Reference:
Version:

Revision:

Sandboxed Application

Developer's Guide

MICROEJ,

MicroEJ 4.0

TLT-0788-DGI-SandboxedApplicationDeveloperGuide-MicroEJ
4.0
C



Confidentiality & Intellectual Property

Allrights reserved. Information, technical data and tutorials contained in this document are confidential and proprietary under copyright
Law of Industrial Smart Software Technology (IS2T S.A.) operating under the brand name MicroEJ®. Without written permission from IS2T
S.A., copying or sending parts of the document or the entire document by any means to third parties is not permitted. Granted authorizations
for using parts of the document or the entire document do not mean IS2T S.A. gives public full access rights.

The information contained herein is not warranted to be error-free. 1IS2T® and MicroEJ® and all relative logos are trademarks or registered
trademarks of IS2T S.A. in France and other Countries.

Java™is Sun Microsystems' trademark for a technology for developing application software and deploying itin cross-platform, networked
environments. When it is used in this documentation without adding the ™ symbol, it includes implementations of the technology by
companies other than Sun.

Java™,all Java-based marks and all related logos are trademarks or registered trademarks of Sun Microsystems Inc, in the United States
and other Countries.

Other trademarks are proprietary of their authors.




Revision History

Revision C 07/2016

Added instructions related to the required differentiation of Application-Id fields in MANIFEST.MF files for both Shared
Interface provider and user applications

Revision B 07/2016

MicroEJ Classpath chapter review

Revision A 06/2016

Initial release




Table of Contents

1. MICTOES OVEIVIEW .uiiiiiiiiieeii ettt ettt ettt ettt e e e ea e e et e eeb e e et eeaaeeenas 1
1.1, MICIOEJ EQItIONS «oenneiieiii ettt ettt e et e et e et e et e et e eea e eenaeeeanns 1
1.2, FIFIMWAIE et ittt ettt ettt ettt ettt et ettt e e ta e e ea e et e e e bt e e eb s e et eeaaeeenes 2

1.2.1. Bootable Binary With COre SErviCes .....ouuuviiiiiiiiiiiii e e 2
1.2.2, SPECITICALION L.iitiiiie ittt e e et e et e et e e et e e et e e et e eaaeeaanees 2
1.3 VIFEUL DBVICE ettt ettt et e et e et e et e e ta e e et e eaaeeaaaes 3
1.3.1. Using a Virtual Device for SImulation .........cccoueviiiiiiiiiniiiiniiinein e 3
G T o o Yo XY= o I o Lt 3

2. MicroEJ Studio Getting Start@d .......cceuuviiiiiiiiiiiii et e e e e e e e an e e e eees 5
2.1. Introducing MICroEJd STUIO . .cuuniiiiiii et 5
2.2. Install and Setup MICroEJ STUAIO ....uuiiviniiiiiiie et e e e e ei e 7

2.2.1. Download and Install MicroEJ Studio ........ccuieiiiiiiiiiiiiiiiii e 7
2.2.2. Download and Install @ Virtual DEVICE ........veeeiiuiriiiiiiieeieiiie et 8
2.3. Build and Run an AppliCation ......ceeiiieiieii e e e naaas 10
2.3.1. Import a MicroEJ Sample Application ........c.oviiiiiiiiiniiiiniiiineceee e, 10
2.3.2. RUN 0N the SIMULATOr c..ueeieieii et 13
2.3.3. Prepare an Hardware Board .........c..oviiiiiiiiinieiiniiiiieeii et eein e eei e eei e eeiens 14
2.3.4. Deploy Locally 0n HardWare .........veeeiiieiieiiieec e e e e e e e ees 18
2.4, Application PUBLICAtioN .......oiiuiiiiiiiiiin et e e e e 20
2.4.1. BUILd the WPK L.eeieiiii et e e et e e e et e et e e e e e e e e eanaas 20
2.4.2. Publish 0n @ MICrOEJ STOI€ .cccuuniiiiiiiieiiiiii e 21
2.5. Application DEVEIOPMENT .....uuiieiii et e e e e e e e 22

3. Wadapps FrameWOTK ....ieuuiiiieeeiieeiine ettt e ete e et e et e e et s e et s et e eaanseatnseasnseasnnsasansesnneanes 23
3.1. MicroEJ Component FrameWOrK ......c..viuiiiiiiiiie et e e e e e e e e e e eanas 23
3.2, EXECULION LIFECYCIE 1iiiiiiiie ittt e e e e e e e et s e e e e eaaneeees 23

3.2.1. Background Service LIfeCYCle ..o.uuuviiiiiiiiiiiiie e 24
3.2.2. ACtiVity LIfECYCLE wuniiiiii e 24
3.3, SOIVICES USAZE cenieiiiiiii ittt ettt ettt ettt et ettt e e e e e eenns 26
3.3.1. RELIOVING SEIVICES .uevniiiiiiiiie ettt ettt ettt e e e e et e be et e et e et eaanes 26
3.3.2. Application LOCAl SEIVICES ....ivniieeiiieeie ettt e et e e e e e e e e aeeanas 27
3.3.3. Shared REGISTIY ..ovvuieiieiiie ittt et e et e et e e et e et e e et e e et e eaaaeees 27
3.4. Standalone vs Sandboxed Application ........c.oiveiiiiiiiii 27
3.4.1. Automatically Generated Standalone Entry Points ..........ccovvivneiiinniiineiinnennnn. 27
3.4.2. Standalone Application Specific Dependencies ........ccccuuvevviieeriineiiineeieeeiines 28

4. Sandboxed AppliCAtioN STIUCTUIE ...c.uuiiiiiiii et e e e et e e e e e ea e eaaans 30
4.1. Application Template Creation ........cveuiiiiiieie e e e e e e e aes 30
4.2, SOUICES FOLABY ettt ettt ettt e et e e e e e e e eaaa s eeeeaas 31
e T | = e 1 o] U 1= 32

4.3.1. Certificate FOLAEN .....iiiiii et eee e 32
4.3.2. LiDraries FOLA@N ... e 32
4.3.3. Properties FOIAET ...c.uiiiuiiiiieiiiie et e e e s e e e e e e e e e eeaens 32
4.3.4. ServiCes FOLARN ..uniieii e 32
4.3.5. MaNIfESt FIle eeveuneeiiiiee et et eee 32
4.4, MDAUI €. 1 VY File oniii i e e e e e e e et e e et e e et e e eaaeeeren 32




Sandboxed Application

5. Background Service APPLICAtION .......iiueiiiiiii e 33
5.1. Create a Sandboxed Application Project .........ceviuviiiiniiiiiniiie e e e e eiis 33
5.2. Fill the Application STrUCLUIE .. ..ueiee i e e e e e eaaas 33

5.2.1. Simple Background Application Code ........ceeiiuuiiiiiiiiiriiiiiiieieeiie et 33
5.2.2. Manifest File Configuration ...........ceviiiiiiiiiiiiiin et 35
5.3. TESt 0N @ VIrtUAL DEVICE c.vuuiiiiiiieeiiii ettt ettt e et e eeeea e 36
5.4. Test oN Target HardWare ......o...eiuiieie et ettt et e et e e e eaa e 38
5.4.1. Create a Run Configuration for the Target Hardware ...........ccccoeveveiiiinieeiinnnenns 38
5.4.2. Local Deployment on the Target Hardware ..........cccieiiiiiiiiiiiiiiniiiiieciiieccieee, 40

6. ACIVItY APPLICAtION L.iiieiiii ittt e et e e e e e e et e et e et e et aaaaaaes 43

6.1. Develop an Activity Application .......eieiieii e 43
6.1.1. Create a Sandboxed Application Project .........ccoeviviiiiiiiniiiiniiiineiiee e, 43
6.1.2. Create an Activity Implementation ..........covviiiiiiiiii e 43
6.1.3. Update the Manifest File ........cooviiiiiiiiiiiiin e 44
6.1.4. Add Graphical Library Dependency .......cevuueiuieiiiiiieiieeii e e e 45
6.1.5. Implement @ Graphical Class ........ovivuviiiiiiiin e e e e e 45

6.2. Add ApPliCation RESOUICES ....uuiveieiiiiieie e etie et e et e e e e e e e et e et e et e e e e eaneeanaeanns 48
6.2.1. Add IMAZES RESOUITES ...eevuuneeiiiiieeitiie ettt e ettt e etaiieeetetieeeeeaaeeeeenaaeeeanes 48
6.2.2. Add FONES RESOUICES ..eeeiieiiieeiiie ettt ettt ettt e e et e et e et e e et e e eaaeeeanns 48

6.3. Test the Application on SIMUIAtOr .......iuuiiiiiiii e e e eens 49
6.3.1. Create @ RUN Configuration ..........coeiiiiiiiiiiiiiniiiiii et e e 49

7. Shared INLEIfAaCeS ...couuniiiii ettt e et e e e 51
0 R = T el o] 1 51
7.2. Shared Interface Creation .......icuu. ettt eet e e e eai e e eenaaes 51

7.2.1. Interface Definition .........ieiiiiiiie i 51
7.2.2. Transferable TYPES couuiiuniieie ettt e et e et e e e e et e e aaeeeaanes 52
7.2.3. Proxy Class Implementation ..........ceiueiiiiiiiii e e 53

7.3. Shared Interface EXamMPLe ....civuniiiiiiiiie ettt e e e e e e e a e aa e 55
7.3.1. Write the Proxy Implementation .........coeeuiiiiiiii e 55
7.3.2. Prepare the Shared Interface Projects .....coocvuvviiiiiiiiiiiiiniin e 56
7.3.3. Implement the Provider Side ........cuiiviiiiiii e 58
7.3.4. Implement the USer SIde .....c.uiiiiiiiiiiiiiiie et e e e et e e e e aa e ees 59

T4, SYSTEM REGISEIIES «.n ettt ettt et et et e et e e e e e e e e eenee 61

8. MICIOEJ ClasSPathi ovuuuiiiiiiii ittt e e et e e et e et e et e e et e e ean e esaeasnneanannns 62
8.1. Application ClassPath c....cu.iieeii e 62
8.2. Classpath Load MOAEL ......iiuniiiiiiiiiiiiie et e et e e ae e e e e e eaeeeaaeeaeans 63
8.3. Classpath EL@MENES ...cuuiieiiieie e et e e e e e e e e e e e e eas 64

8.3.1. Application ENtry POINES ...uiiiuiiiiieiiii ettt e e e er e eaieeaaneeees 64
G T Y] o 1L S TP P PP PR 65
8.3.3. RAW RESOUICES ..uviviiiiiiiiiiiiiiiiiiii e e e 65
8.3.4. IMMULable ODJECES ..ueiiiiii e 65
8.3.5. SYSEM PrOPEItIES .uuivuiiiiiiitiii ittt ettt e et et s et s et e et et eaasereeaneaanes 66
8.3.6. IMAEES ettt enes 66
8.3 7. FONTS ettt 69
8.4. Foundation vs Add-On LiDrari€s ........couuiiiuiiiiieiiie et 71
8.5. Library Dependency MaN@ZEN .........ovieiuuueeeeiiieeeeiiie e ettt e ettt e eeeaieeeeatieeeeanaaeeeeenas 71




Sandboxed Application

S O(=T oY =Y B 2T 0T 1 | Lo YN 73
9. AAAITIONAL TOOUS ettt et e e et e e ettt e e eetb e e eetbneeeeananees 74
0.1, FONT DESIGNEN ettt ettt ettt ettt et et et e et e e e e ea e eneen e an e eaaeenaeenaes 74
9.2, Strack Trace REAGEN ...uiiiiiie ettt ettt et e e et e e e et e e eeaaaes 74

vi



List of Figures

1.1.
1.2.
1.3.
1.4.
2.1.
2.2
3.1
3.2
3.3.
3.4.
3.5.
3.6.
3.7.
7.1.
7.2.
7.3.
7.4.
7.5.
8.1.
8.2
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.
9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.

MicroEJ OS Development TOOIS OVEIVIEW .......civuuriiiueiiieeiieeiieeeiineeiineetieeeinseeineerineesnneees 1
MicroEJ Firmware ArChiteCTUIE ........iiui i et 2
MicroEJ Virtual Device ArChiteCtUIe ........iiiiiiie et 3
MiCroEJ RESOUICE CeNter APIS .....eneiei ettt ettt et et et e e e e een e eenes 4
MicroEJ Application Development OVEIVIEW .......c.u.viiuiriiinreeiieeeiineeiieetieeeiieeriineerineeenneeannns 6
MicroEJ Studio Development Imported ElemMents .......couviieiiiiiiiiii e, 7
Wadapps Framework COMPONENtS VIEW ....c..uiivuniiiinieiineiiinetiineerieeiineesieeenineennnsesnneennnnens 23
Background Service Lifecycle within an application ...........cooeuuiiviiiiiniiiiiiinnie e, 24
Activity Lifecycle Within an AppliCation ........c.viiiriiiiriii e 25
Wadapps SErVICES PrOVIAEIS ...iin i ettt e e e et e et e et e e e e e e e e eaneeaneeanas 26
Wadapps Service Retrieval EXamPle .....ooueviiiiiiiniiiin et ee e e e e e ean e eain s 27
Sandboxed Application Autogenerated StruCture ..........coouiiiiiiiii i 28
Package EXplorer Fi | £ @5 S. .. MENU ciiuuiiiiiiiiiii ittt ettt e e eie e eieeeai e eaa e eainas 28
Shared Interface Call MEChANISM .....iiiiii e e e e e eeaes 51
Shared Interface Parameters Transfer ........v v 52
Shared INterfaces ProXy OVEIVIEW ......ccuueiiiieiiieeiieeiieeeie e et e e v e e st eestee st esreneesnneesenaees 54
MANI FEST. M file content for Shared Interface Provider application project..............c........ 57
MANI FEST. M- file content for Shared Interface User application project ..........ccevevvvennennnn. 57
MicroEJ Application Classpath Mapping .....couuveiuiiiiiiiiiiniiiir et e e e eaneeaanes 63
(OIS oF- 14 T oY Ta I = g T el o] 1 64
Image Generator *. i mages. | i St File EXample c.ooo.oviiiiiiiiiiiiiii e 67
Unchanged ImMage EXamMPLe ... ... ittt e ettt e e e e eee 67
Display Output FOrmat EXamPLe .....cvvuniiiiiiiine ittt et et e e e e et eean e eaaeeeanes 68
Generic OUtPUL FOrmMat EXamMPLES ..ovuiiniiiiiie et e e et e e e e e e e e e e e e eaneeans 68
RLEL Output FOrmat EXamMPLe ..ocuuuiiiiniiiiieiiie st e et et e et e e e s e ei s e eaaeeaaanes 69
Font Generator *. font s. | i St File EXample ....covvniiiiiiiiieiieecee e 70
MicroEJ OS Foundation and Add-On Libraries ..........ceeeeuueriiiiiiieiiiiiie et 71
Code tO DUMP @ STACK TraC@ vuuiiniiiiii it ettt e et e e et e e e e et e e e eneanaeanaeannas 74
Local Deployment Configuration with Intermediate Files ........c.coviviviiiiiiiiiiniiiiniiineceeeis 75
Application Binary File with Debug INformation .............coeiiiiiiiiiiiiiine e, 75
= Tol N = 1ol @ 1114 10 PO 76
Select Stack Trace REAAEr TOOL ..ccuuuiiuiiiiie et e e e e e 76
Stack Trace Reader Tool CONfigUIation .........ccuviiuiiiiniiiiniiiin et er et e e e e e e e eees 77
Read the STaCK Trate ...ceu ettt et et e et e et eeei e e e 77

vii



List of Tables

7.1. Shared Interface Types Transfer Rules ......

7.2. MicroEJ Evaluation Firmware Example of Transfer TYPeS .....c.uveiiiiiiiiieiiiieeiieee e eei e

7.3. Proxy Remote Invocation Built-in Methods

viii



Chapter 1. MicroEJ Overview

1.1. MicroEJ Editions

MicroEJ offers a comprehensive toolset to build the embedded sofware of a device. The toolset covers
two levels in device software development:

« MicroEJ SDK for device firmware development
« MicroEJ Studio for application development

The firmware will generally be produced by the device OEM, it includes all device drivers and a specific
set of MicroEJ OS functionalities useful for application developers targeting this device.

Figure 1.1. MicroEJ OS Development Tools Overview

Firmware developer host 4 Application developer host N

Virtual Device

Import

Platform
Sources

v | vl MicroEJ
Application

F|rmware

Studio

Publish

ﬂash

£ oo '{L :mEEE[ |
Tareet Install
arge

Using the MicroEJ SDK tool, a firmware developer will produce two versions of the MicroEJ OS binary,
each one able to run applications created with the MicroEJ Studio tool:

« Afirmware binary to be flashed on OEM devices
« AVirtual Device which will be used as a device simulator by application developers
Using the MicroEJ Studio tool, an application developer will be able to:

« Import Virtual Devices matching his target hardware in order to develop and test applications
on the simulator.

« Deploy the application locally on an hardware device equipped with the MicroEJ OS firmware




MicroEJ Overview

« Package and publish the application on a store, enabling remote end users to install it on their
devices.

1.2. Firmware

1.2.1. Bootable Binary with Core Services

A MicroEJ firmware is a binary software program that can be programmed into the flash memory of a
device. A MicroEJ firmware includes an instance of a MicroEJ OS linked to:

« underlying native libraries and BSP + RTOS,

« MicroEJ libraries and application code (C and Java code).

Figure 1.2. MicroEJ Firmware Architecture

Application

Add-On Libraries

MicroUl

Display

Driver Driver Driver Driver Driver Driver Driver
BSP

RTOS

C runtime

Storage

Hardware

1.2.2. Specification

The set of libraries included in the firmware and its dimensioning limitations (maximum number
of simultaneous threads, open connections, ...) are firmware specific. Please refer to http://
devel oper. microej.confgetting-started. ht m firmware release notes.




MicroEJ Overview

1.3. Virtual Device

1.3.1. Using a Virtual Device for Simulation

The virtual device includes the same custom MicroEJ OS Core, libraries and resident applications as
the real device. The virtual device allows developers to run their applications either on the Simulator,
or directly on the real device through local deployment.

The Simulator runs a mockup board support package (BSP Mock) that mimics the hardware function-
ality. An application on the simulator is run as a standalone application

Before an application is locally deployed on device, MicroEJ Studio ensures that it does not depend on
any APl that is unavailable on the device.

Figure 1.3. MicroEJ Virtual Device Architecture

Application

Add-On Libraries

MicroUlI

Display
Stack

CcPU LCD Ethernet Wi-Fi Mass Serial Mock X Mock Y
FPU Storage

Hardware

1.3.2. Exposed APIs

The set of MicroEJ OS APIs exposed by a virtual device (and therefore provided by its associated firw-
mare) is documented in Javadoc® format in the MicroEJ Resource Center (W ndow > Show Vi ew
> M croEJ Resource Center).




MicroEJ Overview

Figure 1.4. MicroEJ Resource Center APIs

@ Microb) Resource Center &3

type filter text

& Application Note
W @ Javadoc
[ WADAPPS-RUMTIME 1.4
&> Library Specification

& Video




Chapter 2. MicroEJ Studio Getting Started

2.1. Introducing MicroEJ Studio

MicroEJ Studio provides tools based on Eclipse to develop software applications for MicroEJ-ready de-
vices. MicroEJ Studio allows application developers to write MicroEJ applications, run them on avirtual
(simulated) or real device, and publish them to the MicroEJ Application Store.

This document is a step-by-step introduction to application development with MicroEJ Studio. The
purpose of MicroEJ Studio is to develop for targeted MCU/MPU computers (loT, wearable, etc.) and it
is therefore a cross-development tool.

Unlike standard low-level cross-development tools, MicroEJ Studio offers unique services like hard-
ware simulation, local deployment to the target hardware and final publication to a MicroEJ Applica-
tion Store.

Application development is based on the following elements:

+ MicroEJ Studio, the integrated development environment for writing applications. It is based on
Eclipse and is relies on the integrated Java compiler (JDT). It also provides a dependency man-
ager for managing MicroEJ Libraries (see Section 8.5, “Library Dependency Manager”). The cur-
rent version of MicroEJ Studio is built on top of Eclipse Mars (ht t p: / / www. ecl i pse. or g/
downl oads/ packages/ rel ease/ Mar s/ 2).

+ MicroEJ Virtual Device, a software package including the resources and tools required for build-
ing and testing an application for a specific MicroEJ-ready device. Virtual Devices are import-
ed into MicroEJ Studio within a local folder called MicroEJ Platforms repository. Once a Virtual
Device is imported, an application can be launched and tested on simulator. It also provides a
means to locally deploy the application on a MicroEJ-ready device.

+ MicroEJ-ready device, an hardware device that has been previously programmed with a MicroEJ
firmware. AMicroEJ firmware is a binary instance of MicroEJ OS for a target hardware board. Mi-
croEJ-ready devices are built using MicroEJ SDK. MicroEJ Virtual Devices and MicroEJ Firmwares
share the same version (there is a 1:1 mapping).

The following figure gives an overview of MicroEJ Studio possibilities:




MicroEJ Studio Getting Started

Figure 2.1. MicroEJ Application Development Overview

&

MicroE)
Studio

Simulator

MicroEJ
Application

”-)

Publish !
oo

-~

, deployment

Starting from scratch, the steps to go through the whole process are detailed in the following sections
of this chapter:

« Download and install MicroEJ Studio

+ Download and install a Virtual Device

« Download, build and run your first application on simulator
+ Download and install MicroEJ firmware on target hardware
« Build and run your first application on target hardware

+ Package and publish your application to the store

Several steps include software download and installation, the following figure gives an overview of the
MicroEJ software components required for both host computer and target hardware:




MicroEJ Studio Getting Started

Figure 2.2. MicroEJ Studio Development Imported Elements

MicroE)J Studio

E install ( Application developer host \
I

Simulator

MicroE]

ERERLEEY EL’CEEEEE‘EEJ

MicroEJ-ready device

2.2. Install and Setup MicroEJ Studio

2.2.1. Download and Install MicroEJ Studio

A Java™Runtime Environment is needed on your host computer for running MicroEJ Studio. Download
Java™fromhtt p://java. coni en.

MicroEJ Studio is available for download on http://devel oper. m croej.com get -
ting-started. ht m .Itcanrunon the following host operating systems:

« Windows 10, Windows 8.1, Windows 8, Windows 7, Windows Vista or Windows XP SP3
« Linux distributions (tested on Ubuntu 12.04 and Ubuntu 14.04)
+ Mac OS X (tested on version 10.10 Yosemite and 10.11 El Capitan)

After downloading the suitable version of MicroEJ Studio, extract the content of the ZIP file and launch
the installation process:




MicroEJ Studio Getting Started

/ Application developer host \
MicroEJ Studio

install @

MicroEJ
Studio

{ 4

Start MicroEJ Studio. It prompts you to select the last used workspace or a default workspace on the

first run. Aworkspace is a main folder where to find a set of projects containing source code. When load-
ing a new workspace, MicroEJ Studio prompts for the location of the MicroEJ Platforms repository. By
default, MicroEJ Studio suggests to point to the default MicroEJ Platforms repository on your operating
system, located at ${ user . hormre}/ . m croej /repositories/[version]).Youcanselectan
alternative location. Another common practice is to define a local repository relative to the workspace,
so that the workspace is self-contained, without external file system links and can be shared within a
zip file.

2.2.2. Download and Install a Virtual Device

MicroEJ Studio being a cross development tool, it does not build software targeted to your host desk-
top platform. In order to run MicroEJ applications, a target hardware is required. Several commercial
targets boards from main MCU/MPU chip manufacturers can be prepared to run MicroEJ applications,
you can also run your applications without one of these boards with the help of a Virtual Device.

A MicroEJ Virtual Device is a software package including the resources and tools required for building
and testing an application for a specific MicroEJ-ready device.

AVirtual Device will simulate all capabilities of the corresponding hardware board:
» Computation and Memory
« Communication channels (e.g. Network, USB ...)
« Display
 Userinteraction

Virtual Devices are availableatht t p: / / devel oper. mi croej.confgetting-started. htm.
In this document all examples will be provided with the following target boards:

« STMicroelectronics STM32F746G-DISCO board

After  downloading the  Virtual Device installer (STMB2F746CDI SCO- Wadapps-
Vi rtual Devi ce- 1. 5. 1. j pf file), launch MicroEJ Studio on your desktop to start the process of
Platform installation:




MicroEJ Studio Getting Started

/ Application developer host \

MicroE)
Studio

Virtual Platform Simulator
@ _ install

« Open the Platform view in MicroEJ Studio, select W ndow > Pref erences > M croEJ >
Pl at f or ns. The view should be empty on a fresh install of the tool

type filter text Platforms

i Install/lUpdate ~
Ivy

» Java

4 MicroEJ Name Select All

Platforms Deselect All

Updates
» Mylyn

Add or remove platforms.

Platforms, Virtual Devices and Architectures:

Import...

» Plug-in Develo Uninstall

» PMD

» Run/Debug

» Team
Validation

- Restore Defaults Apply

Get UID

@ ==

« presslnport. .. button.

« ChooseSel ect File... andusetheBr owse optiontonavigatetothe. j pf file containing
your Virtual Device, then read and accept the license agreement to proceed.




MicroEJ Studio Getting Started

Import Platforms, Virtual Devices and Architectures #

Select a directory/file to search for available platforms, virtual devices and architectures.

() Select directory: Browse...
(®) Select file: | E)-5tudio\STM32F746GDISCO-Wadapps-VirtualDevice-1.5.1jpf Browse...
Platforms, Virtual Devices and Architectures:

Name Version Select All
MO STM32F746GDISCO-Wadapps-Virtual 1.5.1 Deselect Al

' 21.1 MICROH Software Package (that can be either a media or any virtual container) may include ¢ ~ .

21.2 Other Software, property of companies other than 1S2T, may be provided by IS2T in conjunct
22 APPLICABLE LAW
22.1 This Agreement shall be governed by, and interpreted in accordance with French Law excludin

22.2 The provisions of Sections 19, 20 and 21 and those other provisions which expressly indicate

Reference: LAW-0011-LCS-MicroE)_JPK_LicenseAgreement-2.0-A
< >

[l agree and accept the above terms and conditions and | want to install the copyrighted Software|

@ e

+ The Virtual Device should now appear in the Pl at f or s view, with a green valid mark.

type filter text Platforms
EasyantdEclips: ~
Help
» Install/Update
vy Name Version  Li.. Select All
. Java | |6 STM32F746GDISCO-Wadapps-Virtual 151 ¥
4 MicroE)
Platforms
Updates Uninstall
> Mylyn
» Plug-in Develo
» PMD
' Run/Debug
< >

Add or remove platforms.

Platforms, Virtual Devices and Architectures:

Deselect All

Get UID

Restore Defaults

@ oK

2.3. Build and Run an Application

2.3.1. Import a MicroEJ Sample Application

Download the Hello sample application from http://devel oper. m croej.conf get-
ting-started. htm.

The first step is to import the sample application in your workspace. SelectFil e > I nport... >
General > Existing projects into workspace.

10



MicroEJ Studio Getting Started

File Edit Navigate Search Project Run Window Help

Ny Alt+Shift+N »
Open File...
Close
Close All
Select
Save
& | Save As... Create new projects from an archive file or directory.
Save All
Revert Select an import source:
Move... | type filter text
Rename... 4 & General
Refresh & Archive File
Convert Line Delimitel |@ Existing Projects into Workspace
Print... . File System
Switch Workspace [ Preferences
Restart
= Import...
s Export..

Properties o
Einish Cance

1 MANIFEST.MF [My9
2 module.ivy [MySandboxedApp_gui

3 README.md [MySandboxedApp_gui]

4 MANIFEST.MF [MySandboxedApp/META-INF]

Exit

In the | nport window, select Ar chi ve Fi | e and navigate with Br owse to the zip file you down-
loaded.

11



MicroEJ Studio Getting Started

Import Projects

Select a directory to search for existing Eclipse projects.

() Select root directory: Browse...

(®) Select archive file: D4_MicroEJ-Studio\applications-1.3.2.zipik4 Browse...

Projects:

ej.wadapps.app.demo.hello (ej.wadapps.app.demo.hello) Select All ‘

Deselect All
Refresh

Options

¥| Search for nested projects

¥| Copy projects into workspace

[ ] Hide projects that already exist in the workspace
Working sets

[ | Add project to working sets

Working sets:

@ < Back Next > Finish ‘ Cancel

The file contains one project named ej . wadapps. app. deno. hel | o, select it and click on Fi n-
i sh.You now have an application project imported in MicroEJ Studio. You can navigate the folder tree
and open java sources.

File Edit Source Refactor Navigate Search Project Run Window Help
O E@ R YyDHEvOv_vHEYES Iy P Il vilv o ovay

Quick Access || 5 | @)

# Package ... % % Type Hie.. 5 [ HelloDisplayablejava
BB ~ ® * Java[]
« & gjwadapps.app.demo.hello A [ package ej.wadapps.hello;
4 (®= sr¢/main/java
« # ejwadapps.hello

&
o)
#import java.io.IOException;[]

+ [@ ArabicMessage java = [ xx
» [@ ChineseMessage java * Displays MicroEJ] image and a list of "Hell

+ [0 EnglishMessage.java */
. B HelloActivity java public class HelloDisplayable extends Display

- iisoPhsplaveliieloa private static final int PADDING_TEXT
* ! HelloMessage java private static final int PADDING_BETWEEN_
* 2 src/main/resources
& Ivy module.ivy [] private final HelloMessage[] messages;
+ & _hello_.generated.HelloAct . . .
private Image microeiImage:
= filesystem <
» & launches
» = META-INF

< >

B Console % [l Problems =3 Progress
X% GEREE D - o~
<torminatads HallnArtivitiStandalana  IMirraFl Annlicatinnl C\Pranrar

ej.wadapps.hello.HelloDisplay...app.demo.hello/src/main/java

12



MicroEJ Studio Getting Started

2.3.2. Run on the Simulator

Launch the application on Simulator:

/ Application developer host \

MicroEl
Studio

Simulator

g - ‘ MicroEJ
\ Application

To run the sample project on Simulator, select it in the left panel then right-click and select Run >
Run as > M croEJ Application.

Go Into
o Edi Open in New Window
:ﬁle' B ‘ i ‘Source Open Type Hierarchy F4 v B v tor S
Show | Alt+Shift+W »
owin : Quick Access ‘ =&
- Copy ctrl+C | -5
Fe) # Package .. % g Copy Qualified Name
- \ [ Paste Ctrl+V o]
& gjwadappy % pelete Delete
< (# src/main, id Path ,
+  ejwad Build Patl [l
O Arat Source Alt+Shift+S »
© W Chin  Refactor At+Shift+T» by 3 1ist of "Hell
@ Engl &3 Import... :
[ Helll &5 Export.. le extends Display
B Hell & Refresh F5 &t PADDING_TEXT
2 Hell Close Project t PADDING_BETWEEN_
& src/main Close Unrelated Projects N
= lvy mod ) ) age[] messages;
Assign Working Sets...
= _hello_. N
= filesyster‘[ ‘Run As ] » & 1Java Applet
& launches  Debug As g [@—thﬂ-ﬂmmnn—]
& META-IN Profile As » | @ 3 MicroE) Application ’
< Validate Run Configurations...
ej.wadapps.app.den & Build selected Sandboxed Applications I

Launch steps will display messages in MicroEJ Studio Console and the Simulator will display on the
screen

13



MicroEJ Studio Getting Started

i ™y
Bl STM32F746GDISCO E=EEEE™

STM32F7466-DISCO

i3 wmeioe

! =
-

www,st.com,/stm32f7-discovery
§

e

Clicking on the "Home" button will display messages in the Console.

2.3.3. Prepare an Hardware Board

Download and install the target programming tool. For example for STM32 microcontrollers family,
the programming tool is named STM32 ST-LINK utility, is available on Windows® platforms and can be
downloaded from ht t p: / / www. st. conf web/ en/ cat al og/ t ool s/ PF258168.

/ Application developer host \

ST-Link utility

install

(U

Use the target tool to program the firmware on the hardware board (example for STM32F7). The first
step is to install an empty Micro-SD card in your board.

14



MicroEJ Studio Getting Started

/ Application developer host \

MicroEJ Firmware

copy
| K e
Programing link
Micro-SD (UsB)

Connect your board to the host PC with a USB cable, the STM32F746G-DISCO board has three USB con-
nectors, from left to right:

« CN14 - USB ST-LINK (Mini-B connector)
« CN13 - USB_FS (Micro-B connector)
« CN12 - USB_HS (Micro-B connector)

For power supply, you can select the ST-LINK connector by setting jumper JP1 on the back of the board,
next to the reset button. You must select "CN14 USB ST-LINK" (factory settings) when you use the STM32
ST-LINK utility, you need a cable with a "Mini-B" connector.

Once the board is connected, the screen displays the factory installed application, in ST-LINK Utility
select the connect button in the toolbar and the tool will display the characteristics of the processor.

15



MicroEJ Studio Getting Started

File Edit_View Target ST-LINK External Loader Help
EEIW}@&% @ 5

Memory display

Device  STM32F74x/F75x

... Device 0x449
Data Width: | 32bits V| poido Revz

Flash size Unknown

0xC1F84

Address: |0X08000000 V‘ Size: ‘

Device Memory @ 0x08000000 :  Binary File.
Target memory, Address range: [0x08000000 0x080C1F84]

Addres...| 0 4 | 8 | C |ASCII
0x080000... 080B9.. 8D. ID..U>..Y>..

20034... 08064.. 080B9..

0x080000...

0x080000...

0x080000...

0808B9...
00000...
080B9...

0808B9...
00000...
00000...

080B9...
00000...
080B9...

00000...
080B9...
080B9...

<

17:32:20 : ST-LINK SN : 066DFF535651727067163925
17:32:20 : ST-LINK Firmware version : V2124M10
17:32:21 : Connected via SWD.

17:32:21 : SWD Frequency = 1,8 MHz.

17:32:21 : Connection mode : Normal.

17:32:21 : Debug in Low Power mode enabled.
17:32:21 : Device ID:0x449

17:32:21 : Device family :STM32F74x/F75x

You must add an external loader to ST-LINK Utility by selecting "Add External Loader" and select the

loader that correspond to the STM32F746G-DISCO board

File Edit View Target ST-LINK |External Loader Help
i Add External Loader

M Close external memory grid

Start Address
0x60000000
0x60000000
0x64000000
0x90000000
0x90000000
0xC0000000
0x90000000
0x90000000
0x90000000
0x90000000
0x90000000
0x90000000
0x00000000

Device Name

[ 1 M29W128GL_STM324x91-EVAL
[ M29W128GL_STM32F756G-EVAL
[ M29W128GL_STM32L476G-EVAL
[ IMT25QL512A_STM324601-EVAL
[ 1MT25QL512A_STM322756G-EVAL
[ MT48LC2M32B2_STM324x9I-EVAL
[ N25Q128A_STM324691-DISCO
N25Q128A_STM32F746G-DISCO
[ N25Q256A_STM32446E-EVAL
[ N25Q256A_STM324691-EVAL

[ IN25Q128A_STM3214xx-DISCO
[ N25Q256A_STM321476G-EVAL
[ N25Q032A-STM32F40x

Device Type
Nor Flash
Nor Flash
Nor Flash
Nor Flash
Nor Flash
Static Ram
Nor Flash
Nor Flash
Nor Flash
Nor Flash
Nor Flash
Nor Flash
Spi Flash

Device Size
16MBytes
16MBytes
16MBytes
64MBytes
64MBytes
2MBytes
16MBytes
16MBytes
32MBytes
32MBytes
16MBytes
32MBytes

4MBytes o

Validate H Deselect Al

Once the loader is added, the MicroEJ firmware may be sent to the board by selecting Tar get

Pr ogr amand navigating to the HEX file.

16




MicroEJ Studio Getting Started

File Edit View |Target ST-LINK External Loader Help

Connect
Disconnect CTRL+D
Device STM32F74x/F75x%
E Chi CTRL+E — ... Device 0x449
e 1Fe4 Data Width: [32bits v "poiio pey 7

Erase Bank1
Erase Bank2

Fash size Unknown

[ ] Liveupc

Erase Sectors... )80C1F84]
Program... Ic | Ascll A
Program & Verify... CTRL+P D80B9.. 8D. ID..U>..Y>..
Blank Check D0000.. e>..i>..u>......
Memory Checksum 18089 Y o
Target memory compare with file

g . P 080B9.. >......... .. v
Option Bytes... CTRL+B N
MCU Core... 63925

0

Automatic Mode...
Settings...

17:32:21 - Debug in Low Power mode enabled.
17:32:21 : Device ID:0x449
17:32:21 : Device family :STM32F74x/F75x

The final flashing step requires validation, it will take a while to transfer and control the binary file sent
to the board.

] STM32 ST-LINK Utility - o EN

File Edit View Target ST-LINK External Loader Help
Sd@Ess 9

Memory display Device  STM32F74x/F75x
... Device 0x449

...Revisio RevZ

Flash size Unknown

\ Device Memory @ 0x08000000 : ‘ File : STM32F746GDISCO-WadappsFirmware-1.5.1.hex

[STM32F746GDISCO-WadappsFirmware-1.5.1.hex], Address range: [0x08000000 0x900DC§10]
Address 0 ‘4
0x080000... | 20034... 080
0x080000... | 080B9... 080
0x080000... | 00000... 000

Address: | 0x08000000 | Size:  OxCIF84 Data Width: |32 bits v |

Start address : 0x08000000

File path I-Studio\STM32F746G DISCO-WadappsFirmware-1 5.1 hex| | Browse
Verification
0x080000... | 080B9... 000 ®) Verify while programming Verify after programming

0x080000... | 08064... 0808 Click "Start" to program target.

<

17:32:20 : ST-LINK FIrmware
17:32:21 : Connected via SWDI
17:32:21 : SWD Frequency = Reset after programming
17:32:21 : Connection mode :
17:32:21 : Debug in Low Powi
17:32:21 : Device ID:0x449
17:32:21 : Device family :STM

After ST-LINK Utility disconnect, the board will display the application desktop.

17



MicroEJ Studio Getting Started

= nlliliallin. - | (B0

e 0 TR T T s ey ey © '__‘.':? ol e 4

2.3.4. Deploy Locally on Hardware

Local deployment of the application on the target will follow several steps, first on the board and then
from MicroEJ Studio:

« Connect the board to your PC through USB for power

+ Connect the RJ45 of the board to a network with a DHCP server
+ Read the board's IP address using the "Settings" application

+ Prepare the Run configuration in MicroEJ studio

+ Deploy and test the application on the board

18



MicroEJ Studio Getting Started

/ Application developer host \

MicroEJ
Application

local

deployment link
, deploy

(Ethernet)

DHCP server

When the board is powered and connected to a DHCP network, it will obtain an IP address visible in
the Settings application:

Settings

MNetwork

§

MAC Address:
56:84:Ta:fe:07:99
IP Address:

172.17.42.1

-

www.st.com,/stm32f7-discovery

-

Host:

4 store.microej.com

)

o
3\,

Cribmbh bn lasal smmmsebae

In MicroEJ open the Run > Run Confi gurations... window and select[ Local Depl oy-

ment] Hell o STMB2F746G- DI SCOin the left panel. The execution option is set to Execut e on
devi ce.

19



MicroEJ Studio Getting Started

@

Create, manage, and run configurations

FMEEIEER

Name: | [Local Deployment] Hello STM32F746G-DISCO
type filter text

Main rﬁ Execution - Conﬁgumlion} IUREW B Sourcew = Common
[€1 C/C++ Application
Target
Ju JUnit
& Launch Group Platform: STM32F746GDISCO-Wadapps-VirtualDevice ( Browse... ‘

4 [T MicroE) Application Execution

% () Execute on Simulator [3 Execute on Devicel

71 [Local Depl t] Hello STM32F746G-DISCO

.[ el Bl Hele Core Engine Mode: Default v
& MicroE Tool

Settings: Default Settings: Local Deployment v
Local deployment.
Options
Qutput folder:  ${workspace_loc}/ej.wadapps.app.demo. Browse...
Clean intermediate files [Iverbose
Filter matched 7 of 16 items Revert Apply

@

Run Close

Open the Conf i gur ati on tab and type the IP address of the board, then press Run. The MicroEJ
Console will display build and deployment messages.

Create, ge, and run config ions

@

Cex ey~ Name: [Local Deployment] Hello STM32F746G-DISCO

type filter text 71 Main % Executior] i1 Configuration . 3 JRE| & Source| = Common
[E C/C++ Application Board Board
Ju JUnit

# Launch Group
< T MicrokE) Application

Host  [[1o2168017 |

Port 4000
7 [Local Deployment] Hello STM32F4291-EVAL
T [Local Deployment] Hello STM32F746G-DISCO Timeout 60000
& MicroE) Tool

Filter matched 7 of 16 items

@

The application is now visible on the target's screen.

2.4. Application Publication

2.4.1. Build the WPK

When the application is ready for deployment, the last step in MicroEJ Studio is to create the WPK
(Wadapps PacKage) file that is intended to be published on a MicroEJ Store for end users.

In MicroEJ Studio, right click on project name and choose: Bui | d Sel ect ed Sandboxed Ap-
plications.

20



MicroEJ Studio Getting Started

. R s
. [ Import...
File Edit Source Refactor Nay &3 Export...
8~ 9 &Y & Refresh F5

Close Project
2 Package ... ¢ & Type Hi... 5 Assign Working Sets...

=R Run As 4

«|& ej.wadapps.app.demo.hello Debug As »

2 sr¢/main/java Profile As »

# src/main/resources .

. Validate
& Ivy module.ivy [*] © B ?| d Sandboxed Applicati ]
& 7he|Ioi.generated.Hello.[.! U! se- ected Sanchoxed Applications
Build with EasyAnt

& filesystem )
Restore from Local History...

& launches
& META-INF @ JAutodoc 4
& src Checkstyle 4
t» module.ivy F pMD g
Heap Analyzer 4
hoye Ivy »
Team »
= Compare With 4
ej.wadapps.app.demo.hello ST g
Nee e cadlaae Al Feeke

The WPK build process will display messages in MicroEJ console, ending up with a BUl LD SUCCESS-
FUL message.

[echo] project hello published locally with version 1.0.0-RC20160©5111118
BUILD SUCCESSFUL

Total time: 4 seconds
---- Memory Details ----
Used Memory = 66MB
Free Memory = 8@MB
Total Memory = 146MB

2.4.2. Publish on a MicroEJ Store

The WPK file produced by the build process is located in a dedicated t ar get ~/ arti f act s folder
in the project.

21



MicroEJ Studio Getting Started

+ & ej.wadapps.app.demo.hello
& src/main/java
# src/main/resources
- @ lvy module.ivy [*]
& _hello__.generated.HelloActivityStandalone
= filesystem
& launches
- = META-INF
& src
4 (= target~
= applicationSources
4 (= artifacts
% hello-build-meta.xml

=l hello.jar

& build-env
= dependencies
© = icons
= main
&= src
¢ MANIFEST.MF
t module.ivy

The .wpk file is ready to be uploaded to a MicroEJ Store. Please consult https://
conmuni ty. m cr oej . comfor more information.

2.5. Application Development

Thefollowing sections of this document shall prove useful as a reference when developing applications
for MicroEJ. They cover concepts essential to MicroEJ applications design.

In addition to these sections, by goingto htt p: / / devel oper. m croej . conf, you can access a
number of helpful resources such as:

« Libraries,
«+ Application Examples, with their source code,

« Documentation (HOWTOs, Reference Manuals, APIs javadoc...)

22



Chapter 3. Wadapps Framework

3.1. MicroEJ Component Framework

MicroEJ OS offers a multi-application execution framework called Wadapps framework. The basic fea-
tures offered by the Wadapps framework for each application include:

« Dynamic installation and uninstallation
+ Execution lifecycle management (Activities and Background Services)
+ Services usage

« Inter-application communication (Chapter 7, Shared Interfaces)

Figure 3.1. Wadapps Framework Components View

Install Uninstall

[ [ [ [ [
| | == | | |
| VAR | |

MicroEJ Y,
[ o [ Y [ [
I Application I \ /) I I
[ [ \ / [ [
I ———— et N 1y !
Sandboxing Shared Interfaces

MicroEJ OS

3.2. Execution Lifecycle

Depending on the application nature, two execution modes are available in the Wadapps framework:
+ Background Service
« Activity

Background Service is suitable for applications with no graphic interface, whereas Activity is dedicat-
ed to applications using the screen and user interface. An application must declare at least one back-
ground service or activity, and can declare a mix of both.

23



Wadapps Framework

3.2.1. Background Service Lifecycle

A background service entry point is a class that extends the
ej . wadapps. app. Backgr oundSer vi ce interface which offers a small set of methods dedicated
to the lifecycle of an application with no graphic interface:

« public void onStart ()
« public void onStop()

Usually, a background service has a unique active state. The onSt art () method is called just after
the application has been started and gives the entry point to start its job. This can be just starting a
thread or simply registering a shared service (see Section 7.4, “System Registries”). The onSt op()
method is called just before the application is stopped and gives to the application the opportunity to
properly save its state. Note that background service lifecycle methods are assumed to return quickly.
In case of long blocking code, a new thread must be created.

Figure 3.2. Background Service Lifecycle within an application

4+ %% BackgroundService.class e —
4 © BackgroundService
¢ onStart() : void
¢ onStop() : void onStart
Application activated
onStop
Application stopped

3.2.2. Activity Lifecycle

An activity entry point is a class that extends the e] . wadapps. app. Acti vi ty interface which of-
fers a more comprehensive set of methods dedicated to the lifecycle of an application with a graphic
interface:

« public void onCreate()
« public void onDestroy()

« public void onStart ()

24



Wadapps Framework

« public void onRestart ()

« public void onStop()
« public void onPause()

« public void onResune()

Note that as for a background service, activity lifecycle methods are assumed to return quickly. In case

of long blocking code, a new thread must be created.

An activity must share the Graphical User Interface with other activities, either from the same applica-
tion or from different ones. As a consequence the implementation of the Activity interface must handle

transitions between several activity states:
« CREATED
+ STARTED

« PAUSED

Figure 3.3. Activity Lifecycle Within an Application

4« 4 Activity.class

Application started

¢ onStart() : void

¢ onStop() : void

v
v

Application shown

onPause

v

onStop

4 © Activity v
¢ getID() : String onCreate
¢ onCreate() : void v
¢ onDestroy() : void onStart |€— onRestart
¢ onPause() : void v A
¢ onRestart() : void R
¢ onResume() : void

v

onDestroy

v

Application stopped

25




Wadapps Framework

3.3. Services Usage

The Wadapps framework provides a service oriented mechanism where generic services may be pro-
vided on several levels:

+ Application local implementation
+ MicroEJ OS provided service
+ Service shared by another application

Services retrieval order follows the order of the previous list. An application local implementation may
override a MicroEJ OS provided service. A MicroEJ OS provided service cannot be overridden by a ser-
vice shared by an other application.

Figure 3.4. Wadapps Services Providers
Application service

MicroE)
Application

OS service Shared service

MicroEJ OS

3.3.1. Retrieving Services

Services are retrieved in a transparent way however they have been published, us-
ing the default service loader. Given a class that represents the service API, it re-
turns the registered implementation. The default service loader can be retrieved using

ej . conponent s. dependencyi nj ecti on. Servi ceLoader Fact ory. get Servi ceLoader ().

Then, the service implementation is retrieved using
ej . component s. dependencyi nj ecti on. Servi ceLoader . get Servi ce(d ass).

26



Wadapps Framework

Next figure is an example for retrieving the ej . wadapps. st or age. St or age service.

Figure 3.5. Wadapps Service Retrieval Example

Z2— Retriewve the Storage service implementation
Storage storagedervice = zl.getlervice (Storage.class);
System.out.println("Inplementation HName = "+

ztorageService.getClaszs= () .getHame () ) ;

3.3.2. Application Local Services

Application local services are provided as an application's local class and declared in the META- | NF/
ser Vi ces section of the project (see Section 4.3.4, “Services Folder”).

3.3.3. Shared Registry

External services may be provided by an application to another application through the Shared Registry
mechanism (see Section 7.4, “System Registries”).

3.4. Standalone vs Sandboxed Application

Astandalone application is an application that defines a main entry point (a class that contains a pub-
lic static void main(String[]) method).Astandalone application can be run on the sim-
ulator and is intended to be statically linked with a platform to produce a firmware.

A sandboxed application is an application that is defined in MicroEJ Studio with the sandboxed appli-
cation structure (see Chapter 4, Sandboxed Application Structure). A sandboxed application is intended
to be dynamically deployed on a firmware. MicroEJ Studio provides a bridge for using a sandboxed
application as a standalone application by autogenerating standalone main entry points and allowing
to fetch standalone specific dependencies.

3.4.1. Automatically Generated Standalone Entry Points

For a sandboxed application, MicroEJ Studio automatically generates standalone main entry point.
The main entry point is in charge to start the wadapps framework that will activate declared Ac-
tivities and BackgroundServices. One specific main entry point is generated per declared Activi-
ty. Standalone classes names have the St andal one suffix. The autogenerated code is located in
src/ . gener at ed~/ j ava source folder of a sandboxed application project.

27



Wadapps Framework

Figure 3.6. Sandboxed Application Autogenerated Structure

w _,:9 MyApplication
w [ grofmain/java
v B com.mycompany
[J] MyActivity.java
& sre/main/resources
w [ srof.generated~/ java
v B _ MyApplication_.generated
[J] MyActivityStandalone.java
[J] MyApplicationActivator.java
[J] MylpplicationEntryPoint.java
[J] StandaloneRegistry.java
~ [ src/.generated~/ resources
v B2 properties
Myhpplication.application.system.properties
MyhApplication.services.bundles

MyhApplication.services.systern.properties
MyApplication.cert
MyApplication.immutables.list
MyApplication.kf
MyApplication.resources.list

MyApplication types.list

Thesr c/ . gener at ed folderis hidden by default. To makeitvisible,in Packages Expl or er select
theFilters... menuandcheck.* resourcesitem.

Figure 3.7. Package ExplorerFi [ ters. .. Menu

[ Package Bxplorer 53 = T

Top Level Elements >

Select Working Set...
Deselect Working Set

Edit Active Working Set...

I 1 Window Warking Set

5

4

== Filters...

+

Package Presentation >

" Show 'Referenced Libraries' Mode

Link with Editor

il

3.4.2. Standalone Application Specific Dependencies

MicroEJ allows to declare additional dependencies that will be taken into account only when launch-
ing a standalone application such as the Simulator. This is done by defining a built-in Ivy configura-
tion named mi cr oej . | aunch. st andal one in the nodul e. i vy file of a sandboxed application

28



Wadapps Framework

project. Refer to the modul e. i vy generated by the application template (Section 4.1, “Application
Template Creation”) to get the list of required standalone libraries.

<dependenci es>
[-]
<I--
A O asspath dependency only used by
st andal one application |aunches
e
<dependency
org="com myconpany" nanme="xxx" rev="xxx"
conf="m croej .| aunch. st andal one- >*"
/>
</ dependenci es>

29



Chapter 4. Sandboxed Application

Structure

4.1. Application Template Creation

Thefirststep to explore a sandboxed application structure is to create a new projet for the development
of a graphical application. First select File > New > M croEJ Sandboxed Application

Proj ect:

File | Edit Source Refactor Navigate Search Project Run Window Help

Fill in the application template fields, the Pr oj ect
following fields.

L New ) Alt+Shift+N » | & MicroE) Standalone Application Project
Open File... i I
& MicroE) Sandboxed Application Project
R Ctr+W ™ Project...
d All Ctrl+Shift+W
ose s F* MicroEJ Font
Save Ctrl+S |18 Daclmnn

Create a Sandboxed Application project

Enter project name and configure your application.

nane field will automatically duplicate in the

Project:

Project name : | MySandboxedApp

Application:

ID: l MySandboxedApp

Printable name : ‘ MySandboxedApp

Description : ‘ My first Sandboxed Application|

Publication :

Organization : ‘ com.mycompany

Module : ‘ MySandboxedApp

Revision : ‘ 0.1.0

@ Finish

|

Cancel

30




Sandboxed Application Structure

A template project is automatically created and ready to use, this project already contains all places
where the application developer will put content:

« src/ mai n/j ava: Folder for future sources
« src/ mai n/ resour ces: Folder for future resources (images, fonts etc.)
« META- | NF: Sandboxed application configuration and resources

« nodul e. i vy:lvyinput file, dependencies description for the current project

a &

= MySandboxedApp ‘
=

Sources folder

src/main/java |
« # app.dev \\

Ul MyActivity.java

U Program.java ‘
Resources folder

- & fonts
- 2 images

&\ vy module.ivy [*]

‘ Meta-information folder

4 = META-INF | B

- = certificate

= libraries

Application

- = properties ) .
prop information

= services

& MANIFEST.MF
& src
CHANGELOG.md
5 LICENSE.txt

“» module.ivy Library dependency file

README.md

The vy section contains the list of dependencies automatically resolved by lvy from the content of
nodul e. i vy, from a development perspective this section is read-only.

The application functionalities will determine which parts of this structure are impacted, for example
the development of a simple "Hello world" application will only impact thesr ¢/ mai n/ j ava f ol d-
er and META- | NF/ MANI FEST. M- file.

4.2. Sources Folder

The project source folder (sr ¢) contains two areas:

« Source

31



Sandboxed Application Structure

« Resources

Source folder will contain all. j ava files of the project, resources folder will contain elements that the
application will use at runtime like raw resources, images or character fonts.

4.3. META-INF Folder

The META- | NFfolder contains several folders and one file named the manifest file described hereafter.

4.3.1. Certificate Folder

Contains certificate information used during the application deployment.

4.3.2. Libraries Folder

Contains a list of additional libraries useful to the application and not resolved through the regular
transitive dependency check

4.3.3. Properties Folder

Containsanappl i cati on. properti es filewhich contains application specific properties that can
be accessed at runtime.

4.3.4. Services Folder

Contains a list of files that describe local services provided by the application (see Section 3.3.2, “Ap-
plication Local Services”). Each file name represents a service class fully qualified name, and each file
contains the fully qualified name of the provided service implementation.

4.3.5. Manifest File

The file META- | NF/ MANI FEST. MF is initialized with the information given on project creation, extra
information may be added to this file to declare the entry points of the application.

4.4, nodul e. i vy File

The nodul e. i vy file contains a description of all the libraries required by the appliction at runtime
(see Section 8.5, “Library Dependency Manager”).

32



Chapter 5. Background Service Application

5.1. Create a Sandboxed Application Project

In MicroEJ menu, select: Fi | e > New > M cr oEJ Sandboxed Appl i cation Project angive
MySandboxedApp as the project name, a template project is automatically created and ready to use.

‘f‘i MySandboxedApp
- src/main/java

* src/main/resources
& lvy module.ivy [*]
= filesystem

- = META-INF
& src
" CHANGELOG.md
[ LICENSE.txt
b module.ivy

¥ README.md

For the detailed content of the project structure, please consult section Chapter 4, Sandboxed Applica-
tion Structure. Here is a list of the elements we will modify for the simple sandboxed application:

« src/ mai n/j ava: Add source files

« META- | NF/ MANI FEST. MF: Set application's BackgroundService entry point

5.2. Fill the Application Structure

5.2.1. Simple Background Application Code

The classic Hello World application, which does not use the Graphical User Interface, is a good example
of a BackgroundService entry point.

5.2.1.1. Classes

Create a new classin the sr c/ mai n/ j ava folder of the empty project:

4|& MySandboxedApg New » 2 MicroE) Standalone Application Project
* src/main/java Go Into #* MicroE) Standalone Example Project
 src/main/resour ) ] & Microt) Sandboxed Application Project
® Ivy module.vy [ Open in New Window = Project.
- META-INF Open Type Hierarchy F4 F' MicroE) Font
& src Show In Alt+Shift+W b | oo Package
® CHANGELOG.m( & Copy Ctrl+C |G Class
[ LICENSE.txt % Copy Qualified Name @ Interface
t» module.ivy T Paste Ctrl+V | &% Source Folder
¥ README.md % Delete Delete & Folder

33



Background Service Application

Fill the new class with package information and give it a name that tells about its role as a Background
Service. Notice that we have added the ej . wadapps. app. Backgr oundSer vi ce interface from

the wadapps framework and that the class does not have a mai n() method.

Java Class

Create a new Java class.

€

Source folder:
Package:

[ | Enclosing type:

Name:
Modifiers:

Superclass:

Interfaces:

MySandboxedApp/src/main/java

appEntry

Browse...

Browse...

Browse...

H ML{BackgroundCOde
(® public () package private
[ Jabstract [_|final static

protected

‘ java.lang.Object

‘ Browse...

O ¢j.wadapps.app.BackgroundService ]

Add...

Remove

Which method stubs would you like to create?

Do you want to add comments? (Configure templates and default value here)

[ ] public static void main(String[] args)
|| Constructors from superclass
Inherited abstract methods

[ | Generate comments

The code to output messages on the console can now be added to the onSt art () method, we also

add a message to the onSt op() method in order to follow the application's life cycle.

34



Background Service Application

4 MyBackgroundCode.java # ¢ MANIFEST.MF - o
package appEntry; A
import ej.wadapps.app.BackgroundService;
public class MyBackgroundCode implements BackgroundService {

S @Override
- public void onStart() {
= [/ T0D0 Auto-genearated method stub
System.out.println("MyBackgroundCode: Hello World");
¥

B @0override

£ public void onStop() {

g L1000 Luto-genccated method siub

| System.out.println("MyBackgroundCode: STOPPED");

v

5.2.2. Manifest File Configuration

Our simple background application has one BackgroundService entrypoint. The
appEnt ry. MyBackgr oundCode class fully qualified name must be registered in the Appl i ca-
ti on- BackgroundSer vi ces entry in the MANI FEST. M- file.

File Edit Source Refactor Navigate Search Project Run Window Help

0~ EiE S$@ybHvrO~

\;2 I# Package Ex... ¥ B Type Hierar... =
4 & MySandboxedApp
4 (® sr¢/main/java
4 i appEntry
[3 MyBackgroundCode.java
# src/main/resources
= vy module.ivy [*]
= META-INF
= certificate
& libraries
= properties
> services
¢ MANIFEST.MF
= src
[ CHANGELOG.md
[ LICENSE.txt
t» module.ivy
% README.md

< >
MANIFEST.MF - MySandboxedApp/META-INF

QBSOS Y L vilvyobvyaw |Quick Access s | &

) MyBackgroundCodejava 4" MANIFEST.MF 2 - e
Manifest-Version: 1.0

Application-Id: MyId

Application-Version: @.1.8@

Application-PrintableName: MyPrintable

Application-BackgroundServices: appEntry.MyBackgroundCode ]

B Console # [£ Problems =3 Progress

'MySandboxedApp' EasyAnt Console

BUILD SUCCESSFUL

Total time: @ seconds
---- Memory Details ----
Used Memory = 23MB

<

35



Background Service Application

5.3. Test on a Virtual Device

To launch the application on the Simulator, select the MySandboxedApp project and in the MicroEJ

top menuselectRun > Run As > M croEJ Application.

File Edit Source Refactor Navigate Search Project |Run Window Help

= | @ Run Last Launched
- | ® Debug Last Launched
i» Run History

Run As

Run Configurations...

Ctrl+F11 = A L w i w ks ow -
F11
ndCodejava 4" MANIFEST.MF 22
' AL 3 1. N
» B 1 Java Applet Alt+Shift+X, A

C]

2 Java Application

Alt+Shift+X, )

H

3 MicroE) Application  Alt+Shift+X, M

E |
» ton-BackgroundServices: appEntry.M

Debug History
Debug As

As this is the first launch for the application, the target must be set up for the launcher. If there is only
one platform available in the MicroEJ repository, this platform is automatically selected. Otherwise, a
popup window invites to select the platform on which the application must be launched. Select the

virtual device:

Select a Platform (type filter text):

Name Version  Architecture Device Toolchain Prc
I STM32F429IEVAL-Full-CM4_ARMCC-FreeRT... 200 M4 STM32F429IEVAL  CM4hardfp_A... Mil
{0 STM32F746GDISCO-Wadapps-VirtualDevice 1.5.1 M7 STM32F746GDISCO  CM7hardfp_A... Miy

Cancel

® .

The application executes on the Simulator, as no graphic code is present the Simulator will not display
its user interface and directly send output to the MicroEJ Studio Console window.

B Console ® ! Problems exXx% &EPEE vy =0

<terminated> BackgroundServicesStandalone_ [MicroE) Application] C:\Program Files\Java\jre7\bin\javaw.exe (28 a
[ Initialization Stage ] ===============

d Progress

MyBackgroundCode: Hello World
= [ Completed

SUCCESS

36



Background Service Application

To edit the MicroEJ Launch Configuration automatically created by this first launch, open Run > Run
Confi gurations. .. window. On the left panel openthe M cr oEJ Appl i cati on category and
select the Backgr oundser vi ceSt andal one run configuration.

: Change to :
Create, manage, and run conﬁguratlons MysandbOXEdApp [SIMU]

Caxe»~ Mame[ BackgroundServicesStandalone (!

filter text : . ~ >
type filter tex ‘EI Main . % Execution ”HConfiguration\lMRE by Source}ﬁgommon\
[€1 C/C++ Application

Ju JUnit
# Launch Group
4 [ MicroE) Application Main type, Required types
1 [Local Deployment] Hello STM32F
1 [Local Deployment] WidgetsDemc
71 [SIM] Hello Add types...
51 [SIM] WidgetsDemo Standalone & B

IM mo Standal ggi <
7 BackgroundServicesStandalon Remove

3 Draw1 [Local]
@ Draw1 [Simulator]
&1 Drawing1
& HelloAct Add...
T HelloAct [Local]
7 HelloBkg

<

Filter matched 19 of 24 items Apply

Project
| MySandboxedApp Browse...

I_Myld_.generated.BackgroundServicesSiandalone l Select Main type...

Resources

Remove

@ Close

The name of the run configuration was generated automatically from the name of the startup Class, you
may change it to a more descriptive string (i.e. MySandBoxedApp [SIMU]). Note that the type selected
for launching on simulator is the autogenerated main type for standalone application (see Section 3.4,
“Standalone vs Sandboxed Application”).

In the Execut i on tab of the run configuration, the Platform is set to the selected Virtual Device and
execution mode setto Execut e on Si mul at or.

Name: MySandboxedApp [SIMU]
= Main - Executio;f e Configuratioﬁ | B JRE" By Source;' 0 Qommoﬁ '
Target
Platform:| STM32F746GDISCO-Wadapps-VirtualDevice (1.5.1) Browse...
Execution
‘5 Execute on Simulator 7' Execute on Device
Engine Mode: Default
Settings: Default Vv | Settings: Local Deployment
The Application is simulated
Options
Output folder: | ${workspace_loc}/MySandboxedApp Browse...
Clean intermediate files [ |verbose

37



Background Service Application

5.4. Test on Target Hardware

5.4.1. Create a Run Configuration for the Target Hardware

The run configuration for the target hardware is duplicated from the existing MySandboxedApp
[ SI MJ] for the Simulator. In the left panel of Run Confi gurati ons window, right click on
MySandboxedApp [ SI MJ] item and select Dupl i cat e.

7 MySandboxedApp [SIML11]

71 newSand simu New
& MicroEJ Tool - Duplicate
% Delete

Rename the duplicated launcher to MySandboxedApp [ LOCAL], modify the execution mode to
Execut e on Devi ce andcheckthatSetti ngsissettoLocal Depl oynent.

Name: MySandboxedApp [LOCAL]

&7 Main # Execution . % Configuration EhJRE. g Sourcé E]Qommoﬁ

Target

Platform: STM32F746GDISCO-Wadapps-VirtualDevice (1.5.1) Browse...

Execution

(®) Execute on Device

) Execute on Simulator

Core Engine Mode: Default v

Default Settings: |Local Deployment v

Local deployment.

Options
Output folder: ${workspace_loc}/MySandboxedApp Browse...
Clean intermediate files |_|Verbose

Revert Apply

Next steps will be on the target hardware.
Your Target and Host PC must be connected through:
+ USB link for Power and debug on serial port (Termite, Putty ...)

o Ethernet link with a DHCP server to obtain an IP address

38



Background Service Application

p 'iii{{""‘”{i*’s‘;ff&f - Deploy link

(Ethernet)

DHCP server

Open the Set t i ngs resident application on the target and scroll down to read the IP address.

j 'fa’ 00 2

=——— =Tl

T s rrrT T W) I . 1| i ’
o g e a g
jomat] § - hu ! . et

39



Background Service Application

Settings

Y
1

STM3267466-DISCO

MNetwork

MAC Address:
56:84:Ta:fe:97:99
IP Address:

172.17.42.1

Host:

4 store.microej.com

Cunibebh ko lasal ommm s s bme

CAL] launcher.

Create, manage, and run configurations

CEXE%~ Name:‘ MySandboxedApp [LOCAL]

[type fitsrte 51 Main # Executiof i HJRE] E?Sourcew =] Qommon]
T [Local Deployment] Hello STM3: A TerT) Board
T [Local Deployment] WidgetsDer
7 [SIM] Hello Host [ 192168017
@ [SIM] WidgetsDemo Standalone Port
7 [SIM] WidgetsDemo Standalone
1 Drawl [Locall Timeout 60000
7 Draw1 [Simulator]
T Drawing1
T HelloAct
T HelloAct [Local]
T HelloBkg
& HelloBkg [Local]
5 MySandboxedApp [LOCAL]
T MySandboxedApp [SIMU]
@ newSand simu

& MicroEl Tool

4000

<
Filter matched 20 of 25 items

@

The run configuration is now ready for local deployment on the target.

5.4.2. Local Deployment on the Target Hardware

Runthe MySandboxedApp [ LOCAL] launcher, deployment steps are shown onthe MicroEJ console.

40



Background Service Application

¢ MicroEJ - MySandboxed App/META-INF/MANIFEST.MF - MicroE)® Studio - O
File Edit Source Refactor Navigate Search Project Run Window Help
i SARA-DHE YO~ U -EGEYHE 5~ AR LR SV 4 Quick Access | | 5 | [&]
;ﬁ # Package E.. = k& TypeHiera.. ~ - & MANIFESTMF = -8
Be ¥ Manifest-Version: 1.0 A
<% MySandboxedApp ~ Application-Id: MyId
+ & sr¢/main/java Appl]}cat:‘}on-\lerjsion: a.1.0 .
. Ent Application-PrintableName: MyPrintable
a.pp niry . Application-Description: First Sandboxed App
[ MyBackgroundCodejava Application-BackgroundServices: appEntry.MyBackgroundCode
# src/main/resources v
& vy module.ivy
= __Myld__.generated.Backgrount 8 Console L REE 2y =B
= filesystem . L
+ & META-INF re7\bin\javav
oM Initialization Stage ]
& certificate Converting fonts ] ==
& libraries Converting images ] =
= properties Build Application ] ===
& services Completed Successfully ]
. Deploy on 192.168.0.17:4000 ] =====
& MANIFESTMF N ____ [ Completed Succescfully ] =======—=======
= src
[ CHANGELOG.md
[ LICENSE.txt
k» module.ivy
[/ README.md v
< >
MySandboxedApp

The application is now visible on the screen of the target:

| A
] & gpe @ @

And debug traces show the life cycle of the sandboxed application.

41



Background Service Application

| |Settings | Clear || About || Close |

MyBackgroundCode: Hello World

MyBackgroundCode: STOPPED
MyBackgroundCode: Hello World
MyBackgroundCode: STOPPED
MyBackgroundCode: Hello WWorld
MyBackgroundCode: STOPPED
MyBackgroundCode: Hello World
MyBackgroundCode: STOPPED

42



Chapter 6. Activity Application

6.1. Develop an Activity Application

6.1.1. Create a Sandboxed Application Project

Thefirststep to explore a sandboxed application structure is to create a new projet for the development
of a graphical application.

See Section 5.1, “Create a Sandboxed Application Project” for creating a ready to use template project.

6.1.2. Create an Activity Implementation

A graphical application will have an Activity entry point to allow for screen sharing with other
graphical applications. The first step is to create a class that will be the entry point of our sand-
boxed application. This class is located in the src/ mai n/ j ava folder and shall implement the
ej . wadapps. app. Acti vi ty interface.

43



Activity Application

Choose interfaces:
Java Class

Acti
Create a new Java class. Matching items:
O ActivitiesList

Source folder: ' MySandboxedApp/src/main/java | © ActivitiesScheduler

1 @Activity - ej.wadapps.app |
Package: l app.dev I d ‘

‘ej.wadapps.app - C\..\framework-1.2.2 jar |
[ ] Enclosing type:

Name: l MyActivity I

Modifiers: (® public () package private

[ abstract || final static
Superdass: java.lang.Object
Interfaces: o ej.wadapps.app.Activity

Which method stubs would you like to create?
] public static void main(String[] args)
[ | Constructors from superclass
Inherited abstract methods
Do you want to add comments? (Configure templates and default value here)
|| Generate comments

@ FEinish ‘ ‘ Cancel

6.1.3. Update the Manifest File

Methods of the Activity interface handle the whole life cycle of a graphical application. The
app. dev. MyActi vi ty class fully qualified name must be registered in the Appl i cati on- Ac-
tivitiesentryinthe MANI FEST. M- file.

44



Activity Application

package app.dev;

4 & MySandboxedApp
4 (# src/main/java

import ej.wadapps.app.Activity;

« @ app.dev public class MyActivity implements Activity |{

- I MyActivity.java
& src/main/resources

& vy module.ivy [*]
Manifest-Version: 1.0

‘e META'_I!\‘F Application-Id: MySandboxedApp
© & certificate Application-Version: @.1.0
& libraries Application-PrintableName: MySandboxedApp

App.

= properties Application-Activities: app.dev.MyActivity

= services

¢ MANIFEST.MF

TheonSt art () method will do the job of initializing graphical objects.

6.1.4. Add Graphical Library Dependency

Since the application uses graphical objects, we have to complete nodul e. i vy file to add a depen-
dency to the corresponding GUI library: MicroUl (basic drawing elements).

The line describing this library is inserted in the dependency section of the mbdul e. i vy file. See
Section 8.5, “Library Dependency Manager” for more information about classpath dependencies man-
agement.

<dependencies>
<!--
Put MicroEJ] API dependencies to the "provided->*" configuration
Other regular runtime dependencies are in the "default" configuration
-->
<dependency org="ej.api" name="edc" rev="[1.2.8-RC0,2.0.8-RCO[" conf="provided->*" />
<dependency org="ej.library.wadapps" name="framework" rev="[1.2.9-RC9,2.0.0-RCO[" />

[<dependency org="ej.api" name="microui” rev="[2.0.0-RC@,3.0.0-RCO[" conf="provided->*" />]

2 src¢/main/java

2 src/main/resourg
» & lvy module.ivy

= META-INF

& src

¥ CHANGELOG

LICENSE.t

[ README.md

6.1.5. Implement a Graphical Class

A new class is added to the project for implementation of the graphical behavior, this class is named
app. dev. Progr amand extends theej . m croui . di spl ay. Di spl ayabl e MicroUl class.

45



Activity Application

Choose a type:
|Displ
Create a new Java class. Matching items:

Java Class

© Display

P“‘Displayable - ej.microui.displayé

Source folder: | MySandboxedApp/src/main/java

© DisplayPermission

Package: l app.dev
< >

U Endosing type: |ej.microui.display = C:\...icroui—2.0—api—2.0.4.jar|

Name: I Program Cancel

Modifiers: (®) public O package private
[ ]abstract [ |final static
Superdlass: [ej.microui.display.Displayable ]

Interfaces:

Remove

Which method stubs would you like to create?
[] public static void main(String[] args)
D Constructors from superclass
Inherited abstract methods

Do you want to add comments? (Configure templates and default value here)

D Generate comments

@ Finish ‘ ‘ Cancel

Aninstance ofapp. dev. Pr ogr amis created in the ActivityonSt ar t () method, for this a dedicated
constructor is added to the Program Class, with a reference to an image resource.

46



Activity Application

+ §2 MySandboxedApp myProgram = new Program();
& src/main/java ) myProgram.show();
4 # app.dev
MyActivity.java
[9 Program.java public class Program extends Displayable {

© & META-INF private int MessageZone;
& src
. public Program() {
[ CHANGELOG.md super(Display.getDefaultDisplay());
B) LICENSE.txt try { . N
. microejImage = Image.createImage("/images/microej.png");
t module.ivy }
¥ README.md catch (IOException e) {

public class MyActivity implements Activity {
private Program myProgram;

@0verride

public void onStart() {
// Call entry point
MicroUI.start();

& i . +
& src/main/resources private Image microejImage;
& vy module.ivy [*] private String message = "My first Activity";
private final Font font = Font.getFont(Font.LATIN, 44, Font.STYLE_BOLD);

throw new AssertionError(e);

}

The paint method of theej . m croui . di spl ay. Di spl ayabl e objectis responsible for graphical

output, the code of this method will first clear the screen by drawing a white rectangle, then compute

layout infomation before displaying an image and a text.

public woid paint(GraphicsContext g) {

}

// clear screen
g.setColor(Colors.WHITE) ;

int width = getDisplay().getWidth();
int height = getDisplay().getHeight();
g.fillRect(®, @, width, height);

// compute margin

int microejImageHeight = microejImage.getHeight();

int fontHeight = font.getHeight();

int margin = (height - microejImageHeight - fontHeight)/3;

J/ draw MicroE] image
int y = micreoejImageHeight/2 + margin;
g.drawImage{microejImage, width/2, vy, GraphicsContext.HCENTER | GraphicsContext.VCENTER);

// draw message

int messagefone = microejImageHeight + 2*margin;

y = messageZone + fontHeight/2;

g.setColor(Colors. NAVY);

g.setFont(font);

g.drawstring(message, width/2, vy, GraphicsContext.HCENTER | GraphicsContext.VCENTER);

In order to react to user events, an EventHandler implementation is added to the app. dev. Pr ogr am

class. The implementation of handl eEvent () method will test the pointer events in order to detect

user actions.

47



Activity Application

4 2 MySandboxedApp
4 (& sr¢/main/java public class Program extends Displayable [implements EventHandlerl{

< i app.dev
- [ MyActivity java

- 1 Program.java

© ® sr¢/main/resources @verride
public EventHandler getController() {

return this;

: @ lvy module.ivy [*]
= META-INF }

@0verride
public boclean handleEvent(int event) {
if(Event.getType(event) == Event.POINTER){
if(Pointer.isPressed(event))}{
// user has pressed the screen
System.out.println("==>EVENT");
return true;
h
¥

return false;

6.2. Add Application Resources

6.2.1. Add Images Resources

As shown in the previous section, the app. dev. Pr ogr amclass uses an image from a PNG file from
image "microej.png" file which can be duplicated from the Hello sample. This file is embedded in the
application by adding the mi cr oej . png file to asrc/ mai n/ r esour ces/ i mages folder, and by
adding a reference to this file in the app. gui . i mages. | i st file added to the src/ mai n/ re-
sour ces/ app/ dev folder (see Section 8.3.6, “Images” for images list files specification).

4+ 2 MySandboxedApp
- 2 sr¢/main/java

images/microej.png
4 (% grc/main/resources r

4 5 app-dev %
= app.dev.iimages.list

4 & images

= microej.png
B\ lvy module.ivy [*]

& META-INF

6.2.2. Add Fonts Resources

A dedicated large font will be used to display the text on the Button widget, the font will be embded-
ded in the application by using the same technique as the image file. The dr oi d_sans_44px. ej f
font file is copied from Hello sample to a "src/ mai n/ resour ces/ fonts folder, and a new
app.gui .fonts.list file containing the font reference is created in the src/ main/re-
sour ces/ app/ dev folder" (see Section 8.3.7, “Fonts” for fonts list files specification).

48



Activity Application

4 £2 MySandboxedApp
 src/main/java

fonts/droid_sans_44px.ejf:0x21-0x7a:4
4 [ src/main/resources .

4 & app.dev %
= app.dev.fonts.list

= app.dev.images.list
4 & fonts
E- droid_sans_44px.ejf
4 H images
= microej.png
. @ lvy module.ivy [*]
- = META-INF

6.3. Test the Application on Simulator
6.3.1. Create a Run Configuration

To rapidly test the application, right click on project's name and select Run as > M croEJ Ap-
plication.

= — — Reractor AILHONITt+H 1L
+ 2 MySandboxedApp
4 [® src/main/java “ Import..
+ @ app.dev s Export..
[ MyActivityj ¢ Refresh F5
[ Program.jay Close Project
4 (& src/main/resoure Close Unrelated Projects
4 5 app.dev Assign Working Sets...
 app.devfor g As »|  1Java Applet Alt+Shift+X, A
B app.dev.im| Debug As » T 2 Java Application Alt+Shift+X, J
« & fonts Profi 7 3 MicroE) Application  Alt+Shift+X, M
E- droid_sans vofile As g
+ @ images Validate Run Configurations...

The simulator will launch with the following graphical result:

49



Activity Application

2
2
2 o
-
g3
E g
52
=
&

Clicking on the screen will produce the following result in the MicroEJ Studio Console:

B Console 33]@ Problems =dProgress -

X% BEREEE 28y~
<terminated> MyActivityStandalone (1)_ [Microl) Application] C:\Program Files

==>EVENT A
==>EVENT
==>EVENT
==>EVENT

v
L4 >

www.st.com/stm32f7-discovery

50



Chapter 7. Shared Interfaces

7.1. Principle

The Shared Interface mechanism provided by MicroEJ OS is an object communication bus based on
plain Java interfaces where method calls are allowed to cross MicroEJ Sandboxed applications bound-
aries. The Shared Interface mechanism is the cornerstone for designing reliable Service Oriented Ar-
chitectures on top of MicroEJ OS. Communication is based on the sharing of interfaces defining APIs
(Contract Oriented Programming).

The basic schema:

« Aprovider application publishes animplementation for a shared interface into a system registry
(see Section 7.4, “System Registries”).

« Auser application retrieves the implementation from the system registry and directly calls the
methods defined by the shared interface

Figure 7.1. Shared Interface Call Mechanism

User Provider
WLIENCUE Shared Interface Call AaliSE LBl

mm () {
//code

}

MicroEJ OS

7.2. Shared Interface Creation

Creation of a shared interface follows three steps:
« Interface definition
+ Proxy implementation

« Interface registration

7.2.1. Interface Definition

The definition of a shared interface starts by defining a standard Java interface.

51



Shared Interfaces

package nypackage;
public interface Myl nterface{
voi d foo();

}

To declare an interface as a shared interface, it must be registered in a shared interfaces identification
file. Ashared interface identification file is an XML file with the . si suffix with the following format:

<sharedl nterfaces>
<shar edl nterface name="mypackage. Myl nterface"/>
</ shar edl nt erf aces>

Shared interface identification files must be placed at the root of a path of the application classpath.
For a MicroEJ Sandboxed application project, it is typically placed in sr ¢/ mai n/ r esour ces folder.

Some restrictions apply to shared interface compared to standard java interfaces:
« Types for parameters and return values must be transferable types

« Thrown exceptions must be exceptions owned by the MicroEJ 0OS

7.2.2. Transferable Types

In the process of a cross-application method call, parameters and return value of methods declared in
a shared interface must be transferred back and forth between application boundaries.

Figure 7.2. Shared Interface Parameters Transfer

Shared Interface Transfer

User
Application

Provider

Application
P1 P2
mm(A, B) {
R=AA.mm(P1, P2); //code
c ) return C;

Table 7.1, “Shared Interface Types Transfer Rules” describes the rules applied depending on the ele-
ment to be transferred.

Table 7.1. Shared Interface Types Transfer Rules

Type Owner Instance Rule
Owner
Base type N/A N/A Passing by value. (bool ean, byte,
short, char, int, | ong, doubl e,
float)

52



Shared Interfaces

Type Owner Instance Rule
Owner

Any Class, Array or Inter-|MicroEJ OS MicroEJ OS |Passing by reference

face

Any Class, Array or Inter-|MicroEJ OS Application |MicroEJ OS specific or forbidden

face

Array of base types Any Application |Clone by copy

Arrays of references Any Application |Clone and transfer rules applied again
on each element

Shared Interface Application Application |Passingbyindirect reference (Proxy cre-
ation)

Any Class, Array or Inter-|Application Application |Forbidden

face

Objects created by an application which class is owned by MicroEJ OS can be transferred to an oth-
er application if this has been authorized by the firwmare. The list of eligible types that can be trans-
ferred is firmmare specific, so you have to consult the firmware specification. Table 7.2, “MicroEJ Eval-
uation Firmware Example of Transfer Types” lists firmware types allowed to be transferred through
a shared interface call. When an argument transfer is forbidden, the call is abruptly stopped and a
java.lang. 111 egal AccessError isthrown by MicroEJ OS Core Engine.

Table 7.2. MicroEJ Evaluation Firmware Example of Transfer Types

Type Rule

java.lang. String Clone by copy

java.io. |l nputStream Proxy reference creation

java.util.Mp<String, String> Clone by deep copy

7.2.3. Proxy Class Implementation

The Shared Interface mechanism is based on automatic proxy objects created by the underlying Mi-
croEJ OS Core Engine, so that each application can still be dynamically stopped and uninstalled. This
offers a reliable way for users and providers to handle the relationship in case of a broken link.

Once a shared interface has been declared as shared interface, a dedicated implementation is required
(called the Proxy class implementation). Its main goal is to perform the remote invocation and provide
areliable implementation regarding the interface contract even if the remote application fails to fulfill
its contract (unexpected exceptions, application killed...). The MicroEJ OS Core Engine will allocate in-
stances of this class when an implementation owned by an other application is being transferred to
this application.

53



Shared Interfaces

Figure 7.3. Shared Interfaces Proxy Overview

User Provider
Application Application

R=AA.mm(P1, P2);

mm (A, B) {
I //code

return C;
}

MicroEJ OS

Shared Interfaces
Binding

A proxy class is implemented and executed on the client side, each method of the implemented inter-
face must be defined according to the following pattern:

package nypackage;

public class MylnterfaceProxy extends Proxy<Mlnterface> inplenents
M/l nterface {

@verride

public void foo(){
try {
invoke(); // performrenote invocation
} catch (Throwable e) ({
e.printStackTrace();
}

}

}

Each implemented method of the proxy class is responsible for performing the remote call and catch-
ing all errors from the server side and to provide an appropriate answer to the client application call
according to the interface method specification (contract). Remote invocation methods are defined in
the super class ej . kf . Proxy and are named i nvokeXXX() where XXX s the kind of return type.
As this class is part of the application, the application developer has the full control on the Proxy im-
plementation and is free to insert additional code such as logging calls and errors for example.

Table 7.3. Proxy Remote Invocation Built-in Methods

Invocation Method Usage

void invoke() Remote invocation for a proxy method that returns void

Object invokeRef() Remote invocation for a proxy method that returns a ref-
erence

54




Shared Interfaces

Invocation Method Usage

boolean invokeBoolean(), byte invoke-|Remoteinvocation fora proxy method thatreturnsa base
Byte(), char invokeChar(), short in-|type

vokeShort(), int invokelnt(), long invoke-
Long(), double invokeDouble(), float in-
vokeFloat()

7.3. Shared Interface Example

The sample code hereafter shows an example of a Shared Interface named MyOutput with two methods
println and nbExec.

public interface MyOutput {
/**

* Print function.
*

* str
* The string to print.
* IOException
* Throw an IOException when the service is not available.
*/
void println(String str) throws IOException;
/**
* Get the number of time println has been executed.
*
* The number of time println has been executed.
*/

int nbExec();

}

With this interface we will transform a simple "Hello" project into a print client using a shared interface
provided by a server application.

7.3.1. Write the Proxy Implementation

An example of a Proxy class for the MyOutput Shared Interface is shown hereafter:

55



Shared Interfaces

public class MyOutputProxy extends Proxy<MyOutput> implements MyOutput {

@0verride
/**
* Proxy to the interface implementation of println.
*/
public void println(String str) throws IOException{
tryq{
invoke(); // Invoke the implementation
¥
catch(Throwable e){ // For any exception during the execution of the
throw new IOException(); // function (server side), the catch it here.
¥
b
@0verride
/**
* Proxy to the interface implementation of nbExec.
*/
public int nbExec(){
tryq{
return invokeInt();
catch(Throwable e){
return -1; // return a default value
¥
1

7.3.2. Prepare the Shared Interface Projects

To migrate the simple "Hello" application My SandboxedApp into a Shared Interface sample, first du-
plicate the MySandboxedApp project to a MySI User App project and add three files to this project:

« MyQut put.javatosrc/ main/javafolderintheshar edl nt er f ace package
« MyQut put Proxy. javatosrc/ mai n/j ava folderinthe shar edl nt er f ace package
« sharedl nterface. si tosrc/ main/resources folder

The resulting modifications should appear as follows in MicroEJ Studio. Note the XML syntax of the . si
declaration file containing the full qualified name of the Shared Interface type.

56



Shared Interfaces

& MicroEJ - MySIUserApp/src/main/resources/sharedinterface.si - MicroE) ® Studio - OB

File Edit Source Refactor Navigate Search Project Run Window Help
rE@ BB YyDPHEYOYQRYFCY®ES Vv A i o v

Quick Access || | [&

= E sharedInterface.si & =

“ |18 Package .. &% Type Hie...
rtifact.

<sharedInterfaces>
<sharedInterface name="sharedInterface.MyOutput"”/>
l</sharedInterfaces>

> 4

& ej.wadapps.app.demo.hello
#. 2 MySandboxedApp1
£ MySandboxedApp2
£ MySIProviderApp
4 = MySIUserApp
4 (2 src/main/java
&# appEntry
4+ ti# sharedInterface

Ds®

[® MyOutput java
) MyOutputProxy.java
4 (& sr¢/main/resources
& lvy module.ivy [*]

< > < >
MySlUserApp

Once the MySI User App project is updated, duplicate it to a MySI Pr ovi der App project, both
projects have the same content at this point.

Make sure to update the Appl i cat i on- | d fields of the MANI FEST. M files of both projects so that
they are different from each other to prevent one application from overwriting the other when deploy-
ing on target.

Figure 7.4. MANI FEST. MF file content for Shared Interface Provider application
project

Mani f est-Version: 1.0

Application-1d: MSIProvider

Application-Version: 0.1.0

Appl i cation-Printabl eNane: M/SI Provi der

Appl i cation-Description: M/SIProvider App

Appl i cati on- Backgr oundSer vi ces: appEntry. MyBackgr oundCode

Figure 7.5. MANI FEST. MF file content for Shared Interface User application project

Mani f est-Version: 1.0

Application-1d: MSI User

Application-Version: 0.1.0

Appl i cation- Printabl eName: MySI User

Appl i cation-Description: M/SIUser App

Appl i cati on- Backgr oundServi ces: appEntry. MyBackgr oundCode

We will now specialize the Background Services.

57




Shared Interfaces

7.3.3. Implement the Provider Side

7.3.3.1. Create the Provider Implementation Class

The provider side implementation of a Shared Interface follows the standard rule of java language for
interface implementation. Add a new class with the name St andar dQut put tothesrc/ nmai n/j a-

va folder, this class implements the shar edl nt er f ace. MyQut put interface.

@ MicroE) - MySIProviderApp/src/main/java/appEntry/StandardOutput.java - MicroE)® Studio — =

File Edit Source Refactor Navigate Search Project Run Window Help
mi ¥ B yDHrvyOvQ@ryHGySISES 5~ rivoovyo -

Quick Access || & |[@

;) 2 Package .. ¥ & TypeHie.. = [ StandardOutputjava = B8
= BE%® ~ @ * Javal] A
o - & ejwadapps.app.demo.hello package appEntry;

2L+ MySandboxedApp1

& MySandboxedApp2 import sharedInterface.MyOutput;

4 (& MySIProviderApp SR
4 (# src/main/java * Implementation of the shared interface.
4 appEntry *

/

*
MyBack dCode;
yrackgrounct-oceqava public class StandardOutput implements MyOutput {

14 StandardOutput.java

# sharedInterface private int nbExec = @;
= src/main/resources
& vy module.ivy [* @Ozi’:r‘lde‘ X i
& META-INF a public void println(String str) {
nbExec++;
- = src System.out.println("Server 2: " + str);
[ CHANGELOG.md }
5 LICENSE.txt

@0verride
public int nbExec() {
return nbExec;

o module.ivy

5 MySandboxedApp [SIMU].proj N

% README.md }
& MySIUserApp }

< >
MySIProviderApp

7.3.3.2. Register the Provider as a Shared Interface Implementation

In order to expose or hide its implementation of the Shared Interface, the provider uses the MicroEJ
Registry service with the help of the ej . wadapps. r egi stry. Shar edRegi st r yFact or y object.

58



Shared Interfaces

)’ X
File Edit Source Refactor Navigate Search Project Run Window Help
BvH@P 4EE AT PEYO QA HGYBE A v v i v hE v Quick Access || & @]
; 1% Package .. @ & TypeHie. = U *MyBackgroundCodejava & —
= B v package appEntry; ~
@ - & ejwadapps.app.demo.hello
N | - & mysandboxedApp1 #import ej.wadapps.app.BackgroundService;[]
& MySandboxedApp2 o pex
& MySIProviderApp * Provider background service, provides its services to print a string.
+ @ src/mainfjava *
< & appEntry public class MyBackgroundCode implements BackgroundService{
* |2 MyBack dCode,jq
SEaaiod ,O e]ava‘ // Implementation of the shared interface.
[ StandardOutputjava private final StandardOutput implementation = new StandardOutput();
# sharedinterface
@ src/main/resources e @verride
8 Ivy module.vy [*] public void onStart() {
& META-INF System.out.println(“Service registered");
- // Register the implementation for the shared interface.
Esrc SharedRegistryFactory.getSharedRegistry().register(MyOutput.class, implementation);
[ CHANGELOG.md }
[ LICENSE txt X
o module.ivy X @override
. public void onStop() {
B MySandbasedApp [SIMULprog System.out.println(“Service unregistered");
5 README.md // Unregister the implementation for the shared interface.
& MySIUserApp SharedRegistryFactory.getSharedRegistry().unregister(MyOutput.class, implementation);
}
} v
< > < >
MySIProviderApp

7.3.4. Implement the User Side

7.3.4.1. Write the User Behaviour

In order to generate periodic activity on the shared interface, the user application declares a Back-
ground Service that runs a cyclic thread.

N X
File Edit Source Refactor Navigate Search Project Run Window Help
BvEd@® 4@ [ SRYPDHYOYRYFEYES I~ v vHowy v [QuickAccess‘E?\
; 1% Package Ex.. ©* % Type Hiera.. = @ MyBackgroundCode java & -0
= Be v package appEntry; A
o & ejwadapps.app.demo.hello ~
# & MySandboxedApp1 “import java.io.IOException;[]
£ MySandboxedApp2 J sax
& MySIProviderApp * Client background service, ask the server to print a string.
4 & MyS|UserApp| */
4 = sr¢/main/java public class MyBackgroundCode implements BackgroundService, Runnable {
4 & appEntry .
S TP te bool top;
11 MyBackgroundCode.java private Boolean stop;
- @ sharedInterface o @verride
4 (% sr/main/resources E public void enStart() { =
& sharedinterface.si new Thread(this).start(); // Called when the service start
& vy module.ivy [*] ¥
& META-INF @override
& src a public void onStop() {
¥ CHANGELOG.md // Kill the thread
£ LICENSE.txt stop = true;
o module.ivy N v
< > < >
MySIUserApp

7.3.4.2. Get the Provider Service Reference

After retrieving the Ser vi ceLoader instance, the user gets a local reference to the registered
provider. (see Section 3.3, “Services Usage” for more informations on services references).

59



Shared Interfaces

File Edit Source Refactor Navigate Search Project Run Window Help

Quick Access | = ([

Nr@A@P 4@ SR PHE O U HO Y EE A v v ey
‘; I pa.. |k Ty. = MyBackgroundCodejava &
g es < *k

& ejwad .app.di A
© & ejwadapps.app . :
. Poll for th der.
L & MySandboxedAp| * ° or the provider

£ MySandboxedAp| * @return The provider service.

& MySIProviderApp */

[ MySIUserapp private MyOutput pollForService() {
4 ® sr¢/main/java while(lstop){
MyOutput service;
* @ appEntry service = ServiceloaderFactory.getServiceloader().getService(MyOutput.class);
1 MyBackgrc // If the the service has been found

- # sharedInterfa
4 (® src/main/resour
[ sharedInterfa

& lvy module.ivy

if(service != null){
return service;
}

try {
// Wait and try again

= META-INF Thread.sleep(POOLRATE) ;
& src } catch (InterruptedException e) {}
¥ CHANGELOG.m preturn null;
) LICENSE txt }
b moduleivy Vv 3}
< > <
MySIUserApp

=8

A

7.3.4.3. Call the Provider Service

With a valid reference to the provider service, the user calls the MyQut put interface methods.

File Edit Source Refactor Navigate Search Project Run Window Help
ByHRP 4E N

SAYyPDHEYOYTRTFEGYSO S v i~ i

THo YDy

Quick Access | | & |

& vy module.ivy

& META-INF

& src

[ CHANGELOG.m

[ LICENSE.txt

o module.ivy

2 MySandboxed#

[ READMEmd v
< >
MySIUserApp

5

.. %8 Ty. ~ B [@MyBackgroundCodejava & -8
= e - ’ A
2 - ¥ ejwadapps.app.d A private static final int PRINTRATE = 1€@0;
|5+ & MySandboxedAp) private static final int POOLRATE = 560;
# MySandboxedAp| 6 id
e ; verride
3 MySIProviderApp public void run() {
“ [ MySIUserApp MyOutput output = pollForService();
4 (® src/main/java while(!stop){
« & appEntry try{
) MyBackgre output.println("Hello World ! n°"+output.nbExec());
- Sha'_edlmma catch(IOException e){
4  src/main/resoul System.out.println("Service unavailable");
12 sharedinterfa output = pollForservice(); // Wait for the service to be back on a

+

try {
Thread.sleep(PRINTRATE);

} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}

}
}

As the session is loosely coupled, the call is performed with an exception handler to prevent from a

change in the provider status. If the call fails, the user starts polling the service loader again to retrieve
a new valid instance.

To show the communication between My SI User App and My SI Pr ovi der App, the two applications
must be locally deployed on a MicroEJ-ready device (see Section 2.3.4, “Deploy Locally on Hardware”).
The messages will be displayed on the standard output.

60



Shared Interfaces

7.4. System Registries

MicroEJ OS provides system registries that allow applications to publish/retrieve shared interfaces im-
plementations. When a shared interface instance is published into such kind of registry, the registry
makes it accessible to other applications. MicroEJ provides two system registries:

« The Wadapps framework shared registry (ej . wadapps. r egi stry. Shar edRegi stry)is
dedicated to sharing service related interfaces.

Services can be retrieved using the following API
ej . conponent s. dependencyi nj ecti on. Servi ceLoader . get Servi ce(d ass).
See Section 3.3, “Services Usage” for how to retrieve services.

» The ECOM device manager (ej . ecom Devi ceManager ) registry is dedicated to sharing pe-
ripheral extensions related interfaces.

Applications can register device extensions that are dynamically discovered using the follow-
ing APl ej . ecom Devi ceManager . r egi st er (Cl ass<Devi ce>, Devi ce).See ECOM
foundation library APl javadoc for more information.

61



Chapter 8. MicroEJ Classpath

MicroEJ applications run on a target device and their footprint is optimized to fulfill embedded con-
straints. The final execution context is an embedded device that may not even have a file system. Files
required by the application at runtime are not directly copied to the target device, they are compiled
to produce the application binary code which will be executed by MicroEJ OS core engine.

As a part of the compile-time trimming process, all types not required by the embedded application
are eliminated from the final binary.

MicroEJ Classpath is a developer defined list of all places containing files to be embedded in the final
application binary. MicroEJ Classpath is made up of an ordered list of paths. A path is either a folder or
a zip file, called a JAR file (JAR stands for Java ARchive).

« Section 8.1, “Application Classpath” explains how the MicroEJ classpath is built from a MicroEJ
application project.

« Section 8.2, “Classpath Load Model” explains how the application content is loaded from Mi-
crokEJ Classpath.

« Section 8.3, “Classpath Elements” specifies the different elements that can be declared in Mi-
croEJ Classpath to describe the application content.

+ Section 8.4, “Foundation vs Add-On Libraries” explains the different kind of libraries that can be
added to MicroEJ Classpath.

+ Finally, Section 8.5, “Library Dependency Manager” shows how to manage libraries dependen-
ciesin MicroEJ.

8.1. Application Classpath

The following schema shows the classpath mapping from a MicroEJ application project to the MicroEJ
Classpath ordered list of folders and JAR files. The classpath resolution order (left to right) follows the
project appearance order (top to bottom).

62



MicroEJ Classpath

Figure 8.1. MicroEJ Application Classpath Mapping

v ‘;'.9 MyApplication
(#® src/main/java
(# src/main/resources Compiled code and copied resources

. T . . ) .
( src/.generated-/ java located in folder MyApplication/bin
([ src/.generated~/.resources

v B vy module.ivy [*]
e framework-1.2.2 jar - cache\gj.library.wadapps\framework\jars
@ components-3.0.2,jar - C:\cache\ej.library.runtime\componentsjars
@4 logging-1.0.3.jar - C:\cache\ej.library.eclas
(4 properties-1.0.1jar - C:\cache\gj.library.eclasspa ertiesjars
A4 bufferedstreams-1.0.1.jar - C:\cache\ej library.eclasspath\bufferedstreams\jars

. VIItEryars | vy transitive

3 progress-1.0.3jar - Ci\c .

y observable-1.0.2,jar ej.lib able\jars depe ndencies

a3 edc-12.3jar - C:\cache\ej.api\edc\jars JAR files located in

@ kf-1.4.2jar - C:\cache\ej.api\kf\jars Ivy cache folder
w8 microui-2.0-api-2.04 jar - C:\cache\ej.api\microui\jars

B

printwriter-1.0.1,jar - C:\cache\gj.library.eclasspa

B

B

|mia bcln—1,2,3-jar- Ci\cache g).api\bon\jars
v B Referenced Libraries Additional JAR file located in

v & :;I___;ﬂ_z:j:r MyApplication/META-INF/libraries/extra.jar

(= certificate
w [= libraries

g extrajar
(= properties

13apip Uolintosay HivdssSY 1D

(= services
& MANIFEST.MF

8.2. Classpath Load Model

A MicroEJ Application classpath is created via the loading of :
« anentry point type
« all*. [ extension].list filesdeclaredin a MicroEJ Classpath.

The different elements that constitute an application are described in Section 8.3, “Classpath Ele-
ments”. They are searched within MicroEJ Classpath from left to right (the first file found is loaded).
Types referenced by previously loaded MicroEJ Classpath elements are loaded transitively.

63



MicroEJ Classpath

Figure 8.2. Classpath Load Principle

Jarl

afD.class

Folder1 Folder2
a/A.class ——»  a.types.list
main { a.B.class

D.foo();

_r

a/B.class

afC.class

7

—— Entry
—> Resolution

Imgl.png

S

N

a.resources. list

Imgl.png —

foo() { }

Folder3 : lar2

a/E.class java/lang/Object.class

W

a.images.list

CLASSPATH Resolution Order

8.3. Classpath Elements

The MicroEJ Classpath contains the following elements:

Img2.png —

Img2.png
Img3.ong

S

a/B.class

7

Selected Elements

[Folderl]/a/A.class
[Jarl/a/D.class
[Jar2]/java/lang /Object.class
[Folder1]/a/B.class
[Folder2]/Imgl.png
[Folder3]/Img2.png

« An entrypoint described in section Section 8.3.1, “Application Entry Points”

« Typesin. cl ass files, described in section Section 8.3.2, “Types”

« Raw resources, described in section Section 8.3.3, “Raw Resources”

« Immutables Object data files, described in Section Section 8.3.4, “Immutable Objects”

« Images and Fonts resources

« *. [extension].list files, declaring contents to load. Supported list file extensions and

format is specific to declared application content and is described in the appropriate section.

8.3.1. Application Entry Points

MicroEJ application entry pointis aclassthatcontainsapubl i ¢ static void mai n(String[])
method. In case of MicroEJ Sandboxed Application, this entry point is automatically generated by Mi-

64



MicroEJ Classpath

croEJ Studio from declared Activity and/or BackgroundService types. In case of a MicroEJ Standalone
application, this has to be defined by the user.

8.3.2. Types

MicroEJ types (classes, interfaces) are compiled from source code (. j ava) to classfiles (. cl ass).
When a type is loaded, all types dependencies found in the classfile are loaded (transitively).

Atype can be declared as a Required type in order to enable the following usages:
+ to be dynamically loaded from its name (with a callto Cl ass. f or Nanme( Stri ng))
« toretrieve its fully qualified name (with a call to Ol ass. get Nane())

A type that is not declared as a Required type may not have its fully qualified name (FQN) embedded.
Its FQN can be retrieved using the stack trace reader tool (see Section 9.2, “Strack Trace Reader”).

Required Types are declared in MicroEJ Classpath using*. t ypes. | i st files. Thefile formatis a stan-
dard Java properties file, each line listing the fully qualified name of a type. Example:

Example 8.1. Required Types *. t ypes. | i st File Example

# The followi ng types are marked as M croEJ Required Types
com nyconpany. Myl npl enent ati on
java.util. Vector

8.3.3. Raw Resources

Raw resources are binary files that need to be embedded by the application so that they may be dynam-
ically retrieved with a call to Cl ass. get Resour ceAsStrean(j ava. i o. | nput St ream . Raw
Resources aredeclared in MicroEJ Classpathusing* . r esour ces. | i st files. Thefile formatisastan-
dard Java properties file, each line is a relative / separated name of a file in MicroEJ Classpath to be
embedded as a resource. Example:

Example 8.2. Raw Resources *. r esour ces. | i st File Example

# The followi ng resource is enbedded as a raw resource
com nmyconpany/ MyResour ce. t xt

8.3.4. Immutable Objects

Immutables objects are regular read-only objects that can be retrieved with a call to
ej . bon. I mut abl es. get (St ri ng) . Immutables objects are declared in files called immutable

65



MicroEJ Classpath

objects data files, which format is described in the [ B- ON] specification (htt p: // e-s-r. net).Im-
mutables objects data files are declared in MicroEJ Classpath using * . i nmrut abl es. | i st files. The
file formatis a standard Java properties file, each lineisa/ separated name of a relative file in MicrokJ
Classpath to be loaded as an Immutable objects data file. Example:

Example 8.3. Immutable Objects Data Files *. i mrut abl es. | i st File Example

# The following file is | oaded as an I mutabl e objects data files
conl nyconpany/ Myl nmrut abl es. dat a

8.3.5. System Properties

System Properties are key/value string pairs that can be accessed with a call to
System get Property(String). System properties are declared in MicroEJ Classpath
* properties.|ist files. The file format is a standard Java properties file. Example:

Example 8.4. System Properties *. properti es. | i st File Example

# The followi ng property is enbedded as a System property
com myconpany. key=com nyconpany. val ue

8.3.6. Images

8.3.6.1. Overview

Images are graphical resources that can be accessed with a call to
ej . mcroui.display. | mge. createl mage().Tobedisplayed, these images have to be con-
verted from their source format to the display raw format. The conversion can either be done at :

+ build-time (using the image generator tool)
+ run-time (using the relevant decoder library)

Images that must be processed by the image generator tool are declared in MicroEJ Classpath
*.images. | i st files. The file format is a standard Java properties file, each line representing a /
separated resource path relative to the MicroEJ classpath root referring to a standard image file (e.g.
. pNng,. j pg). Theresource may be followed by an optional parameter (separated by a: ) which defines
and/or describe the image output file format (raw format). When no option is specified, the image is
embedded as-is and will be decoded at run-time (although listing files without format specifier has no
impact on the image generator processing, it is advised to specify them in the *. i mages. | i st files
anyway, as it makes the run-time processing behavior explicit). Example:

66



MicroEJ Classpath

Figure 8.3. Image Generator *. i mages. | i st File Example

# The followi ng i mage i s enbedded
# as a PNG resource (decoded at run-tinme)

coni nyconpany/ Myl magel. png

# The followi ng i mage i s enbedded

# as a 16 bits format w thout transparency (decoded at build-tine)
coni nyconpany/ Myl mage2. png: RGB565

# The followi ng i mage i s enbedded

# as a 16 bits format with transparency (decoded at build-tine)
coni nyconpany/ Myl nage3. png: ARGB1555

8.3.6.2. Output Formats

8.3.6.2.1. No Compression

When no output format is set in the images list file, the image is embedded without any conversion /
compression. This allows you to embed the resource as well, in order to keep the source image char-
acteristics (compression, bpp etc.). This option produces the same result as specifiying an image as a
resource in the MicroEJ launcher.

Advantages:

+ Preserves the image characteristics.
Disadvantages:

+ Requires an image runtime decoder.

+ Requires some RAM in which to store the decoded image

Figure 8.4. Unchanged Image Example

i mgel

8.3.6.2.2. Display Output Format

This format encodes the image into the exact display memory representation. If the image to en-
code contains some transparent pixels, the output file will embed the transparency according to the
display'simplementation capacity. When all pixels are fully opaque, no extra information will be stored
in the output file in order to free up some memory space.

Advantages:

« Drawinganimage is very fast.

+ Supports alpha encoding.

67



MicroEJ Classpath

Disadvantages:

« No compression: the image size in bytes is proportional to the number of pixels.

Figure 8.5. Display Output Format Example

i magel: di spl ay

8.3.6.2.3. Generic Output Formats

Depending on the target hardware, several generic output formats are available. Some formats may
be directly managed by the BSP display driver. Refer to the platform specification to retrieve the list
of natively supported formats.

Advantages:

+ The pixels layout and bits format are standard, so it is easy to manipulate these images on the
C-side.

« Drawing an image is very fast when the display driver recognizes the format (with or without
transparency).

+ Supports or not the alpha encoding: select the most suitable format for the image to encode.
Disadvantages:

+ Nocompression: theimage size in bytes is proportional to the number of pixels, the transparen-
cy, and the bits-per-pixel.

Select one the following format to use a generic format:
+ ARGBB8888: 32 bits format, 8 bits for transparency, 8 per color.
+ RGBB888: 24 bits format, 8 per color. Image is always fully opaque.
+ ARGB4444: 16 bits format, 4 bits for transparency, 4 per color.
« ARGB1555: 16 bits format, 1 bit for transparency, 5 per color.
+ RGB565: 16 bits format, 5 or 6 per color. Image is always fully opaque.

+ A8: 8 bits format, only transparency is encoded. The color to apply when drawing the image, is
the current GraphicsContext color.

« A4: 4 bits format, only transparency is encoded. The color to apply when drawing the image, is
the current GraphicsContext color.

+ A2:2 bits format, only transparency is encoded. The color to apply when drawing the image, is
the current GraphicsContext color.

« Al: 1 bit format, only transparency is encoded. The color to apply when drawing the image, is
the current GraphicsContext color.

Figure 8.6. Generic Output Format Examples

i mgel: ARGB8888
i mge2: RGB565
i mge3: A4

68



MicroEJ Classpath

8.3.6.2.4. RLE1 Output Format

The image engine can display embedded images that are encoded into a compressed format which
encodes several consecutive pixels into one or more 16-bits words. This encoding manages a maximum
alpha level of 2 (alpha level is always assumed to be 2, even if the image is not transparent).

« Several consecutive pixels have the same color (2 words).
« First 16-bit word specifies how many consecutive pixels have the same color.
« Second 16-bit word is the pixels' color.

« Several consecutive pixels have their own color (1 +n words).
« First 16-bit word specifies how many consecutive pixels have their own color.
« Next 16-bit word is the next pixel color.

+ Several consecutive pixels are transparent (1 word).
+ 16-bit word specifies how many consecutive pixels are transparent.

Advantages:

« Supports 0 &2 alpha encoding.

« Good compression when several consecutive pixels respect one of the three previous rules.
Disadvantages:

« Drawing an image is slightly slower than when using Display format.

Figure 8.7. RLE1 Output Format Example

i mgel: RLE1

8.3.7. Fonts

8.3.7.1. Overview

Fonts are  graphical resources that can be accessed with a call to
ej . microui.display. Font. get Font (). To be displayed, these fonts have to be converted at
build-time from their source format to the display raw format by the font generator tool. Fonts that
must be processed by the font generator tool are declared in MicroEJ Classpath*. f ont s. | i st files.
The file format is a standard Java properties file, each line representing a/ separated resource path
relative to the MicroEJ classpath root referring to a MicroEJ font file (usually with a. ej f file extension).
The resource may be followed by optional parameters which define :

« some ranges of characters to embed in the final raw file

« therequired pixel depth for transparency.

69



MicroEJ Classpath

By default, all characters available in the input font file are embedded, and the pixel depthis 1 (i.e 1
bit-per-pixel). Example:

Figure 8.8. Font Generator*. f ont s. | i st File Example

# The following font is enbedded with all characters
# wi t hout transparency
coni nyconpany/ MyFont 1. ej f

# The following font is enbedded with only the latin
# uni code range wi thout transparency

coni nyconpany/ MyFont 2. ejf:latin

# The following font is enbedded with all characters

# with 2 |levels of transparency
conl nyconpany/ MyFont 2. ejf:: 2

MicroEJ font files conventionally end with the . e f suffix and are created using the Font Designer (see
Section 9.1, “Font Designer”).

8.3.7.2. Font Range

Thefirst parameter is for specifying the font ranges to embed. Selecting only a specific set of characters
to embed reduces the memory footprint. Several ranges can be specified, separated by ; . There are
two ways to specify a character range: the custom range and the known range.

8.3.7.2.1. Custom Range
Allows the selection of raw Unicode character ranges.
Examples:

« myfont: 0x21- 0x49: Embed all characters from 0x21 to 0x49 (included).
« nyfont: 0x21- 0x49, 0x55: Embed all characters from 0x21 to 0x49 and character 0x55

« nyfont: 0x21- 0x49; 0x55: Same as previous, but done by declaring two ranges.

8.3.7.2.2. Known Range

A known range is a range defined by the "Unicode Character Database" available on http://
wWww. uni code. or g/ . Each range is composed of sub ranges that have a unique id.

Examples:
« nyfont:|atin:Embed alllatin characters.
« nyfont:latin(5):Embedalllatin characters of sub range 5 (0xD8 to OXF6).
« nyfont:latin(l-5):Embed alllatin characters of sub ranges 1 to 5.

« nyfont:latin(1l-5,7):Embedalllatin characters of sub ranges1to5 and 7.

70



MicroEJ Classpath

« nyfont:latin(1l-5);1atin(7):Same as previous, but done by declaring two ranges.

« nyfont:latin(1l-5); han: Embedalllatincharactersof subranges1to5,andall hanchar-
acters.

8.3.7.3. Transparency
The second parameter is for specifying the font transparency level (1, 2, 4 or 8).
Examples:

« nyfont:|latin:4:Embed all latin characters with 4 levels of transparency

« nyfont::2:Embed all characters with 2 levels of transparency

8.4. Foundation vs Add-On Libraries

A MicroEJ Foundation Library is a MicroEJ Core library that provides core runtime APIs or hardware-de-
pendent functionality. AFoundation library is divided into an APl and an implementation. A Foundation
library APl is composed of a name and a 2 digits version (e.g. EDC- 1. 2, MM- 2. 0) and follows the se-
mantic versioning (ht t p: / / senver . or g) specification. A Foundation library APl only contains pro-
totypes without code. Foundation library implementations are provided by MicroEJ Platforms. From a
MicroEJ Classpath, Foundation library APIs dependencies are automatically mapped to the associated
implementations provided by the platform on which the application is being executed.

A MicroEJ Add-On Library is a MicroEJ library that is implemented on top of MicroEJ Foundation Li-
braries (100% full Java code). A MicroEJ Add-on Library is distributed in a single JAR file, with most
likely a 3 digits version and provides its associated source code.

Foundation and add-on libraries are added to MicroEJ Classpath by the application developer using
Ivy (see Section 8.5, “Library Dependency Manager”).

Figure 8.9. MicroEJ OS Foundation and Add-On Libraries

Add-On Libraries

Fr_)ur:dation Librarie

MicroUl NET ssL !

8.5. Library Dependency Manager

MicroEJuseslvy (htt p: // ant . apache. or g/ i vy) asits dependency manager for building MicroEJ
classpath.

71



MicroEJ Classpath

An Ivy configuration file must be provided in each MicroEJ project to solve classpath dependencies.
Multiple Ivy configuration file templates are available depending on the kind of MicroEJ application
created.

Example 8.5. Ivy File Template for a Sandboxed Application

<i vy-nodul e version="2.0" xm ns: ea="http://ww. easyant.org"
xm ns: m"http://ant. apache. org/ivy/extra">
<i nfo organi sati on="com nyconpany" nodul e="nyapp"
status="integration" revision="0.1.0">
<ea: bui | d organi sati on="com i s2t.easyant. bui |l dt ypes"
nodul e="bui | d-application” revision="5.+">
</ ea: bui | d>
</i nf o>

<confi gurations defaul t conf mappi ng="def aul t - >def aul t; provi ded-
>provi ded" >
<conf nanme="default" visibility="public"/>
<conf nane="provided" visibility="public"/>
<conf nanme="docunentation" visibility="public"/>
<conf nanme="source" visibility="public"/>
<conf nanme="dist" visibility="public"/>
<conf nane="test" visibility="private"/>
<conf name="m croej .| aunch. st andal one""/ >
</ configurations>

<publ i cati ons>
</ publicati ons>

<dependenci es>
<l-- Declare a Foundation Library APl dependency -->
<dependency org="ej.api " name="edc" rev="[1.2.0-RC0, 2. 0. 0-
RCO[" conf="provi ded->*" />
<l-- Declare an Add-On Library dependency -->
<dependency org="ej.library.wadapps" nanme="franework"
rev="[1.2.0-RCO, 2. 0.0-RCO[" />
</ dependenci es>
</ivy- nodul e>

Dependencies are declared within the <dependenci es>tag

« Foundation libraries are declared using the " pr ovi ded- >*" configuration. Without this, they
will be considered as a regular Add-On libraries and will not be mapped to the associated im-
plementation provided by the platform.

+ Add-On libraries are declared with the default runtime configuration. All their declared depen-
dencies will be fetched transitively.

72



MicroEJ Classpath

8.6. Central Repository

The MicroEJ Central Repository is the lvy repository maintained by MicroEJ. It contains Foundation li-
brary APIs and numerous Add-On Libraries. Foundation libraries APIs are distributed under the organi-
zation ] . api . All other artifacts are Add-On libraries.

For more information, please visitht t ps: / / devel oper. m croej.com

73



Chapter 9. Additional Tools

9.1. Font Designer

MicroEJ Font Designer allows to create embedded fonts files (see Section 8.3.7, “Fonts”) from standard
font files formats. The Font Designer documentation is available at: Hel p > Hel p Contents >
Font Desi gner User GCuide.

9.2. Strack Trace Reader

When an application is deployed on a device, stack traces dumped on standard output are not directly
readable: non required types (see Section 8.3.2, “Types”) names, methods names and methods line
numbers may not have been embedded to save code space. A stack trace dumped on the standard
output can be decoded using the Stack Trace Reader tool.

Starting from the Background Service application example (see Chapter 5, Background Service Appli-
cation), write a new line to dump the currently executed stack trace on the standard output.

Figure 9.1. Code to Dump a Stack Trace

public class MyBackgroundCode implements BackgroundService {

irverride
puhllc vold onStart() {
Auto-generated method stub

S stem.out.println("MyBackgroundCode: Hello World");
[ new Thrnwahle(j printStackTrace(); |

}

To be able to decode an application stack trace, the stack trace reader tool requires the application
binary file with debug information. To get this file being generated on the next deployment, edit the
launch configuration Run > Run Configuration... > MySandboxedApp [LOCAL] .Inthe
Execut i on tab, unchecktheCl ean i nternedi ate fil es option.

74



Additional Tools

Figure 9.2. Local Deployment Configuration with Intermediate Files

= —+1
= X | = Mame: | MySandboxedApp [LOCAL]
type filter text 71 Main | s Execution ™_§}}{ Configuration | = JRE| &~ Source| [] Common
[©] C/C++ Application Target
Ju JUnit ; -
v Platform: | STM32F746GDISCO-Wadapps-VirtualDevice (1.5.2) Browse...

= Launch Group
w [3] Microk) Application

_ - Execution
i M)rAct!\r!tyStandalone () Execute on Simulator (®) Execute on Device
[ MyActivityStandalone2
7] MySandboxedApp [LOCAL] Core Engine Mode: | Default ~
i New_cnnﬁgura?:mn Default Settings: | Local Deployment ~
[1] StandaleneRegistry
v [ MicroEl Tool Local deployment.
g Stack Trace Reader Options
Output folder: | Sworkspace_loc:MySandboxed&pp} Browse...
EI:'C|EEH intermediatefila []verbose

Click on Run button. The application is built and deployed. The output folder now contains the appli-
cation binary file with debug information (f eat ur e/ appl i cati on. f 0. 0). Note that the file which
is uploaded on the deviceisappl i cat i on. f o (stripped version without debug information).

Figure 9.3. Application Binary File with Debug Information

W ‘i’ijf MySandboxedApp
(# zrc/main/java
*® src/main/resources
(# src/.generated~/ java
[ crc/.generated~/ resources

B vy moduleivy [7]
~ (= __Myld_.generated.BackgroundServicesStandalone
[-L_.f bl:ln

w = feature

application fo_s.o
M application fo.map

applicatinn.fn.cﬂ

=| feature_soar.clinitmap

y feature_soar.o

) ST [

|=| feature_soar.s3infos
|%] feature_soarxml
= fonts
[= images
|=| application.fo
M: application.map
= filesystern

= META-INF

On successful deployment, the application is started on the device and the following trace is dumped

on standard output.

75



Additional Tools

Figure 9.4. Stack Trace Output

MyBackgroundCode: Hello Woarld
Exception in thread "ejwadapps.app.default” javalang Throwable
atjava.lang Systern @M 0x803bd98:0x803bdal@
at java.lang Throwable (@h:0x804de30:.0x804deab@
atjava.lang Throwatle @hd:0x50561e0:0x3056201 &
at appEntry byBackgroundCode (2F:352F7d0755010000d3754511 22022 4d0bB75ch 3689364100338 a0 (2@ Oxc03a0354: 0xc03a037cE
at Exception in thread[57] java/lang/Throwakle
at 134462583

To create a new MicroEJ Tool configuration, right-click on the application project and click on Run
As... > Run Configurations....

In Execut i on tab, selectthe St ack Trace Reader tool.

Figure 9.5. Select Stack Trace Reader Tool

e EY
= X | =l MName: | Stack Trace Reader
type filter text 4 Execution . 1 Configuration | g, JRE| [C] Common
[E] C/C++ Application Target
Ju JUnit "
; Laz'nch roup Platform: | STM32F746GDISCO-Wadapps-VirtualDevice (1.5.2) Browse...
51 MicroE) Application Execution
v [g Microt) Tool
Settings: | Stack Trace Reader ~

g Stack Trace Reader
Reads stack trace generated by MicroEl OS core engine.

Options

Qutput folder ‘ S{workspace_loc} Browse...

Clean intermediate files [Jverbose

In Conf i gur at i on tab, browse the previously generated application binary file with debug informa-
tion (appl i cati on. fo. 0)

76



Additional Tools

Figure 9.6. Stack Trace Reader Tool Configuration

= —]
= X | H &~ MName: | Stack Trace Reader
type filter text o Execution |11} Configuration g, JRE| [C] Common
[E] C/C++ Application Stack Trace Reader Application
Jur JUnit
B+ Launch Group Executable file: Erated.BackgroundSer\ricesStandaIu:unea‘featurl.a‘application.fn.n [I Browse...

31 Microk) Application
v g MicroE Tool

|

Additional object files:

T Stack Trace Reader Add
Remove
"Trace port" interface for Eclipse
Connection type: | Console ~
COMOD 115200
Browse...
Rewvert Appl
Filter matched 11 of 16 items PRy
@' Run Close

Click on Run button and copy/paste the trace into the Eclipse console. The decoded trace is dumped
and the line corresponding to the application hook is now readable.

Figure 9.7. Read the Stack Trace

Bl Console 5

Stack Trace Reader_ [MicroE) Tool] C\Program Files\Java'jre1.8.0_66\bin'javaw.exe (31 mai 2016 17:48:58)
=============== [ MicroEJ 05 Core Engine Trace | =====—=====—===
[INFCQ] Paste the MicroEJ 05 core engine stack trace here.

Exception in thre na - ang.Th

Exception in thread "ej.wadapps.app.default" java.lang.Throwable
at java.lang.System.0x803bdS98 (Unknown Source)
at java.lang.Throwable.0x804de90 (Unknown Source)
at java.lang.Throwable.0x80561e0 (Unknown Source)
I:? appEntry.MyBackgroundCode.onStart (MyBackgroundCode. java: m
at Exception in thread[57] java/lang/Throwable
at 134462888

The stack trace reader can simultaneously decode heterogeneous stack traces with lines owned by dif-
ferent applications and the firmware. Other debug information files can be appended using the Ad-
di tional object fil es option.Linesowned by the firmware can be decoded with the firnmare
debug information file (optionally made available by your firmware provider).

i



	Sandboxed Application
	Table of Contents
	Chapter 1. MicroEJ Overview
	1.1. MicroEJ Editions
	1.2. Firmware
	1.2.1. Bootable Binary with Core Services
	1.2.2. Specification

	1.3. Virtual Device
	1.3.1. Using a Virtual Device for Simulation
	1.3.2. Exposed APIs


	Chapter 2. MicroEJ Studio Getting Started
	2.1. Introducing MicroEJ Studio
	2.2. Install and Setup MicroEJ Studio
	2.2.1. Download and Install MicroEJ Studio
	2.2.2. Download and Install a Virtual Device

	2.3. Build and Run an Application
	2.3.1. Import a MicroEJ Sample Application
	2.3.2. Run on the Simulator
	2.3.3. Prepare an Hardware Board
	2.3.4. Deploy Locally on Hardware

	2.4. Application Publication
	2.4.1. Build the WPK
	2.4.2. Publish on a MicroEJ Store

	2.5. Application Development

	Chapter 3. Wadapps Framework
	3.1. MicroEJ Component Framework
	3.2. Execution Lifecycle
	3.2.1. Background Service Lifecycle
	3.2.2. Activity Lifecycle

	3.3. Services Usage
	3.3.1. Retrieving Services
	3.3.2. Application Local Services
	3.3.3. Shared Registry

	3.4. Standalone vs Sandboxed Application
	3.4.1. Automatically Generated Standalone Entry Points
	3.4.2. Standalone Application Specific Dependencies


	Chapter 4. Sandboxed Application Structure
	4.1. Application Template Creation
	4.2. Sources Folder
	4.3. META-INF Folder
	4.3.1. Certificate Folder
	4.3.2. Libraries Folder
	4.3.3. Properties Folder
	4.3.4. Services Folder
	4.3.5. Manifest File

	4.4. module.ivy File

	Chapter 5. Background Service Application
	5.1. Create a Sandboxed Application Project
	5.2. Fill the Application Structure
	5.2.1. Simple Background Application Code
	5.2.1.1. Classes

	5.2.2. Manifest File Configuration

	5.3. Test on a Virtual Device
	5.4. Test on Target Hardware
	5.4.1. Create a Run Configuration for the Target Hardware
	5.4.2. Local Deployment on the Target Hardware


	Chapter 6. Activity Application
	6.1. Develop an Activity Application
	6.1.1. Create a Sandboxed Application Project
	6.1.2. Create an Activity Implementation
	6.1.3. Update the Manifest File
	6.1.4. Add Graphical Library Dependency
	6.1.5. Implement a Graphical Class

	6.2. Add Application Resources
	6.2.1. Add Images Resources
	6.2.2. Add Fonts Resources

	6.3. Test the Application on Simulator
	6.3.1. Create a Run Configuration


	Chapter 7. Shared Interfaces
	7.1. Principle
	7.2. Shared Interface Creation
	7.2.1. Interface Definition
	7.2.2. Transferable Types
	7.2.3. Proxy Class Implementation

	7.3. Shared Interface Example
	7.3.1. Write the Proxy Implementation
	7.3.2. Prepare the Shared Interface Projects
	7.3.3. Implement the Provider Side
	7.3.3.1. Create the Provider Implementation Class
	7.3.3.2. Register the Provider as a Shared Interface Implementation

	7.3.4. Implement the User Side
	7.3.4.1. Write the User Behaviour
	7.3.4.2. Get the Provider Service Reference
	7.3.4.3. Call the Provider Service


	7.4. System Registries

	Chapter 8. MicroEJ Classpath
	8.1. Application Classpath
	8.2. Classpath Load Model
	8.3. Classpath Elements
	8.3.1. Application Entry Points
	8.3.2. Types
	8.3.3. Raw Resources
	8.3.4. Immutable Objects
	8.3.5. System Properties
	8.3.6. Images
	8.3.6.1. Overview
	8.3.6.2. Output Formats
	8.3.6.2.1. No Compression
	8.3.6.2.2. Display Output Format
	8.3.6.2.3. Generic Output Formats
	8.3.6.2.4. RLE1 Output Format


	8.3.7. Fonts
	8.3.7.1. Overview
	8.3.7.2. Font Range
	8.3.7.2.1. Custom Range
	8.3.7.2.2. Known Range

	8.3.7.3. Transparency


	8.4. Foundation vs Add-On Libraries
	8.5. Library Dependency Manager
	8.6. Central Repository

	Chapter 9. Additional Tools
	9.1. Font Designer
	9.2. Strack Trace Reader


