eclipse

Connection type: | Console v
COMD 115200

3200

Browse...

Revert Appl
Filter matched 21 of 28 items EVE pply
5
@

Run Close

Click on Run button and copy/paste the trace into the Eclipse console. The decoded trace is dumped
and the line corresponding to the application hook is now readable.

27

Additional Tools

Figure 4.5. Read the Stack Trace

& Console 1 |[% Problems = Progress Front Panel Preview [5 History 7 Search _3e Call Hierarchy

stack Trace Reader_ [Microb) Tool] C\Program Files\Javaljrel 8.0_66\bin'javaw.exe (Jun 21, 2016, £18:16 PM]
[MicroEJ OS5 Core Engine Trace | ==——=======—=====

[INFC] Paste the MicroEJ 05 core engine stack trace here.

1 2in" java.lang.Exception

mny

Excepti

oo

w

w

[+ £
of ottt oot oot ot ot ot

i

java.lang.Thread.@M: 0x800edcB : 0x800edd3@Exception in thread "main" java.lang.Exception
java.lang.5ystem.getStackIrace (Unknown Source)

java.lang.Throwable.fillInStackTrace (Throwakle.java:79)

java.lang.Throwable.<init> (Throwable.java:25)

W

[T~
ot oot

2]
ot

W
ot

java.lang.Exception.<init>(Exception.java:é)

1
ot

com.mycompany.Test.main(Test.java:7)

fu
(3

java.lang.MainThread.run (Thread.java:770)
java.lang.Thread.runWrapper (Thread. java:448)

Fu
ot

The stack trace reader can simultaneously decode heterogeneous stack traces with lines owned by dif-
ferent applications and the firmware. Other debug information files can be appended using the Ad-
ditional object filesoption.Linesowned by the firmware can be decoded with the firmare
debug information file (optionally made available by your firmware provider).

28

	Standalone Application
	Table of Contents
	Chapter 1. MicroEJ Overview
	1.1. MicroEJ Editions
	1.2. Firmware
	1.2.1. Bootable Binary with Core Services
	1.2.2. Specification

	Chapter 2. MicroEJ SDK Getting Started
	2.1. Introducing MicroEJ SDK
	2.2. Setup MicroEJ SDK
	2.2.1. Download and Install a MicroEJ Platform
	2.2.2. Setup Ivy Repository

	2.3. Build and Run an Application
	2.3.1. Create a MicroEJ Standalone Application
	2.3.2. Run on the Simulator
	2.3.3. Run on the Hardware Device

	2.4. Application Development

	Chapter 3. MicroEJ Classpath
	3.1. Application Classpath
	3.2. Classpath Load Model
	3.3. Classpath Elements
	3.3.1. Application Entry Points
	3.3.2. Types
	3.3.3. Raw Resources
	3.3.4. Immutable Objects
	3.3.5. System Properties
	3.3.6. Images
	3.3.6.1. Overview
	3.3.6.2. Output Formats
	3.3.6.2.1. No Compression
	3.3.6.2.2. Display Output Format
	3.3.6.2.3. Generic Output Formats
	3.3.6.2.4. RLE1 Output Format

	3.3.7. Fonts
	3.3.7.1. Overview
	3.3.7.2. Font Range
	3.3.7.2.1. Custom Range
	3.3.7.2.2. Known Range

	3.3.7.3. Transparency

	3.4. Foundation vs Add-On Libraries
	3.5. Library Dependency Manager
	3.6. Central Repository

	Chapter 4. Additional Tools
	4.1. Font Designer
	4.2. Strack Trace Reader

