
MicroEJ
B-ON-1.2

Beyond
Profile Specification

ESR001

Reference: ESR-SPE-001-B-ON
Version: 1.2
Rev: G

Copyright of The Software

DEFINITIONS

"ESR" means the Specification, including any modifications and upgrades, where these terms have
been stated or referred to, and made available to You by MicroEJ, including without limitation,
texts, drawing, codes,and examples.

"MicroEJ" means MicroEJ S.A. , operating under the brand name MicroEJ®, Société anonyme à
conseil de surveillance et directoire which main offices are at Nantes, 11 rue du chemin rouge,
44373 Nantes, France, Registered under number 452870579, in France in accordance with the
French law.

"You" means the legal entity or entities represented by the individual executing this Agreement.

READ ONLY RIGHTS

Subject to the terms and conditions contained herein, MicroEJ grants to You a non-exclusive, non-
transferable, worldwide, and royalty-free license to view and read the ESR solely for purposes of
Your internal evaluation. As a condition of the license grant, You shall not copy, modify, create
derivative works of, publicly display, publicly perform, implement, disclose, distribute, or
otherwise use the ESR, including without limitation, using the ESR to develop Software or Tool,
similar or compatible with the software defined by the Specification.

INTELLECTUAL PROPERTY

The ESR is proprietary, protected under copyright law and patents. You have no right at any time
to disclose, directly or indirectly, such material and/or information relating to the ESR, to any third
party without MicroEJ's prior written approval.

GENERAL TERMS

THE ESR IS PROVIDED "AS IS", WITHOUT WARRANTIES OF ANY KIND, EITHER
EXPRESS OR IMPLIED.

THE READING OF THE ESR AND ALL CONSEQUENCES ARISING THEREOF IS YOUR
SOLE RESPONSIBILITY. MICROEJ SHALL NOT BE LIABLE TO YOU FOR ANY LOSS OR
DAMAGE CAUSED BY, ARISING FROM, DIRECTLY OR INDIRECTLY, OR IN
CONNECTION WITH THE ESR.

MISCELLANEOUS

This Agreement shall be governed by, and interpreted in accordance with French Law. In no event
shall this Agreement be construed against the drafter.

This Agreement contains the entire understanding between the parties concerning its subject matter
and supersedes any other agreement or understanding, whether written or oral, which may exist or
have existed between the parties on the subject matter hereof.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR
TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE
INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION.

MICROEJ MAY MAKE IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN ANY ESR PUBLICATION AT ANY TIME.

Trademarks
Java™ is Sun Microsystems' trademark for a technology for developing application software and
deploying it in cross-platform, networked environments. When it is used in this documentation
without adding the ™ symbol, it includes implementations of the technology by companies other
than Sun.

Java™,all Java-based marks and all related logos are trademarks or registered trademarks of Sun
Microsystems Inc, in the United States and other Countries.

Information in this document is the property of MicroEJ. Without written permission from
MicroEJ, copying or sending parts of the document or the entire document by any means to third
parties is not permitted including any means such as electronic communication, photocopies,
mechanical reproduction systems or by any means dealing with information processing.

ESR001 - B-ON 1.2 (BEYOND)

Contents

1 Preface to B-ON Profile, ESR001..1
1.1 Who should use this specification?...1

1.2 Comments..1

1.3 Requirements...1

1.4 Related Literature..1

1.5 Document Conventions...1

1.6 Implementation Notes..2

2 Introduction..2
2.1 Why B-ON?...2

2.2 Basic Concepts..3

2.3 First Example...3

3 Object Natures..5
3.1 Persistent Immutable Objects...5

3.1.1 Object ID and Immutable Object Querying..5
3.1.2 Immutable Objects Descriptions and Creation...6
3.1.3 XML Grammar...6
3.1.4 Immutable XML Description Examples...9
3.1.5 Turning Objects Into Immutable Objects..10

3.2 Immortal Objects ...11
3.2.1 Non Garbageable Objects...11
3.2.2 Turning Objects Into Immortal Objects..11

3.3 Reclaimable Objects..12
3.3.1 Death Notification..12
3.3.2 Death Notification Actions...12
3.3.3 Weak objects association..12

4 Runtime Phases..12
4.1 Initialization Phase...13

4.1.1 Mono-threaded Phase...13
4.1.2 Deterministic Initialization Order ..13

4.2 Mission Phase..14
4.2.1 Thread Activations...14
4.2.2 Thread Control...14
4.2.3 Class.forName ...15

4.3 B-ON Properties ..15

5 Utilities...16
5.1 Timer & TimerTask...16

5.2 Platform time..16

5.3 Byte Array Accesses..17

5.4 Math..17

6 Annex A: Immutables DTD..18
7 Java Specification..19

IV

ESR001 - B-ON 1.2 (BEYOND)

Tables
Table 3-1: Immutables Primitive Type Format..9

V

ESR001 - B-ON 1.2 (BEYOND)

Illustrations
Illustration 3-1: Example of hash table passed to Immutables.putAll(Hashtable).11
Illustration 4-1: B-ON phases and thread activation..13
Illustration 4-2: Sending an asynchronous exception Util.throwExceptionInThread......................14
Illustration 4-3: Exception thrown when thread has exited all critical sections...............................15
Illustration 5-1: Representation of the 32-bit quantity 0x0000100A using both BigEndian and in
LittleEndian layout..17

VI

ESR001 - B-ON 1.2 (BEYOND)

1 PREFACE TO B-ON PROFILE, ESR001

This document defines the B-ON profile, targeting Java virtual machines.

1.1 Who should use this specification?
This specification is targeted at the following audiences:

• Implementors of the B-ON specification.

• Application developers that target embedded Java applications for resource-constrained
devices.

• Java virtual machine providers.

• Hard Real Time Java application developers.

1.2 Comments
Your comments about B-ON are welcome. Please send them by email to contact@microej.com,
with B-ON as subject.

1.3 Requirements
The term MUST indicates that the associated definition is an absolute requirement, whereas MAY
indicates that the item is optional. SHOULD indicates a highly recommended requirement.

Although this specification defines minimal requirements, devices with more resources may also
benefit from B-ON specification, especially when users are concerned with optimal resource
usage.

The B-ON specification makes no hardware requirement for devices that run a Java virtual
machine that implements this specification. Typical hardware for B-ON ranges from 8-bit to 64-bit
multi-core cpu.

The B-ON profile specification makes minimal assumptions about the system software of the
device. Although a Java virtual machine is required, the kernel does not need to support an
OS/RTOS while the virtual machine may be baremetal (i.e. the device boots directly in Java).

Compliant B-ON 1.2 implementations MUST include all packages, classes, and interfaces
described in this specification, and implement the associated behavior.

1.4 Related Literature
JVM2: Tim Lindholm & Frank Yellin, The Java™ Virtual Machine Specification, Second Edition,
1999
JLS: James Gosling, Guy Steele, Bill Joy, Gilad Bracha, The Java™ Language Specification, Third
Edition, 2005

1.5 Document Conventions
In this document, references to methods of a Java class are written as
ClassName.methodName(args). This applies to both static and instance methods. Where the
method is static this will be made clear in the accompanying text.

1/72

ESR001 - B-ON 1.2 (BEYOND)

1.6 Implementation Notes
The B-ON specification does not include any implementation details. B-ON implementors are free
to use whatever techniques they deem appropriate to implement the specification, with (or without)
collaboration of any Java virtual machine provider. B-ON experts have taken great care not to
mention any special Java virtual machines, nor any of their special features, in order to encourage
fair competing implementations.

2 INTRODUCTION

The goal of this specification is to define an enhanced and simple architecture to enable an open,
third-party, application development environment for controlling both its startup sequence and its
memory resource in the best possible way.

Although this specification spans a potentially wide set of devices, it focus on devices that have
non-volatile memories and volatile ones (eeprom, flash, ram, …). At the application level, it
focuses on applications that have some sort of initialization phase before entering into a mission
phase that then exists forever until the device gets shutdown or reboots.

2.1 Why B-ON?
Many languages let software engineers define the memory management of their applications. One
reason is that most embedded devices have scarce physical memory, while being cost driven. On
the other hand, it is well known that memory allocation is one of the most difficult tasks to achieve
efficiently as soon as the application uses more than a few objects.

In order to cope with these two contradictory issues, there are two main approaches, each one at
the extremity of the possibility spectrum:

• Pre-allocate all of what is needed for the program to run, either statically (at compile time)
or dynamically once and for all at system startup. While running, no extra allocation is done.
This approach is often used for Hard Real-Time systems when the memory consumption
cannot be defined at compile-time through formal analysis.

• Let the runtime system manage the memory, fully freeing the engineers from that task. This
is done through the use of garbage collectors. A huge number of different garbage collection
policies are available and each have their own benefits and drawbacks.

The Java virtual machine specification [JVM2] defines a heap where Java objects reside. This
heap is automatically managed by a garbage collector. Every Java virtual machine is free to
implement the memory management that best fits the application domain it is designed for.

[JVM2] defines a semantically immortal set of objects: a pool of java.lang.String, which are
references in classfile constant pools1. [JVM2] also defines the way applications get initialized,
even though it is quite a loose process where lazy initialization is permitted. Intuitively, classes
must be initialized before any instance creation or access to its static variables (see 4.1.2).

One of the newer trends in software involves designing simple solutions that are easy to
understand and most importantly easy to manipulate and control. Developers must be able to
minimize development time, often dealing with small memory budgets for their application. On
typical microcontrollers, the ratio between read-only memory and volatile memory is four,
meaning that there is 4 times more read-only memory (eeprom, flash, …) than volatile memory

1 Literal strings are turned into CONSTANT_String_info by Java compilers.

2/72

ESR001 - B-ON 1.2 (BEYOND)

(ram). For really cost sensitive devices, the ratio may drop to 8 (ram is what costs the most), while
for rather more expensive ones it may reach 2.

B-ON defines a suitable and flexible way to fully control both memory usage and start-up
sequences on devices with limited memory resources. It does so within the boundaries of the Java
semantic. More precisely, it allows:

• Controlling the initialization sequence in a deterministic way.

• Defining persistent immutable read-only objects (that may be placed into non-volatile
memory areas), and do not require copies to be made in ram to be manipulated.

• Defining immortal read-write objects that are always alive.

B-ON serves as a very robust foundation for implementing Java software, in particular embedded
Java Software.

B-ON also add a small set of useful utilities:

• A Timer facilities that allows to schedule small activities repeatedly (or not). Such activities
are Runnable objects that are automatically scheduled by the timer.

• Platform time which cannot be changed: the time from the very last boot of the device.

• Read-write ByteArray support according to the underlying processor endianness.

• A set of useful math operators.

2.2 Basic Concepts
B-ON experts agreed to limit the set of APIs specified to only those required to achieve a high
level of portability and successful deployments. Their main concern was to stay within the
boundaries of the Java semantics [JLS].

B-ON defines two phases for the execution stream:

• The initialization phase: the initialization sequence executes all the static initializer methods
(known as the <clinit> methods).

• The mission phase: the main(String[]) method of the main class is called. The
application runs until the device is switched off.

There is a kind of objects, named immutable objects, that are alive at system startup. They are
read-only objects that most probably reside in non-volatile memory. All together they form a pre-
existing world that exists on its own, just like the hardware does.

2.3 First Example
The simple next example illustrates the use of big buffers. They are made immortal in order to
recycle them manually while they represent the most critical ram consumption. This example also
makes use of an immutable object, an array of values that never changes during the lifetime of the
device.

package example;
public class Filter {
 public static final int BufferSize = 4096;// 16k (an int is 32-bit)
 public static int[][] Buffers;
 public static int[] ValidValues;
 static {
 ValidValues =(int[])ej.bon.Immutables.get("filter");

3/72

ESR001 - B-ON 1.2 (BEYOND)

 }

 static {
 // Allocate the immortal pool of buffers. Only two Filters may
 // be alive at the same time: ==> 32k of ram for two Filters
 Buffers = new int[2][];
 Buffers[0] = (int[])Immortals.setImmortal(new int[BufferSize]);
 Buffers[1] = (int[])Immortals.setImmortal(new int[BufferSize]);
 }

 public int ptr;
 public int[] buffer;

 public Filter(){
 // grab a buffer from the pool, or throw an exception
 synchronized (Buffers){
 for (int i = Buffers.length; --i >= 0;){
 if (Buffers[i] != null){
 buffer = Buffers[i];
 ptr=-1;
 Buffers[i] = null ;
 break ;
 }
 }
 }
 if (buffer == null){
 throw new OutOfMemoryError();
 }
 }

 public void close(){
 // recycle manually the immortal buffer: store it in

 // global Buffers array pool
 synchronized (Buffers){
 for (int i = Buffers.length; --i >= 0;){
 if (Buffers[i] == null){
 Buffers[i] = buffer;
 break;
 }
 }
 }
 }

 public synchronized void insert(int value){
 // only insert permitted values

 if (ptr >= BufferSize) return; // full

 for (int j = ValidValues.length; --j >= 0;){
 if (value == ValidValues[j]){
 buffer[++ptr] = value;
 }
 }
 }
}

4/72

ESR001 - B-ON 1.2 (BEYOND)

3 OBJECT NATURES

The B-ON specification defines three natures for objects: persistent immutable objects (3.1),
immortal objects (3.2), and reclaimable objects (3.3). Immutable2 objects are also referred to as
read-only objects, whereas reclaimable objects are regular objects.

Although objects get a liveness nature, this is fully transparent at the Java semantic level. A
semantically correct software assuming B-ON will behave exactly the same on a Java virtual
machine that does not implement the three B-ON object natures3.

3.1 Persistent Immutable Objects
Immutable objects are read-only objects. They are instances of any concrete class. Although they
are immutable, they obey all the Java object's semantics. In particular, they hold a hash code, have
a class and have a monitor that a thread may enter into.

There is no way for an immutable object to directly refer to a non-immutable object. References
from immutable objects always refer to other immutable objects. Writing into an immutable object
(field write access) results in an unspecified behavior. The B-ON experts group strongly
encourages implementations of the B-ON specification to raise an uncatchable exception when
there is an attempt to write into an immutable object, although a no-op operation may be
sufficient4.

Immutable objects may be created in two ways:

• At run-time, if the implementation allows this, as described in section 3.1.5,

• At system/application configuration time by specifying objects in an XML configuration
file, as described in the sections immediately below.

In the second case the way the immutable object's descriptions are given to the Java virtual
machine at startup is implementation-dependent. Most implementations will assume the immutable
objects to be at some particular location in (read-only) memory: the implementation-dependent
way to give the immutable objects at startup would therefore be trivial (nothing to do, but know
the memory address). Note that immutable objects do not need to be copied in (scarce) ram
memory to be manipulated5.

Software is made up of several parts, often called libraries, that may come with their own
immutable object descriptions. Therefore more than one immutable description may be given to
the Java virtual machine.

3.1.1 Object ID and Immutable Object Querying

Immutable objects are semantically organized into one global pool, just like the Java interned
java.lang.String objects.

An immutable object may be attached to a java.lang.String key, known as its ID. This ID
allows an immutable object to be retrieved out of the global pool of immutable objects, thanks to
the method Immutables.get(String). The ID of an object is globally unique: the ID
"ANONYMOUS" is a reserved ID (see 3.1.5) and cannot be used to qualify an immutable object.

2 Persistent immutable objects are named immutable objects throughout the specification.
3 Writing into an immutable object is considered as a semantic error.
4 The write access to read-only memory is often a no-op operation that has no cost.
5 A specification with persistent storage that would force to copies the data/objects in ram would be

impractical for small devices.

5/72

ESR001 - B-ON 1.2 (BEYOND)

3.1.2 Immutable Objects Descriptions and Creation

Descriptions are based on the structure of objects, that is, they embed structural information such
as fully qualified class names and field names. Fields6 that need to get initialized with some value
(base-type or another immutable object) are described using a pair: field-name, value.

Fields that are not described get initialized with the default Java value (0 for numeric types, null
for objects, false for booleans, 0.0 for floating-point numbers [JLS]). No visibility rule applies,
that is, any kind of field may be listed, even private ones. Final fields must be initialized.

There is no particular order for the creation of the immutable objects. The B-ON experts
recommend the use of tools for the creation of large graphs of immutable objects.

3.1.3 XML Grammar

Immutable objects are described according to the following XML syntax (Annex 6 gives the
DTD).

• <immutables>: the root element of one immutable objects description.

– attributes:

• name: an optional attribute that defines the content of the XML description.

– child elements: <object> , <objectAlias>, <array> , <string>, <class>, <null>,
<importObject>.

• <object>: element that defines a new object.

– attributes:

• id: the ID string that allows the object to be retrieved through the use of
Immutables.get(String)

• type: the name of the class of the object. An alias may be used instead of the
fully-qualified class name.

• private: a boolean that indicates whether the object will be accessible using
the Immutables.get(String) method. If false, the objects can only be
referenced within the XML immutable objects descriptions.

– child elements: <field> , <refField>

• <objectAlias>: element that defines a new key for an existing object.

– attributes:

• id: the ID string that allows the object to be retrieved through the use of
Immutables.get(String).

• object: the existing object ID or alias ID.

• private: a boolean that indicates whether the object will be accessible using
the Immutables.get(String) method. If false, the objects can only be
referenced within the XML immutable objects descriptions.

– child elements: none

• <string>: element that defines an interned string.

6 Only instance fields of objects are involved, i.e. not static fields.

6/72

ESR001 - B-ON 1.2 (BEYOND)

– attributes:

• id: the ID that allows the object to be retrieved through the use of
Immutables.get(String)

• value: the string literal

• private: a boolean that indicates whether the object will be accessible using
the Immutables.get(String) method. If false, the objects can only be
referenced within the XML immutable objects descriptions.

– child elements: none

• <class>: element that defines an instance of a java.lang.Class. The ID of this object
can be used for type attributes.

– attributes:

• id: the ID that allows the object to be retrieved through the use of
Immutables.get(String)

• type: the class fully qualified name like java.lang.Object.

• private: a boolean that indicates whether the object will be accessible using
the Immutables.get(String) method. If false, the objects can only be
referenced within the XML immutable objects descriptions.

– child elements: none

• <field>: elements that state a field with its associated literal value.

– attributes:

• name: the name of the field as defined in the class that defines it.

• value: the value of the field. The value is a primitive type (numeric or
boolean) or a literal string (see Table 3-1: Immutables Primitive Type Format).

• type: this attribute is optional. It represents the class where the field is
defined. A field without its type attribute refers to the first field found while
scanning the class hierarchy from the bottom to the top (following the
superclass link).

– child elements: none

• <refField>: elements that state a field that references an immutable object.

– attributes:

• name: the name of the field as defined in the class that defines it.

• ref: the ID of the referenced immutable object.

• type: this attribute is optional. It represents the class where the field is
defined. A field without its type attribute refers to the first field found while
scanning the class hierarchy from the bottom to the top (following the
superclass link).

– child elements: none

• <array>: element that defines a new array.

– attributes:

7/72

ESR001 - B-ON 1.2 (BEYOND)

• id: the ID that allows the object to be retrieved through the use of
Immutables.get(String)

• type: the array type. An alias may be used instead of the fully qualified class
name. Dimensions are given using the Java notation [].

• length: this attribute is optional. It represents the number of elements the
array has.

• private: a boolean that indicates whether the object will be accessible using
the Immutables.get(String) method. If false, the objects can only be
referenced within the XML immutable objects descriptions.

– child elements: <elem> , <refElem>

• <elem>: element that defines an array element with its literal value.

– attributes:

– value: the value of the element. The value is a primitive type (numeric or boolean) or a
literal string (see Table 3-1: Immutables Primitive Type Format).

– child elements: none

• <refElem>: element that defines an array element. Such element references an immutable
object.

– attributes:

– ref: the ID of the referenced immutable object.

– child elements: none

• <null>: element that defines a null object that can be referenced by an object field or an
array element

– attributes:

– id: the ID that allows the null object to be retrieved through the use of
Immutables.get(String)

– private: a boolean that indicates whether the object will be accessible using the
Immutables.get(String) method. If false, the objects can only be referenced
within the XML immutable objects descriptions.

– child elements: none

• <importObject>: element that import an object that is defined in another immutable file.
The referenced object may be private or public.

– attributes:

– id: the ID of the imported object

– child elements: none

Class names use the Java notation (using a '.' as separator): java.lang.Object is an
example.

String literals are defined as in XML specification. To allow quotes in XML string data use the
apostrophe ' ’ ' separator as XML separator or the escape character ".

8/72

ESR001 - B-ON 1.2 (BEYOND)

To define the next 9 characters String, my"String, as string literal value, use one of following
syntax:

<field name="f1" value=’my"String’ />
<field name="f1" value="my"String" />

Next table lists the format for the primitive values:

Primitive Type Format Example

boolean true or false <…value=”true”/>

byte, short, int,
long

Format defined in the Java method
Long.decode(String)

<…value=”123”/>
<…value=”0x2A”/>
<…value=”-561”/>

char Format defined in the Java
method Long.decode(String) or
a character value between simple
quotes

<…value=”123”/>
<…value=”'z'”/>
<…value=”'©'”/>

float Format defined in the Java method
Float.parseFloat(String)

<…value=”2.3”/>
<…value=”4.2e12”/>
<…value=”-5.671”/>

double Format defined in the Java method
Double.parseDouble(String)

<…value=”2.3”/>
<…value=”4.2e12”/>
<…value=”-5.671”/>

Table 3-1: Immutables Primitive Type Format

IDs define one global name space7: an ID only refers to only one object. It is an error to have
objects sharing ID.

3.1.4 Immutable XML Description Examples

<immutables name=”MyCorp objects”>

 <array id="corp.immut00" type="boolean[]" length="2">
 <elem value="true"/>
 <elem value="false"/>
 </array>

 <array id="corp.immut01" type="int[]">
 <elem value="3"/>
 <elem value="2"/>
 <elem value="1"/>
 </array>

 <class id="MyClass" type="myCompany.mypackage.MyClass"
 private="true"/>

 <object id="corp.immut02" type="MyClass">
 <field name="a" value="50" />
 <field name="str" value="Hello" />
 <refField name="b" ref="corp.null" />

7 As a good practice, it is recommended to define ID using a qualified name, such as
“myCorp.myApp.MyID12”.

9/72

ESR001 - B-ON 1.2 (BEYOND)

 </object>

 <object id="corp.immut03" type="myCompany.mypackage.A">
 <refField name="f" ref="corp.immut04" />
 <refField name="s" ref="corp.internalKey"/>
 <refField name="o" ref="corp2.immut"/>
 </object>

 <string id="corp.immut04" value='Hello World!' />

 <string id="corp.internalKey" value="one" private="true" />

 <string id="key1" value="two" />

 <string id="key2" value='thr"ee' />

 <object id="value1" type="java.lang.Object" />

 <null id="corp.null"/>

 <importObject id="corp2.immut"/>

</immutables>

3.1.5 Turning Objects Into Immutable Objects

Some systems may define persistent memory where new immutable objects can be stored. Such
objects remain “live” through device reboots. The number of available persistent memory is
system dependent and is described within the datasheet of the Java virtual machine that
implements the B-ON specification. Immutables.totalMemory() returns this persistent
immutable memory size, whereas Immutables.freeMemory() returns the left remaining
persistent memory size.

If an object is persistently added with an ID that was already in use by a previously defined
immutable object, the new added object takes precedence over the object that was referred to by
that ID: the next call to Immutables.get(ID) returns the last added object with that ID8.

Objects are (runtime) added to the persistent memory as a graph, defined by the values held in an
hash table.

• The keys of the hash table represent the IDs of the objects: these keys must be of the
java.lang.String9 class. Objects that are not in the hash table do not take part in the
immutable storage action.

• The special ID "ANONYMOUS" allows objects held by an array (from the type
java.lang.Object[]) to be added into the hash table. They are considered as being part
of the hash table, but anonymously. The key "ANONYMOUS" is not added to the set of all
available IDs10.

8 This feature is often used to overwrite default system setting.
9 On highly resource constrained devices, it might be important to define short ID.
10 The ANONYMOUS key holds all the private immutable objects.

10/72

ESR001 - B-ON 1.2 (BEYOND)

KEY01

KEY02

ANONYMOUS

....

[, , , …]

: object that becomes immutables

instance of Object[]

Illustration 3-1: Example of hash table passed to
Immutables.putAll(Hashtable).

The hash table is added using the Immutables.putAll(Hashtable)method. It persistently
writes copies of all the values in the hash table that are not already immutable objects. All
references within those objects to non-immutable objects or to objects that are outside the hash
table are set to null. References to immutable objects remain, literal strings11 are considered as
immutable (see ??). Keys that refer to null are ignored.

The Immutables.put(String, Object) method allows to store a single object.

All operations on Immutables must be thread safe.

3.2 Immortal Objects

3.2.1 Non Garbageable Objects

Immortal objects are regular objects that are not managed by the Java virtual machine garbage
collector. Immortal objects do not move around in memory: they remain physically located in one
memory location forever.

3.2.2 Turning Objects Into Immortal Objects

Reclaimable objects may be turned into immortal objects using the
Immortals.setImmortal(Object) method. Only the object passed as argument is turned into
an immortal object, i.e. none of the objects it refers to through its fields become immortal. This is
in contrast with Immortals.deepImmortal(Object) that turns the object passed as the
argument and all objects referred to from the argument into immortal objects. Note that weakly
reachable objects are not turned into immortal objects; in other words the WeakReference
semantic is not affected by this operation.

The total amount of free immortal memory still available is Immortals.freeMemory(). It is
system dependent.

The system provides the possibility to create objects directly as immortal objects using the method
Immortals.run(Runnable): while the run() method of the Runnable executes, all created
objects are allocated as immortal objects.

11 Dynamically created interned String (using intern() method) are not considered as immutable objects.

11/72

ESR001 - B-ON 1.2 (BEYOND)

The system may define a property ej.bon.immortalAfterInit. If the property exists and if set
to true, a global memory collection is triggered at the end of the initialization phase, reclaiming
all dead objects that were created to get the system initialized. All remaining objects become
immortal, and accessible for the mission phase.

3.3 Reclaimable Objects

3.3.1 Death Notification

Most objects are reclaimable objects. Sometimes, they interact with the underlying system using
handles. Those handles represent underlying data that needs to be closed/freed/acknowledged/…
when the object that holds the handle dies.

The B-ON profile defines a sound and easy way to get notified when an object is dead through the
use of EnqueuedWeakReference objects: EnqueuedWeakReference is a subclass of
WeakReference. When such objects get their weak reference set to null by the system, they are
added to a ReferenceQueue they were assigned to at their creation.

3.3.2 Death Notification Actions

Once an object has expired, it cannot be brought to life again. It is the responsibility of the
application to make provisions for all actions that have to be taken on an object death. Such
provisions are materialized by subclasses of the EnqueueWeakReference class.

ReferenceQueue.poll() and ReferenceQueue.remove() allow the execution of a hook at
the death of the object referenced by the weak reference. The first one returns null when queue is
empty whereas the second one blocks while the queue is empty.

The application is responsible of the execution of such hook.

3.3.3 Weak objects association

java.util.Hashtable allows to associate a value with a key within a table (the key indexes
the value within the table for fast searches). It prevents both key and value from being discarded
by the garbage collector.
B-ON defines the ej.bon.WeakHashtable class as a subclass of java.util.Hashtable.
WeakHashtable allows to relax such hard constraint on the key, which becomes a weak reference
within the table. If no other regular reference refers the key, the key can be removed automatically
by the system, which removes the associated value too.

4 RUNTIME PHASES

B-ON defines two phases of execution:

• initialization phase: this is the very first Java code that executes. Its purpose is to let the
device “boot”, that is, to initialize all necessary resources, like allocating buffers for drivers,
performing default sanity checks, scanning hardware, etc.

• mission phase: once initialized, the device switches to the endless mission phase. The device
and its software application run until they are switched off.

12/72

ESR001 - B-ON 1.2 (BEYOND)

4.1 Initialization Phase
ej.bon.Util.isInInitialization() allows the phase to be tested.

4.1.1 Mono-threaded Phase

During the initialization phase, there is only one Java thread running: the main thread which will
eventually execute the main(String[]) method once the system enters the mission phase.

Illustration 4-1: B-ON phases and thread activation.

If other threads are created while the class initializations execute (<clinit> methods), those
threads will be on hold (i.e. waiting) until the system enters the mission phase, even if those
threads have received the start() message and have a higher priority than the main thread.

If the property ej.bon.immortalAfterInit is set, all live objects become immortal (see 3.2.2)
at the end of the initialization phase.

4.1.2 Deterministic Initialization Order

If a class needs to be initialized, it defines a <clinit> method12 [JVM2].

During the initialization phase, all classes which are involved within the application are initialized.
It implies calling all <clinit> methods, in sequence.

Although the precise order of the sequence of calls is not known, it MUST be defined once for all,
before any code execution. This order does not rely on runtime behavior, but only on the
application code. The constraint is: if the application code does not change, the order remains the
same.

The order must be compatible with the Java semantic [JLS]. Intuitively, a class may depend on
other classes. Those classes should be initialized first. We list a few of these dependencies: object
creation, superclass, methods receiver, arguments and fields types, … Refer to [JVM2] for a
complete description of the initialization process and its implications on the order of the
<clinit> sequence.

Dependencies of classes upon themselves define a graph of dependencies. This graph may depict
cycles. The graph is linearized in an order which depends only on the graph itself.

12 <clinit> methods are not visible per se at the Java source level. They are generated by compilers: they
capture the semantic of the initialization of both static fields and static initializers of classes.

13/72

cre
ati

on
act

ivati
on

Main thread

Thread Z

Thread Y

Thread X

Startup

Time
Initialization

phase
Mission
phase

Ja
va

 th
re

ad
s

ESR001 - B-ON 1.2 (BEYOND)

Although B-ON experts encourage implementors of this specification to explain the order of the
<clinit> sequence to engineers in some useful way, this is not mandatory.

The classes dependencies MUST include all the classes of pre-configured immutable objects.

The main(String[]) method of the main class [JVM2] is an entry point in the dependencies
graph.

4.2 Mission Phase

4.2.1 Thread Activations

At the beginning of the mission phase, all threads that have been started during the initialization
phase activated. ej.bon.Util.isInMission() allows the phase to be tested.

4.2.2 Thread Control

In mission phase, one thread may send an exception within the context of another thread, using the
ej.bon.Util.throwExceptionInThread(RuntimeException,Thread) method.

Illustration 4-2: Sending an asynchronous exception Util.throwExceptionInThread.

The exact moment at which the exception is thrown is system dependent. However, if the thread in
which the exception is to be thrown has entered one or more critical sections (i.e. it holds some
object's monitor) the exception is not thrown until the thread has exited all the critical sections. In
such situations, the system should make its best effort to have the thread exit all the critical
sections it has entered as fast as possible.

14/72

Thread_A Thread_B

Util.throwExceptionInThread(SomeException, Thread_A)

SomeException

ESR001 - B-ON 1.2 (BEYOND)

Illustration 4-3: Exception thrown when thread has exited all critical sections.

The ej.bon.Util.throwHardExceptionInThread(RuntimeException,Thread) just
throw the exception, as if it was sent from inside the thread. It does not wait for the critical
sections to finish.

For both throwHardExceptionInThread and throwExceptionInThread, if the thread is
either sleeping or waiting, the thread is unblocked (i.e. thread is interrupted: a
java.lang.InterruptedException is thrown) and the exception is thrown as soon as
possible.

4.2.3 Class.forName

If the system is capable of dynamic code downloading,
Util.dynamicCodeAllowed() returns true, and this specification defines a consistent
and sound way for downloading code that matches the overall semantic of B-ON:

• All referenced classes from the class given in Class.forName(String) have to be
determined at once. They form the downloaded classes.

• Initialization of all downloaded classes MUST be ordered as specified in 4.1.2. All
methods of the downloaded classes that are accessible from outside the downloaded classes
scope are considered as entry points for the dependencies graph computation.

• A new thread is created in an initialization phase, which means that
Util.isInInitialization() return true if executed in the context of this new
thread. All class initializations of the downloaded classes are executed in that thread. As in
4.1.1, all thread activations (i.e. Thread.start()) are disabled until this initialization
thread is done. Note that even if the property ej.bon.immortalAfterInit is set, objects
created during this initialization phase do not become immortal.

4.3 B-ON Properties
The B-ON specification defines a set of optional properties:

• "ej.bon.version": the version holds three positive integers separated by '.' (e.g.:
1.2.0).

15/72

Thread_A Thread_B

Util.throwExceptionInThread(SomeException, Thread_A)

SomeException

critical section(s) [synchronized blocks/methods]

ESR001 - B-ON 1.2 (BEYOND)

• "ej.bon.vendor": the name of the B-ON library provider.

• "ej.bon.vendor.url": the web site of the B-ON library provider.

• "ej.bon.immortalAfterInit": if set to true, turn as immortal all remaining live
objects at the end of the initialization phase (see 3.2.2).

5 UTILITIES

5.1 Timer & TimerTask
An ej.bon.Timer defines a single Java thread in charge of scheduling Runnable objects from
the ej.bon.TimerTask class. All TimerTask are executed sequentially, according to their
schedule. A Timer does its best effort to schedule the TimerTask appropriately, which depends
on the TimerTask durations and schedules (there is no real-time guaranties).

A TimerTask may be scheduled repeatedly. In that case, the delay for the next schedule may
depends on the end of the previous ending of the TimerTask, and not on some absolute time: if
the previously execution of the TimerTask is delayed for some reason, the next executions are
delayed too by the same amount of time. It is also possible to schedule repeatedly a TimerTask at
fixed rate, which allows executions to be independent .

In case a TimerTask execution terminates unexpectedly, the other tasks are not impacted: the
TimerTask is assumed to have terminated its execution regularly, and is not rescheduled event if
it was scheduled repeatedly.

The main APIs are:

• schedule(TimerTask, long) and schedule(TimerTask, Date) methods allow to
schedule one execution after the specified delay.

• schedule(TimerTask task, long, long) and schedule(TimerTask, Date,
long) methods allow to schedule repeatedly executions, the first one after the specified
delay. The waiting time between two executions is relative to the end of the previous
execution.

• scheduleAtFixedRate(TimerTask task, long, long) and
scheduleAtFixedRate(TimerTask, Date, long) methods allow to schedule
repeatedly executions, the first one after the specified delay. The waiting time between two
executions is independent of the end of the previous execution.

5.2 Platform time
The application time is the user time: it depends on its localization.
java.lang.System.currentTimeMillis returns the application time expressed in
milliseconds since midnight, January 1, 1970 UTC.

B-ON introduces a platform time that is independent from any user considerations: it materializes
the running time since the very last start of the device. This time cannot be changed.

The ej.bon.Util class defines several methods to handle both application time and platform
time:

• platformTimeNanos and platformTimeMillis method return the platform time, a long,
expressed in nanoseconds and in milliseconds.

16/72

ESR001 - B-ON 1.2 (BEYOND)

• setCurrentTimeMillis(long) and setCurrentTimeMillis(Date) methods allow to
change the application time in order to match a user localization. This has no effect on the
platform time. ej.bon.Util.currentTimeMillis() method is a synonym of
java.lang.System.currentTimeMillis.

5.3 Byte Array Accesses
The addresses space is 8-bit oriented even if there are platforms that manipulate quantities that are
larger than an 8-bit: 32-bit processors for example do so. The ordering of individual addressable
sub-components within the representation of a larger data item is called the endianness.
BigEndian describes an ordering with the most significant byte first, whereas LittleEndian
describes an ordering with the least significant byte first.

Illustration 5-1: Representation of the 32-bit quantity 0x0000100A
using both BigEndian and in LittleEndian layout.

B-ON introduces methods to read and write into array of byte (byte[]) according to the platform
endianness, or according to a specific provided endianness. The ej.bon.ByteArray class
provides such APIs:

• getPlatformEndianness() returns the underlying system-dependent endianness, which
mostly depends on the target processor(s).

• readInt(byte[], int) and writeInt(byte[], int, int) reads and writes an int
using the platform specific endianness.

• readInt(byte[], int, int) and writeInt(byte[], int, int, int) reads and
writes an int using the specified endianness as last argument, which may be either
LITTLE_ENDIAN or BIG_ENDIAN.

Similar methods are provided for short, char, long types.

5.4 Math
The ej.bon.XMath complements the math operations provided by java.lang.Math. The new
operations are: limit, asin, acos, atan, log, exp, pow.

17/72

.... 0x00 0x00 0x10 0x0A

.... 0x0A 0x10 0x00 0x00

BigEndian

LittleEndian

ESR001 - B-ON 1.2 (BEYOND)

6 ANNEX A: IMMUTABLES DTD
<!ELEMENT immutables (object*, objectAlias*, array*, string*, class*,
null*, importObject*) >
<!ATTLIST immutables

name CDATA #IMPLIED
>

<!ELEMENT object (field*, refField*) >
<!ATTLIST object

id ID #REQUIRED
private (true | false) "false"
type CDATA #REQUIRED

>

<!ELEMENT objectAlias EMPTY >
<!ATTLIST objectAlias

id ID #REQUIRED
private (true | false) "false"
object IDREF #REQUIRED

>

<!ELEMENT array (elem*, refElem*) >
<!ATTLIST array

id ID #REQUIRED
private (true | false) "false"
type CDATA #REQUIRED
length CDATA #IMPLIED

>

<!ELEMENT elem EMPTY >
<!ATTLIST elem

value CDATA #REQUIRED
>

<!ELEMENT refElem EMPTY >
<!ATTLIST refElem

ref IDREF #REQUIRED
>

<!ELEMENT class EMPTY >
<!ATTLIST class

id ID #REQUIRED
private (true | false) "false"
type CDATA #REQUIRED

>

<!ELEMENT string EMPTY >
<!ATTLIST string

id ID #REQUIRED
private (true | false) "false"
value CDATA #REQUIRED

>

<!ELEMENT field EMPTY >
<!ATTLIST field

name CDATA #REQUIRED
value CDATA #REQUIRED
type CDATA #IMPLIED

>

18/72

ESR001 - B-ON 1.2 (BEYOND)

<!ELEMENT refField EMPTY >
<!ATTLIST refField

name CDATA #REQUIRED
ref IDREF #REQUIRED
type CDATA #IMPLIED

>

<!ELEMENT null EMPTY >
<!ATTLIST null

id ID #REQUIRED
private (true | false) "false"

>

<!ELEMENT importObject EMPTY >
<!ATTLIST importObject

id ID #REQUIRED
>

7 JAVA SPECIFICATION

19/72

ESR001 - B-ON 1.2 (BEYOND)

Package ej.bon

Class Summary Page

ByteArray
This class provides some utilities to manage I/O on a byte
array.

21

EnqueuedWeakReference

EnqueuedWeakReference are objects that are queued in
an ReferenceQueue by the system when the object they
point at (see Reference.get()) is set to null by the
system.

30

Immortals This class gives access to the global immortal objects pool. 32

Immutables
This class gives access to the global immutable objects
pool.

35

ReferenceQueue
ReferenceQueue represents a queue of
EnqueuedWeakReference.

39

Timer
A facility for threads to schedule tasks for future execution
in a background thread.

41

TimerTask
A task that can be scheduled for one-time or repeated
execution by a Timer.

46

Util This class offers basic services for B-ON implementation. 49

WeakHashtable A Hashtable implementation with weak keys. 53

XMath 54

Exception Summary Page

IllegalStateException
Signals that a method has been invoked at an illegal or
inappropriate time.

31

Error Summary Page

ImmutablesError Indicates an error accessing immutables data. 38

20/72

Class EnqueuedWeakReference

Class ByteArray
ej.bon

java.lang.Object

 ej.bon.ByteArray

public class ByteArray
extends Object

This class provides some utilities to manage I/O on a byte array.

Field Summary Page

static int BIG_ENDIAN

Access mode big endian.
22

static int BYTE_SIZE

The size of a byte.
22

static int CHAR_SIZE

The size of a char.
22

static int INT_SIZE

The size of an int.
23

static int LITTLE_ENDIAN

Access mode little endian.
22

static int LONG_SIZE

The size of a long.
23

static int SHORT_SIZE

The size of a short.
23

Constructor Summary Page

ByteArray() 23

Method Summary Page

static
void

clear(byte[] array, int offset, int length)

Fills a zone of a byte array with 0.
28

static int getPlatformEndianness()

Gets whether the platform is in big endian or little endian.
23

static
char

readChar(byte[] array, int offset)

Reads a char in the given byte array at the given offset respecting the endianness of the platform.
24

static
char

readChar(byte[] array, int offset, int endianness)

Reads a char in the given byte array at the given offset respecting the endianness of the array.
25

static int readInt(byte[] array, int offset)

Reads an int in the given byte array at the given offset respecting the endianness of the platform.
24

static int readInt(byte[] array, int offset, int endianness)

Reads an int in the given byte array at the given offset respecting the endianness of the array.
26

static
long

readLong(byte[] array, int offset)

Reads a long in the given byte array at the given offset respecting the endianness of the platform.
25

static
long

readLong(byte[] array, int offset, int endianness)

Reads a long in the given byte array at the given offset respecting the endianness of the array.
26

 21/72

Class EnqueuedWeakReference

static
short

readShort(byte[] array, int offset)

Reads a short in the given byte array at the given offset respecting the endianness of the platform.
24

static
short

readShort(byte[] array, int offset, int endianness)

Reads a short in the given byte array at the given offset respecting the endianness of the array.
25

static int readUnsignedByte(byte[] array, int offset)

Reads an unsigned-byte in the given byte array at the given offset respecting the endianness of the
platform.

23

static
void

set(byte[] array, byte value, int offset, int length)

Fills a zone of a byte array with the given value.
29

static
void

writeInt(byte[] array, int offset, int value)

Writes an int in the given byte array at the given offset respecting the endianness of the platform.
27

static
void

writeInt(byte[] array, int offset, int value, int endianness)

Writes an int in the given byte array at the given offset respecting the endianness of the array.
28

static
void

writeLong(byte[] array, int offset, long value)

Writes a long in the given byte array at the given offset respecting the endianness of the platform.
27

static
void

writeLong(byte[] array, int offset, long value, int endianness)

Writes a long in the given byte array at the given offset respecting the endianness of the array.
28

static
void

writeShort(byte[] array, int offset, int value)

Writes a short in the given byte array at the given offset respecting the endianness of the platform.
26

static
void

writeShort(byte[] array, int offset, int value, int endianness)

Writes a short in the given byte array at the given offset respecting the endianness of the array.
27

Field Detail

LITTLE_ENDIAN

public static final int LITTLE_ENDIAN

Access mode little endian.

BIG_ENDIAN

public static final int BIG_ENDIAN

Access mode big endian.

BYTE_SIZE

public static final int BYTE_SIZE

The size of a byte.

CHAR_SIZE

public static final int CHAR_SIZE

The size of a char.

 22/72

Class EnqueuedWeakReference

SHORT_SIZE

public static final int SHORT_SIZE

The size of a short.

INT_SIZE

public static final int INT_SIZE

The size of an int.

LONG_SIZE

public static final int LONG_SIZE

The size of a long.

Constructor Detail

ByteArray

public ByteArray()

Method Detail

getPlatformEndianness

public static int getPlatformEndianness()

Gets whether the platform is in big endian or little endian.

Returns:
BIG_ENDIAN if the platform is in big endian, LITTLE_ENDIAN if in little endian

readUnsignedByte

public static int readUnsignedByte(byte[] array,
 int offset)

Reads an unsigned-byte in the given byte array at the given offset respecting the endianness of the platform.

Parameters:
array - the byte array to read in
offset - the offset of the value to read

Returns:
the read value

Throws:
NullPointerException - if the given array is null
ArrayIndexOutOfBoundsException - if read outside the bounds of the given array

See Also:
BYTE_SIZE

 23/72

Class EnqueuedWeakReference

readShort

public static short readShort(byte[] array,
 int offset)

Reads a short in the given byte array at the given offset respecting the endianness of the platform.

Parameters:
array - the byte array to read in
offset - the offset of the value to read

Returns:
the read value

Throws:
NullPointerException - if the given array is null
ArrayIndexOutOfBoundsException - if read outside the bounds of the given array

See Also:
SHORT_SIZE

readChar

public static char readChar(byte[] array,
 int offset)

Reads a char in the given byte array at the given offset respecting the endianness of the platform.

Parameters:
array - the byte array to read in
offset - the offset of the value to read

Returns:
the read value

Throws:
NullPointerException - if the given array is null
ArrayIndexOutOfBoundsException - if read outside the bounds of the given array

See Also:
CHAR_SIZE

readInt

public static int readInt(byte[] array,
 int offset)

Reads an int in the given byte array at the given offset respecting the endianness of the platform.

Parameters:
array - the byte array to read in
offset - the offset of the value to read

Returns:
the read value

Throws:
NullPointerException - if the given array is null
ArrayIndexOutOfBoundsException - if read outside the bounds of the given array

See Also:
INT_SIZE

 24/72

Class EnqueuedWeakReference

readLong

public static long readLong(byte[] array,
 int offset)

Reads a long in the given byte array at the given offset respecting the endianness of the platform.

Parameters:
array - the byte array to read in
offset - the offset of the value to read

Returns:
the read value

Throws:
NullPointerException - if the given array is null
ArrayIndexOutOfBoundsException - if read outside the bounds of the given array

See Also:
LONG_SIZE

readShort

public static short readShort(byte[] array,
 int offset,
 int endianness)

Reads a short in the given byte array at the given offset respecting the endianness of the array.

Parameters:
array - the byte array to read in
offset - the offset of the value to read
endianness - the access mode (BIG_ENDIAN or LITTLE_ENDIAN)

Returns:
the read value

Throws:
NullPointerException - if the given array is null
ArrayIndexOutOfBoundsException - if read outside the bounds of the given array

See Also:
SHORT_SIZE

readChar

public static char readChar(byte[] array,
 int offset,
 int endianness)

Reads a char in the given byte array at the given offset respecting the endianness of the array.

Parameters:
array - the byte array to read in
offset - the offset of the value to read
endianness - the access mode (BIG_ENDIAN or LITTLE_ENDIAN)

Returns:
the read value

Throws:
NullPointerException - if the given array is null
ArrayIndexOutOfBoundsException - if read outside the bounds of the given array

See Also:
CHAR_SIZE

 25/72

Class EnqueuedWeakReference

readInt

public static int readInt(byte[] array,
 int offset,
 int endianness)

Reads an int in the given byte array at the given offset respecting the endianness of the array.

Parameters:
array - the byte array to read in
offset - the offset of the value to read
endianness - the access mode (BIG_ENDIAN or LITTLE_ENDIAN)

Returns:
the read value

Throws:
NullPointerException - if the given array is null
ArrayIndexOutOfBoundsException - if read outside the bounds of the given array

See Also:
INT_SIZE

readLong

public static long readLong(byte[] array,
 int offset,
 int endianness)

Reads a long in the given byte array at the given offset respecting the endianness of the array.

Parameters:
array - the byte array to read in
offset - the offset of the value to read
endianness - the access mode (BIG_ENDIAN or LITTLE_ENDIAN)

Returns:
the read value

Throws:
NullPointerException - if the given array is null
ArrayIndexOutOfBoundsException - if read outside the bounds of the given array

See Also:
LONG_SIZE

writeShort

public static void writeShort(byte[] array,
 int offset,
 int value)

Writes a short in the given byte array at the given offset respecting the endianness of the platform.

Parameters:
array - the byte array to write in
offset - the offset of the value to write
value - the value to write

Throws:
NullPointerException - if the given array is null
ArrayIndexOutOfBoundsException - if write outside the bounds of the given array

 26/72

Class EnqueuedWeakReference

See Also:
SHORT_SIZE

writeInt

public static void writeInt(byte[] array,
 int offset,
 int value)

Writes an int in the given byte array at the given offset respecting the endianness of the platform.

Parameters:
array - the byte array to write in
offset - the offset of the value to write
value - the value to write

Throws:
ArrayIndexOutOfBoundsException - if write outside the bounds of the given array

See Also:
INT_SIZE

writeLong

public static void writeLong(byte[] array,
 int offset,
 long value)

Writes a long in the given byte array at the given offset respecting the endianness of the platform.

Parameters:
array - the byte array to write in
offset - the offset of the value to write
value - the value to write

Throws:
ArrayIndexOutOfBoundsException - if write outside the bounds of the given array

See Also:
LONG_SIZE

writeShort

public static void writeShort(byte[] array,
 int offset,
 int value,
 int endianness)

Writes a short in the given byte array at the given offset respecting the endianness of the array.

Parameters:
array - the byte array to write in
offset - the offset of the value to write
value - the value to write
endianness - the access mode (BIG_ENDIAN or LITTLE_ENDIAN)

Throws:
ArrayIndexOutOfBoundsException - if write outside the bounds of the given array

See Also:
SHORT_SIZE

 27/72

Class EnqueuedWeakReference

writeInt

public static void writeInt(byte[] array,
 int offset,
 int value,
 int endianness)

Writes an int in the given byte array at the given offset respecting the endianness of the array.

Parameters:
array - the byte array to write in
offset - the offset of the value to write
value - the value to write
endianness - the access mode (BIG_ENDIAN or LITTLE_ENDIAN)

Throws:
ArrayIndexOutOfBoundsException - if write outside the bounds of the given array

See Also:
INT_SIZE

writeLong

public static void writeLong(byte[] array,
 int offset,
 long value,
 int endianness)

Writes a long in the given byte array at the given offset respecting the endianness of the array.

Parameters:
array - the byte array to write in
offset - the offset of the value to write
value - the value to write
endianness - the access mode (BIG_ENDIAN or LITTLE_ENDIAN)

Throws:
ArrayIndexOutOfBoundsException - if write outside the bounds of the given array

See Also:
LONG_SIZE

clear

public static void clear(byte[] array,
 int offset,
 int length)

Fills a zone of a byte array with 0.

Parameters:
array - the byte array to clear
offset - the offset of the zone to clear
length - the length of the zone to clear

Throws:
ArrayIndexOutOfBoundsException - if write outside the bounds of the given array

 28/72

Class EnqueuedWeakReference

set

public static void set(byte[] array,
 byte value,
 int offset,
 int length)

Fills a zone of a byte array with the given value.

Parameters:
array - the byte array to set
value - the value to fill the zone with
offset - the offset of the zone to set
length - the length of the zone to set

Throws:
ArrayIndexOutOfBoundsException - if write outside the bounds of the given array

 29/72

Class Immortals

Class EnqueuedWeakReference
ej.bon

java.lang.Object

 java.lang.ref.Reference

 java.lang.ref.WeakReference

 ej.bon.EnqueuedWeakReference

public class EnqueuedWeakReference
extends WeakReference

EnqueuedWeakReference are objects that are queued in an ReferenceQueue by the system when the object they point at (see
Reference.get()) is set to null by the system. A typical use is to subclass EnqueuedWeakReference with classes that
hold native handles that need to be freed at the native level.

Constructor Summary Page

EnqueuedWeakReference(Object ref, ReferenceQueue queue)

Creates a new EnqueuedWeakReference.
30

Constructor Detail

EnqueuedWeakReference

public EnqueuedWeakReference(Object ref,
 ReferenceQueue queue)

Creates a new EnqueuedWeakReference.
The given reference can be retrieved using Reference.get() until the object is garbage collected. Then the method
will return null.

Parameters:
ref - object the new weak reference will refer to
queue - the queue with which the reference is to be registered

30/72

Class Immutables

Class IllegalStateException
ej.bon

java.lang.Object

 java.lang.Throwable

 java.lang.Exception

 java.lang.RuntimeException

 ej.bon.IllegalStateException

public class IllegalStateException
extends RuntimeException

Signals that a method has been invoked at an illegal or inappropriate time. In other words, the Java environment or Java
application is not in an Appropriate state for the requested operation.

Constructor Summary Page

IllegalStateException()

Constructs an IllegalStateException with no detail message.
31

IllegalStateException(String s)

Constructs an IllegalStateException with the specified detail message.
31

Constructor Detail

IllegalStateException

public IllegalStateException()

Constructs an IllegalStateException with no detail message.

IllegalStateException

public IllegalStateException(String s)

Constructs an IllegalStateException with the specified detail message.

Parameters:
s - the String that contains a detailed message

31/72

Class ImmutablesBlock

Class Immortals
ej.bon

java.lang.Object

 ej.bon.Immortals

public class Immortals
extends Object

This class gives access to the global immortal objects pool.

An immortal object has two major properties:

 it is not managed by the garbage collector,
 it does not move around in memory, i.e. its physical memory location remains the same forever.

Constructor Summary Page

Immortals() 32

Method Summary Page

static
Object

deepImmortal(Object root)

Turns the given object and all objects referred from it into immortal objects.
33

static
long

freeMemory()

Returns the amount of free immortal memory still available.
34

static
boolean

isImmortal(Object o)

Gets whether an object is immortal or not.
32

static
void

run(Runnable runnable)

Calls the method Runnable.run() of the given runnable.
33

static
Object

setImmortal(Object o)

Turns the given object into an immortal object.
33

static
long

totalMemory()

Returns the total amount of immortal memory.
34

Constructor Detail

Immortals

public Immortals()

Method Detail

isImmortal

public static boolean isImmortal(Object o)

Gets whether an object is immortal or not.

An object is immortal:

32/72

Class ImmutablesBlock

 if it has been declared as immortal calling setImmortal(Object),
 if it is immutable.

Parameters:
o - the object to check

Returns:
true if the queried object is immortal or immutable, false otherwise

Throws:
NullPointerException - if given object is null

See Also:
Immutables.isImmutable(Object)

setImmortal

public static Object setImmortal(Object o)

Turns the given object into an immortal object.

If the received object was immutable, it remains immutable.
If the object was already immortal, it remains immortal.
If the object was a reclaimable object it turns into an immortal object. Upon success, the returned object is immortal,
otherwise an OutOfMemoryError is thrown.

Returns:
the given object turned into immortal

Throws:
OutOfMemoryError - if the immortal memory is full

deepImmortal

public static Object deepImmortal(Object root)

Turns the given object and all objects referred from it into immortal objects.

Weakly reachable objects are not turned into immortal objects.

Parameters:
root - the root of the objects graph to turn into immortal

Returns:
the given object turned into immortal

run

public static void run(Runnable runnable)

Calls the method Runnable.run() of the given runnable.

All the objects allocated in the context of this method are directly allocated as immortals. While the
Runnable.run() method of the runnable executes all created objects are allocated as immortal objects.

Parameters:
runnable - the runnable to execute

33/72

Class ImmutablesBlock

Throws:
NullPointerException - if the given runnable is null

freeMemory

public static long freeMemory()

Returns the amount of free immortal memory still available.

Returns:
the amount of free immortal memory

totalMemory

public static long totalMemory()

Returns the total amount of immortal memory.

Note that the amount of memory required to hold an object of any given type may be implementation-dependent.

Returns:
the total amount of immortal memory

34/72

Class ImmutablesException

Class Immutables
ej.bon

java.lang.Object

 ej.bon.Immutables

public class Immutables
extends Object

This class gives access to the global immutable objects pool.

Immutable objects are persistent and normally reside in read-only-memory, such as flash memory.

Immutable objects are created in two ways:

 at runtime by calling put(String, Object) or putAll(Hashtable),
 at system/application configuration time by specifying objects in an XML configuration file.

The method get(String) allows to retrieved an object from the pool using its ID.

Constructor Summary Page

Immutables() 35

Method Summary Page

static
String[]

allIDs()

Returns an array with the IDs of all the objects in the pool.
37

static
long

freeMemory()

Returns the amount of free immutable memory still available.
37

static
Object

get(String ID)

Retrieves the object that match the the given ID in the immutable objects pool.
36

static
boolean

isImmutable(Object object)

Gets whether or not the given object is in the immutable objects pool or not.
37

static
void

put(String ID, Object object)

Maps the given ID to the given object in the immutable objects pool.
36

static
void

putAll(Hashtable table)

Maps all the mappings in the given table in the immutable objects pool.
36

static
long

totalMemory()

Returns the total amount of immutable memory.
37

Constructor Detail

Immutables

public Immutables()

35/72

Class ImmutablesException

Method Detail

get

public static Object get(String ID)

Retrieves the object that match the the given ID in the immutable objects pool.

If no object can be found with such ID, a NoSuchElementException is thrown.

Parameters:
ID - the ID of the immutable object to get

Returns:
the immutable object matching the ID

Throws:
NoSuchElementException - if the ID is not found
ImmutablesError - if an internal error occurred during immutable access

put

public static void put(String ID,
 Object object)

Maps the given ID to the given object in the immutable objects pool.

The object can be retrieved by calling the get method with an ID that is equal to the original ID.

Parameters:
ID - the ID of the immutable object to set
object - the object to set immutable

Throws:
NullPointerException - if given object is null
OutOfMemoryError - if the immutable memory is full

See Also:
freeMemory()

putAll

public static void putAll(Hashtable table)

Maps all the mappings in the given table in the immutable objects pool.

Parameters:
table - the table that contains the objects to set immutable

Throws:
NullPointerException - if given table is null
ClassCastException - if an ID is not a String
OutOfMemoryError - if the immutable memory is full

See Also:
freeMemory(), put(String, Object)

36/72

Class ImmutablesException

isImmutable

public static boolean isImmutable(Object object)

Gets whether or not the given object is in the immutable objects pool or not.

Parameters:
object - the object to check

Returns:
true if the given object is immutable, false otherwise

Throws:
NullPointerException - if given object is null

allIDs

public static String[] allIDs()

Returns an array with the IDs of all the objects in the pool.

Returns:
all the immutable objects ID.

See Also:
get(String)

freeMemory

public static long freeMemory()

Returns the amount of free immutable memory still available.

Returns:
the amount of free immutable memory

totalMemory

public static long totalMemory()

Returns the total amount of immutable memory.

Note that the amount of memory required to hold an object of any given type may be implementation-dependent.

Returns:
the total amount of immutable memory

37/72

Class ReferenceQueue

Class ImmutablesError
ej.bon

java.lang.Object

 java.lang.Throwable

 java.lang.Error

 java.lang.VirtualMachineError

 ej.bon.ImmutablesError

public class ImmutablesError
extends VirtualMachineError

Indicates an error accessing immutables data.

Constructor Summary Page

ImmutablesError() 38

ImmutablesError(String msg) 38

Constructor Detail

ImmutablesError

public ImmutablesError()

ImmutablesError

public ImmutablesError(String msg)

38/72

Class System

Class ReferenceQueue
ej.bon

java.lang.Object

 ej.bon.ReferenceQueue

final public class ReferenceQueue
extends Object

ReferenceQueue represents a queue of EnqueuedWeakReference. The system is responsible for adding such
EnqueuedWeakReference into the ReferenceQueue.
There are two way to query the queue in order to check and remove if a Reference has been added to the queue.
- poll() : returns null if the queue is empty, otherwise returns and removes the first element of the FIFO queue.
- remove() : blocks the current thread until the queue becomes not empty. returns and removes the first element of the FIFO
queue.

See Also:
EnqueuedWeakReference

Constructor Summary Page

ReferenceQueue() 39

Method Summary Page

EnqueuedWea
kReference

poll()

Queries the queue and returns and removes the first element of the queue.
39

EnqueuedWea
kReference

remove()

Queries the queue, returns and removes the first element of the queue.
40

Constructor Detail

ReferenceQueue

public ReferenceQueue()

Method Detail

poll

public EnqueuedWeakReference poll()

Queries the queue and returns and removes the first element of the queue. If the queue is empty, returns null.

Returns:
EnqueuedWeakReference or null

39/72

Class System

remove

public EnqueuedWeakReference remove()
 throws InterruptedException

Queries the queue, returns and removes the first element of the queue. If the queue is empty, blocks the current thread
until the queue gets at least one element (automatically added by the system).

Returns:
EnqueuedWeakReference

Throws:
InterruptedException - if the thread is interrupted

40/72

Class Timer

Class Timer
ej.bon

java.lang.Object

 ej.bon.Timer

public class Timer
extends Object

A facility for threads to schedule tasks for future execution in a background thread. Tasks may be scheduled for one-time
execution, or for repeated execution at regular intervals.

Corresponding to each Timer object is a single background thread that is used to execute all of the timer's tasks, sequentially.
Timer tasks should complete quickly. If a timer task takes excessive time to complete, it "hogs" the timer's task execution
thread. This can, in turn, delay the execution of subsequent tasks, which may "bunch up" and execute in rapid succession when
(and if) the offending task finally completes.

By default, the task execution thread does not run as a daemon thread, so it is capable of keeping an application from
terminating. If a caller wants to terminate a timer's task execution thread, the caller should invoke the timer's cancel method.

If a task execution terminates unexpectedly, the uncaughtException method is invoked on this task.

This class is thread-safe: multiple threads can share a single Timer object without the need for external synchronization.

This class does not offer real-time guarantees: it schedules tasks using the Object.wait(long) method. The resolution of the
Timer is implementation and device dependent.

Timers function only within a single VM and are canceled when the VM exits. When the VM is started no timers exist, they are
created only by application request.

Constructor Summary Page

Timer()

Creates a new timer.
42

Timer(boolean automatic)

Creates a new timer.
42

Method Summary Page

void cancel()

Terminates this timer, discarding any currently scheduled tasks.
45

void run()

Executes TimerTask scheduling.
45

void schedule(TimerTask task, Date time)

Schedules the specified task for execution at the specified time.
42

void schedule(TimerTask task, Date firstTime, long period)

Schedules the specified task for repeated fixed-delay execution, beginning at the specified time.
43

void schedule(TimerTask task, long delay)

Schedules the specified task for execution after the specified delay.
42

void schedule(TimerTask task, long delay, long period)

Schedules the specified task for repeated fixed-delay execution, beginning after the specified delay.
43

void scheduleAtFixedRate(TimerTask task, Date firstTime, long period)

Schedules the specified task for repeated fixed-rate execution, beginning at the specified time.
44

41/72

Class Timer

void scheduleAtFixedRate(TimerTask task, long delay, long period)

Schedules the specified task for repeated fixed-rate execution, beginning after the specified delay.
44

Constructor Detail

Timer

public Timer()

Creates a new timer. The associated thread does not run as a daemon thread, which may prevent an application from
terminating.

Timer

public Timer(boolean automatic)

Creates a new timer.

If the given boolean is true, a thread is created to execute this timer. The associated thread does not run as a daemon
thread, which may prevent an application from terminating. All the TimerTask scheduled by the timer will be executed
in the context of the associated thread.

Otherwise an applicative thread must call the run() method in order to execute tasks scheduling.

Parameters:
automatic - If true a thread is created to run this timer, otherwise the application must manage this timer.

See Also:
run()

Method Detail

schedule

public void schedule(TimerTask task,
 long delay)

Schedules the specified task for execution after the specified delay.

Parameters:
task - task to be scheduled.
delay - delay in milliseconds before task is to be executed. Note that the actual delay may be different than
the amount requested since the resolution of the Timer is implementation and device dependent.

Throws:
IllegalArgumentException - if delay is negative, or delay + CurrentTime.get() is negative.
IllegalStateException - if task was already scheduled or canceled, or timer was canceled.

schedule

public void schedule(TimerTask task,
 Date time)

Schedules the specified task for execution at the specified time. If the time is in the past, the task is scheduled for
immediate execution.

42/72

Class Timer

Parameters:
task - task to be scheduled.
time - time at which task is to be executed.

Throws:
IllegalArgumentException - if time.getTime() is negative.
IllegalStateException - if task was already scheduled or canceled, timer was canceled, or timer thread
terminated.

schedule

public void schedule(TimerTask task,
 long delay,
 long period)

Schedules the specified task for repeated fixed-delay execution, beginning after the specified delay. Subsequent
executions take place at approximately regular intervals separated by the specified period. Note that the actual delay
may be different than the amount requested since the resolution of the Timer is implementation and device dependent.

In fixed-delay execution, each execution is scheduled relative to the actual execution time of the previous execution. If
an execution is delayed for any reason (such as garbage collection or other background activity), subsequent
executions will be delayed as well. In the long run, the frequency of execution will generally be slightly lower than the
reciprocal of the specified period (assuming the system clock underlying Object.wait(long) is accurate).

Fixed-delay execution is appropriate for recurring activities that require "smoothness." In other words, it is appropriate
for activities where it is more important to keep the frequency accurate in the short run than in the long run. This
includes most animation tasks, such as blinking a cursor at regular intervals. It also includes tasks wherein regular
activity is performed in response to human input, such as automatically repeating a character as long as a key is held
down.

Parameters:
task - task to be scheduled.
delay - delay in milliseconds before task is to be executed. Note that the actual delay may be different than
the amount requested since the resolution of the Timer is implementation and device dependent.
period - time in milliseconds between successive task executions.

Throws:
IllegalArgumentException - if delay is negative, or delay + CurrentTime.get() is negative.
IllegalStateException - if task was already scheduled or canceled, timer was canceled, or timer thread
terminated.

schedule

public void schedule(TimerTask task,
 Date firstTime,
 long period)

Schedules the specified task for repeated fixed-delay execution, beginning at the specified time. Subsequent
executions take place at approximately regular intervals, separated by the specified period.

In fixed-delay execution, each execution is scheduled relative to the actual execution time of the previous execution. If
an execution is delayed for any reason (such as garbage collection or other background activity), subsequent
executions will be delayed as well. In the long run, the frequency of execution will generally be slightly lower than the
reciprocal of the specified period (assuming the system clock underlying Object.wait(long) is accurate).

Fixed-delay execution is appropriate for recurring activities that require "smoothness." In other words, it is appropriate
for activities where it is more important to keep the frequency accurate in the short run than in the long run. This
includes most animation tasks, such as blinking a cursor at regular intervals. It also includes tasks wherein regular
activity is performed in response to human input, such as automatically repeating a character as long as a key is held

43/72

Class Timer

down.

Parameters:
task - task to be scheduled.
firstTime - First time at which task is to be executed.
period - time in milliseconds between successive task executions.

Throws:
IllegalArgumentException - if time.getTime() is negative.
IllegalStateException - if task was already scheduled or canceled, timer was canceled, or timer thread
terminated.

scheduleAtFixedRate

public void scheduleAtFixedRate(TimerTask task,
 long delay,
 long period)

Schedules the specified task for repeated fixed-rate execution, beginning after the specified delay. Subsequent
executions take place at approximately regular intervals, separated by the specified period.

In fixed-rate execution, each execution is scheduled relative to the scheduled execution time of the initial execution. If
an execution is delayed for any reason (such as garbage collection or other background activity), two or more
executions will occur in rapid succession to "catch up." In the long run, the frequency of execution will be exactly the
reciprocal of the specified period (assuming the system clock underlying Object.wait(long) is accurate).

Fixed-rate execution is appropriate for recurring activities that are sensitive to absolute time, such as ringing a chime
every hour on the hour, or running scheduled maintenance every day at a particular time. It is also appropriate for for
recurring activities where the total time to perform a fixed number of executions is important, such as a countdown
timer that ticks once every second for ten seconds. Finally, fixed-rate execution is appropriate for scheduling multiple
repeating timer tasks that must remain synchronized with respect to one another.

Parameters:
task - task to be scheduled.
delay - delay in milliseconds before task is to be executed. Note that the actual delay may be different than
the amount requested since the resolution of the Timer is implementation and device dependent.
period - time in milliseconds between successive task executions.

Throws:
IllegalArgumentException - if delay is negative, or delay + CurrentTime.get() is negative.
IllegalStateException - if task was already scheduled or canceled, timer was canceled, or timer thread
terminated.

scheduleAtFixedRate

public void scheduleAtFixedRate(TimerTask task,
 Date firstTime,
 long period)

Schedules the specified task for repeated fixed-rate execution, beginning at the specified time. Subsequent executions
take place at approximately regular intervals, separated by the specified period.

In fixed-rate execution, each execution is scheduled relative to the scheduled execution time of the initial execution. If
an execution is delayed for any reason (such as garbage collection or other background activity), two or more
executions will occur in rapid succession to "catch up." In the long run, the frequency of execution will be exactly the
reciprocal of the specified period (assuming the system clock underlying Object.wait(long) is accurate).

44/72

Class Timer

Fixed-rate execution is appropriate for recurring activities that are sensitive to absolute time, such as ringing a chime
every hour on the hour, or running scheduled maintenance every day at a particular time. It is also appropriate for for
recurring activities where the total time to perform a fixed number of executions is important, such as a countdown
timer that ticks once every second for ten seconds. Finally, fixed-rate execution is appropriate for scheduling multiple
repeating timer tasks that must remain synchronized with respect to one another.

Parameters:
task - task to be scheduled.
firstTime - first time at which task is to be executed.
period - time in milliseconds between successive task executions.

Throws:
IllegalArgumentException - if time.getTime() is negative.
IllegalStateException - if task was already scheduled or canceled, timer was canceled, or timer thread
terminated.

cancel

public void cancel()

Terminates this timer, discarding any currently scheduled tasks. Does not interfere with a currently executing task (if it
exists). Once a timer has been terminated, its execution thread terminates gracefully, and no more tasks may be
scheduled on it. Note that calling this method from within the run method of a timer task that was invoked by this
timer absolutely guarantees that the ongoing task execution is the last task execution that will ever be performed by
this timer.

run

public void run()

Executes TimerTask scheduling. This method must be called only for Timer that are not automatic (i.e. no thread is
automatically started at Timer creation). This is the current thread that executes the Timer scheduling loop.

This method can be called once on this Timer and returns only if cancel() is called.

Throws:
IllegalStateException - if this timer is already running or canceled.

45/72

Class TimerTask

Class TimerTask
ej.bon

java.lang.Object

 ej.bon.TimerTask

All Implemented Interfaces:
Runnable

abstract public class TimerTask
extends Object
implements Runnable

A task that can be scheduled for one-time or repeated execution by a Timer.

Constructor Summary Page

protected TimerTask()

Creates a new timer task.
46

Method Summary Page

boolean cancel()

Cancels this timer task.
47

abstract
void

run()

The action to be performed by this timer task.
46

long scheduledExecutionTime()

Returns the scheduled execution time of the most recent actual execution of this task.
47

void uncaughtException(Timer timer, Throwable e)

Method invoked when this TimerTask terminates due to the given uncaught exception.
47

Constructor Detail

TimerTask

protected TimerTask()

Creates a new timer task.

Method Detail

run

public abstract void run()

The action to be performed by this timer task.

Specified by:
run in interface Runnable

46/72

Class TimerTask

See Also:
Thread.run()

cancel

public boolean cancel()

Cancels this timer task. If the task has been scheduled for one-time execution and has not yet run, or has not yet been
scheduled, it will never run. If the task has been scheduled for repeated execution, it will never run again. (If the task is
running when this call occurs, the task will run to completion, but will never run again.) Note that calling this method
from within the run method of a repeating timer task absolutely guarantees that the timer task will not run again. This
method may be called repeatedly; the second and subsequent calls have no effect.

Returns:
true if this task is scheduled for one-time execution and has not yet run, or this task is scheduled for
repeated execution. Returns false if the task was scheduled for one-time execution and has already run, or if
the task was never scheduled, or if the task was already canceled (Loosely speaking, this method returns
true if it prevents one or more scheduled executions from taking place.)

scheduledExecutionTime

public long scheduledExecutionTime()

Returns the scheduled execution time of the most recent actual execution of this task. (If this method is invoked while
task execution is in progress, the return value is the scheduled execution time of the ongoing task execution.)

This method is typically invoked from within a task's run method, to determine whether the current execution of the
task is sufficiently timely to warrant performing the scheduled activity:

public void run() {
if (CurrentTime.get() - scheduledExecutionTime() >= MAX_TARDINESS)
return; // Too late; skip this execution.
// Perform the task

This method is typically not used in conjunction with fixed-delay execution repeating tasks, as their scheduled
execution times are allowed to drift over time, and so are not terribly significant.

Returns:
the time at which the most recent execution of this task was scheduled to occur, in the format returned by
Date.getTime(). The return value is undefined if the task has yet to commence its first execution.

See Also:
Date.getTime()

uncaughtException

public void uncaughtException(Timer timer,
 Throwable e)

Method invoked when this TimerTask terminates due to the given uncaught exception.

Default behavior of this method is to cancel the task and to invoke Throwable.printStackTrace() method on the
given exception.

Any exception thrown by this method will be ignored.

47/72

Class TimerTask

Parameters:
timer - The Timer on which this TimerTask is scheduled.
e - The uncaught exception.

48/72

Class Util

Class Util
ej.bon

java.lang.Object

 ej.bon.Util

public class Util
extends Object

This class offers basic services for B-ON implementation.

Constructor Summary Page

Util() 49

Method Summary Page

static
long

currentTimeMillis()

Gets the application time in milliseconds.
51

static
boolean

dynamicCodeAllowed()

Tests the ability of the system to download code through Class.forName(String)
50

static
boolean

isInInitialization()

Indicates whether the current code is part of the initialization phase.
50

static
boolean

isInMission()

Indicates whether the system has entered the mission phase, i.e. it is initialized.
49

static
long

platformTimeMillis()

Gets an arbitrary time in milliseconds.
51

static
long

platformTimeNanos()

Gets an arbitrary time in nanoseconds.
51

static
void

setCurrentTimeMillis(Date d)

Sets the application time.
52

static
void

setCurrentTimeMillis(long t)

Sets the application time.
52

static
void

throwExceptionInThread(RuntimeException e, Thread t)

Throws an exception in a specified thread.
50

static
void

throwHardExceptionInThread(RuntimeException e, Thread t)

Throws an exception in a specified thread.
51

Constructor Detail

Util

public Util()

Method Detail

isInMission

public static boolean isInMission()

49/72

Class Util

Indicates whether the system has entered the mission phase, i.e. it is initialized.

Returns:
true if the initialization is done

See Also:
Immortals

isInInitialization

public static boolean isInInitialization()

Indicates whether the current code is part of the initialization phase.
When Class.forName(String) triggers classes to be loaded at runtime dynamically, class initializations are done
in a context where isInInitialization() is true and isInMission() is true.

Returns:
true if the initialization is ongoing

See Also:
Immortals

dynamicCodeAllowed

public static boolean dynamicCodeAllowed()

Tests the ability of the system to download code through Class.forName(String)

Returns:
true if the system allows dynamic code to be loaded, false otherwise

throwExceptionInThread

public static void throwExceptionInThread(RuntimeException e,
 Thread t)

Throws an exception in a specified thread.

 If the thread is either sleeping or waiting, the thread is unblocked and the exception is thrown as soon as possible.
 If the thread is running, the exception is thrown just as if a throw statement was the next instruction to execute.
 If the thread is not started yet or is terminated, nothing is done.
 If the thread has entered one or more critical sections (i.e. it holds some object's monitor) the exception is not thrown

until the thread has exited all the critical sections.
 If an exception thrown via throwExceptionInThread(RuntimeException, Thread) or

throwHardExceptionInThread(RuntimeException, Thread) is already pending for the thread, nothing is done.

If any of the arguments is null, an IllegalArgumentException is thrown.

Parameters:
e - the exception to throw
t - the thread in which the exception is thrown

Throws:
IllegalArgumentException - if any of the arguments is null.

50/72

Class Util

throwHardExceptionInThread

public static void throwHardExceptionInThread(RuntimeException e,
 Thread t)

Throws an exception in a specified thread.

 If the thread is either sleeping or waiting, the thread is unblocked and the exception is thrown as soon as possible.
 If the thread is running, the exception is thrown just as if a throw statement was the next instruction to execute.
 If the thread is not started yet or is terminated, nothing is done.
 If the thread has entered one or more critical sections, it does not wait the critical sections to finish and the exception

is thrown as soon as possible.
 If an exception thrown via throwHardExceptionInThread(RuntimeException, Thread) is already pending for the thread,

nothing is done.
 If an exception thrown via throwExceptionInThread(RuntimeException, Thread) is already pending for the thread, this

exception is replaced by the given exception.

Parameters:
e - the exception to throw
t - the thread in which the exception is thrown

Throws:
IllegalArgumentException - if any of the arguments is null.

currentTimeMillis

public static long currentTimeMillis()

Gets the application time in milliseconds.

The result of this method is the same as the System.currentTimeMillis() method one.

Returns:
the application time in milliseconds

platformTimeMillis

public static long platformTimeMillis()

Gets an arbitrary time in milliseconds.

Only elapsed time between two calls is meaningful.

Returns:
the platform time in milliseconds

platformTimeNanos

public static long platformTimeNanos()

Gets an arbitrary time in nanoseconds.

Only elapsed time between two calls is meaningful.

51/72

Class Util

Returns:
the platform time in nanoseconds

setCurrentTimeMillis

public static void setCurrentTimeMillis(long t)

Sets the application time.

This time does not change the platform time.

Parameters:
t - the application time to set in milliseconds

Throws:
IllegalArgumentException - if t is negative

setCurrentTimeMillis

public static void setCurrentTimeMillis(Date d)

Sets the application time.

This time does not change the platform time. The Util.setCurrentTimeMillis(d) method has the same effect as
Util.setCurrentTimeMillis(d.getTime()).

Parameters:
d - the application time to set

52/72

Class WeakHashtable

Class WeakHashtable
ej.bon

java.lang.Object

 java.util.Hashtable

 ej.bon.WeakHashtable

public class WeakHashtable
extends Hashtable

A Hashtable implementation with weak keys. An entry in a WeakHashtable will automatically be removed when its key is no
longer in ordinary use. More precisely, the presence of a mapping for a given key will not prevent the key from being discarded
by the garbage collector and then reclaimed. When a key has been discarded its entry is effectively removed from the hashtable,
so this class behaves somewhat differently from Hashtable implementation.

Each key object in a WeakHashtable is stored indirectly as the referent of a weak reference. Therefore a key will automatically be
removed only after the weak references to it, both inside and outside of the map, have been cleared by the garbage collector.

Implementation note: The value objects in a WeakHashtable are held by ordinary strong references. Thus care should be taken
to ensure that value objects do not strongly refer to their own keys, either directly or indirectly, since that will prevent the keys
from being discarded.

Constructor Summary Page

WeakHashtable()

Constructs a new, empty weak hashtable with a default capacity and load factor.
53

WeakHashtable(int initialCapacity)

Constructs a new, empty weak hashtable with the specified initial capacity.
53

Constructor Detail

WeakHashtable

public WeakHashtable()

Constructs a new, empty weak hashtable with a default capacity and load factor.

WeakHashtable

public WeakHashtable(int initialCapacity)

Constructs a new, empty weak hashtable with the specified initial capacity.

53/72

Class XMath

Class XMath
ej.bon

java.lang.Object

 ej.bon.XMath

final public class XMath
extends Object

Field Summary Page

static
double

E

The double value that is closer than any other to e, the base of the natural logarithms.
56

static
double

PI

The double value that is closer than any other to pi, the ratio of the circumference of a circle to its
diameter.

56

Method Summary Page

static
double

abs(double a)

Returns the absolute value of a double value.
56

static
float

abs(float a)

Returns the absolute value of a float value.
56

static int abs(int a)

Returns the absolute value of an int value.
57

static
long

abs(long a)

Returns the absolute value of a long value.
57

static
double

acos(double a)

Returns the arc cosine of a value; the returned angle is in the range 0.0 through pi.
62

static
double

asin(double a)

Returns the arc sine of a value; the returned angle is in the range -pi/2 through pi/2.
62

static
double

atan(double a)

Returns the arc tangent of a value; the returned angle is in the range -pi/2 through pi/2.
63

static
double

ceil(double a)

Returns the smallest (closest to negative infinity) double value that is greater than or equal to the
argument and is equal to a mathematical integer.

57

static
double

cos(double a)

Returns the trigonometric cosine of an angle.
58

static
double

exp(double a)

Returns Euler's number e raised to the power of a double value.
63

static
double

floor(double a)

Returns the largest (closest to positive infinity) double value that is less than or equal to the
argument and is equal to a mathematical integer.

58

static
double

limit(double value, double min, double max)

Limits a value between two others:

 If value is lower than min, returns min.

66

54/72

Class XMath

static
float

limit(float value, float min, float max)

Limits a value between two others:

 If value is lower than min, returns min.

65

static int limit(int value, int min, int max)

Limits a value between two others:

 If value is lower than min, returns min.

65

static
long

limit(long value, long min, long max)

Limits a value between two others:

 If value is lower than min, returns min.

66

static
double

log(double a)

Returns the natural logarithm (base e) of a double value.
63

static
double

max(double a, double b)

Returns the greater of two double values.
58

static
float

max(float a, float b)

Returns the greater of two float values.
59

static int max(int a, int b)

Returns the greater of two int values.
59

static
long

max(long a, long b)

Returns the greater of two long values.
59

static
double

min(double a, double b)

Returns the smaller of two double values.
59

static
float

min(float a, float b)

Returns the smaller of two float values.
60

static int min(int a, int b)

Returns the smaller of two int values.
60

static
long

min(long a, long b)

Returns the smaller of two long values.
60

static
double

pow(double a, double b)

Returns the value of the first argument raised to the power of the second argument.
64

static
double

sin(double a)

Returns the trigonometric sine of an angle.
61

static
double

sqrt(double a)

Returns the correctly rounded positive square root of a double value.
61

static
double

tan(double a)

Returns the trigonometric tangent of an angle.
61

static
double

toDegrees(double angrad)

Converts an angle measured in radians to an approximately equivalent angle measured in degrees.
62

static
double

toRadians(double angdeg)

Converts an angle measured in degrees to an approximately equivalent angle measured in radians.
62

55/72

Class XMath

Field Detail

E

public static final double E

The double value that is closer than any other to e, the base of the natural logarithms.

PI

public static final double PI

The double value that is closer than any other to pi, the ratio of the circumference of a circle to its diameter.

Method Detail

abs

public static double abs(double a)

Returns the absolute value of a double value. If the argument is not negative, the argument is returned. If the
argument is negative, the negation of the argument is returned. Special cases:

 If the argument is positive zero or negative zero, the result is positive zero.
 If the argument is infinite, the result is positive infinity.
 If the argument is NaN, the result is NaN.

In other words, the result is the same as the value of the expression:

Double.longBitsToDouble((Double.doubleToLongBits(a)<<1)>>>1)

Parameters:
a - the argument whose absolute value is to be determined

Returns:
the absolute value of the argument.

abs

public static float abs(float a)

Returns the absolute value of a float value. If the argument is not negative, the argument is returned. If the argument
is negative, the negation of the argument is returned. Special cases:

 If the argument is positive zero or negative zero, the result is positive zero.
 If the argument is infinite, the result is positive infinity.
 If the argument is NaN, the result is NaN.

In other words, the result is the same as the value of the expression:

Float.intBitsToFloat(0x7fffffff & Float.floatToIntBits(a))

Parameters:
a - the argument whose absolute value is to be determined

56/72

Class XMath

Returns:
the absolute value of the argument.

abs

public static int abs(int a)

Returns the absolute value of an int value. If the argument is not negative, the argument is returned. If the argument is
negative, the negation of the argument is returned.

Note that if the argument is equal to the value of Integer.MIN_VALUE, the most negative representable int value,
the result is that same value, which is negative.

Parameters:
a - the argument whose absolute value is to be determined

Returns:
the absolute value of the argument.

See Also:
Integer.MIN_VALUE

abs

public static long abs(long a)

Returns the absolute value of a long value. If the argument is not negative, the argument is returned. If the argument is
negative, the negation of the argument is returned.

Note that if the argument is equal to the value of Long.MIN_VALUE, the most negative representable long value, the
result is that same value, which is negative.

Parameters:
a - the argument whose absolute value is to be determined

Returns:
the absolute value of the argument.

See Also:
Long.MIN_VALUE

ceil

public static double ceil(double a)

Returns the smallest (closest to negative infinity) double value that is greater than or equal to the argument and is
equal to a mathematical integer. Special cases:

 If the argument value is already equal to a mathematical integer, then the result is the same as the argument.
 If the argument is NaN or an infinity or positive zero or negative zero, then the result is the same as the

argument.
 If the argument value is less than zero but greater than -1.0, then the result is negative zero.

Note that the value of Math.ceil(x) is exactly the value of -Math.floor(-x).

Parameters:
a - a value.

Returns:
the smallest (closest to negative infinity) floating-point value that is greater than or equal to the argument and

57/72

Class XMath

is equal to a mathematical integer.

cos

public static double cos(double a)

Returns the trigonometric cosine of an angle. Special cases:

 If the argument is NaN or an infinity, then the result is NaN.

The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

Parameters:
a - an angle, in radians.

Returns:
the cosine of the argument.

floor

public static double floor(double a)

Returns the largest (closest to positive infinity) double value that is less than or equal to the argument and is equal to
a mathematical integer. Special cases:

 If the argument value is already equal to a mathematical integer, then the result is the same as the argument.
 If the argument is NaN or an infinity or positive zero or negative zero, then the result is the same as the

argument.

Parameters:
a - a value.

Returns:
the largest (closest to positive infinity) floating-point value that less than or equal to the argument and is
equal to a mathematical integer.

max

public static double max(double a,
 double b)

Returns the greater of two double values. That is, the result is the argument closer to positive infinity. If the
arguments have the same value, the result is that same value. If either value is NaN, then the result is NaN. Unlike the
numerical comparison operators, this method considers negative zero to be strictly smaller than positive zero. If one
argument is positive zero and the other negative zero, the result is positive zero.

Parameters:
a - an argument.
b - another argument.

Returns:
the larger of a and b.

58/72

Class XMath

max

public static float max(float a,
 float b)

Returns the greater of two float values. That is, the result is the argument closer to positive infinity. If the arguments
have the same value, the result is that same value. If either value is NaN, then the result is NaN. Unlike the numerical
comparison operators, this method considers negative zero to be strictly smaller than positive zero. If one argument is
positive zero and the other negative zero, the result is positive zero.

Parameters:
a - an argument.
b - another argument.

Returns:
the larger of a and b.

max

public static long max(long a,
 long b)

Returns the greater of two long values. That is, the result is the argument closer to the value of Long.MAX_VALUE. If
the arguments have the same value, the result is that same value.

Parameters:
a - an argument.
b - another argument.

Returns:
the larger of a and b.

See Also:
Long.MAX_VALUE

max

public static int max(int a,
 int b)

Returns the greater of two int values. That is, the result is the argument closer to the value of Integer.MAX_VALUE.
If the arguments have the same value, the result is that same value.

Parameters:
a - an argument.
b - another argument.

Returns:
the larger of a and b.

See Also:
Long.MAX_VALUE

min

public static double min(double a,
 double b)

Returns the smaller of two double values. That is, the result is the value closer to negative infinity. If the arguments
have the same value, the result is that same value. If either value is NaN, then the result is NaN. Unlike the numerical

59/72

Class XMath

comparison operators, this method considers negative zero to be strictly smaller than positive zero. If one argument is
positive zero and the other is negative zero, the result is negative zero.

Parameters:
a - an argument.
b - another argument.

Returns:
the smaller of a and b.

min

public static float min(float a,
 float b)

Returns the smaller of two float values. That is, the result is the value closer to negative infinity. If the arguments
have the same value, the result is that same value. If either value is NaN, then the result is NaN. Unlike the numerical
comparison operators, this method considers negative zero to be strictly smaller than positive zero. If one argument is
positive zero and the other is negative zero, the result is negative zero.

Parameters:
a - an argument.
b - another argument.

Returns:
the smaller of a and b.

min

public static int min(int a,
 int b)

Returns the smaller of two int values. That is, the result the argument closer to the value of Integer.MIN_VALUE. If
the arguments have the same value, the result is that same value.

Parameters:
a - an argument.
b - another argument.

Returns:
the smaller of a and b.

See Also:
Long.MIN_VALUE

min

public static long min(long a,
 long b)

Returns the smaller of two long values. That is, the result is the argument closer to the value of Long.MIN_VALUE. If
the arguments have the same value, the result is that same value.

Parameters:
a - an argument.
b - another argument.

Returns:
the smaller of a and b.

60/72

Class XMath

See Also:
Long.MIN_VALUE

sin

public static double sin(double a)

Returns the trigonometric sine of an angle. Special cases:

 If the argument is NaN or an infinity, then the result is NaN.
 If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

Parameters:
a - an angle, in radians.

Returns:
the sine of the argument.

sqrt

public static double sqrt(double a)

Returns the correctly rounded positive square root of a double value. Special cases:

 If the argument is NaN or less than zero, then the result is NaN.
 If the argument is positive infinity, then the result is positive infinity.
 If the argument is positive zero or negative zero, then the result is the same as the argument.

Otherwise, the result is the double value closest to the true mathematical square root of the argument value.

Parameters:
a - a value.

Returns:
the positive square root of a. If the argument is NaN or less than zero, the result is NaN.

tan

public static double tan(double a)

Returns the trigonometric tangent of an angle. Special cases:

 If the argument is NaN or an infinity, then the result is NaN.
 If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

Parameters:
a - an angle, in radians.

Returns:
the tangent of the argument.

61/72

Class XMath

toDegrees

public static double toDegrees(double angrad)

Converts an angle measured in radians to an approximately equivalent angle measured in degrees. The conversion
from radians to degrees is generally inexact; users should not expect cos(toRadians(90.0)) to exactly equal 0.0.

Parameters:
angrad - an angle, in radians

Returns:
the measurement of the angle angrad in degrees.

toRadians

public static double toRadians(double angdeg)

Converts an angle measured in degrees to an approximately equivalent angle measured in radians. The conversion
from degrees to radians is generally inexact.

Parameters:
angdeg - an angle, in degrees

Returns:
the measurement of the angle angdeg in radians.

asin

public static double asin(double a)

Returns the arc sine of a value; the returned angle is in the range -pi/2 through pi/2. Special cases:

 If the argument is NaN or its absolute value is greater than 1, then the result is NaN.
 If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

Parameters:
a - the value whose arc sine is to be returned.

Returns:
the arc sine of the argument.

acos

public static double acos(double a)

Returns the arc cosine of a value; the returned angle is in the range 0.0 through pi. Special case:

 If the argument is NaN or its absolute value is greater than 1, then the result is NaN.

The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

Parameters:
a - the value whose arc cosine is to be returned.

Returns:
the arc cosine of the argument.

62/72

Class XMath

atan

public static double atan(double a)

Returns the arc tangent of a value; the returned angle is in the range -pi/2 through pi/2. Special cases:

 If the argument is NaN, then the result is NaN.
 If the argument is zero, then the result is a zero with the same sign as the argument.

The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

Parameters:
a - the value whose arc tangent is to be returned.

Returns:
the arc tangent of the argument.

log

public static double log(double a)

Returns the natural logarithm (base e) of a double value. Special cases:

 If the argument is NaN or less than zero, then the result is NaN.
 If the argument is positive infinity, then the result is positive infinity.
 If the argument is positive zero or negative zero, then the result is negative infinity.

The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

Parameters:
a - the value whose the natural logarithm is to be returned

Returns:
the value ln a

exp

public static double exp(double a)

Returns Euler's number e raised to the power of a double value. Special cases:

 If the argument is NaN, the result is NaN.
 If the argument is positive infinity, then the result is positive infinity.
 If the argument is negative infinity, then the result is positive zero.

The computed result must be within 1 ulp of the exact result. Results must be semi-monotonic.

Parameters:
a - the exponent to raise e to.

Returns:
the value ea, where e is the base of the natural logarithms.

63/72

Class XMath

pow

public static double pow(double a,
 double b)

Returns the value of the first argument raised to the power of the second argument. Special cases:

 If the second argument is positive or negative zero, then the result is 1.0.
 If the second argument is 1.0, then the result is the same as the first argument.
 If the second argument is NaN, then the result is NaN.
 If the first argument is NaN and the second argument is nonzero, then the result is NaN.
 If
 the absolute value of the first argument is greater than 1 and the second argument is positive infinity,

or
 the absolute value of the first argument is less than 1 and the second argument is negative infinity,

then the result is positive infinity.
 If
 the absolute value of the first argument is greater than 1 and the second argument is negative infinity,

or
 the absolute value of the first argument is less than 1 and the second argument is positive infinity,

then the result is positive zero.
 If the absolute value of the first argument equals 1 and the second argument is infinite, then the

result is NaN.
 If
 the first argument is positive zero and the second argument is greater than zero, or
 the first argument is positive infinity and the second argument is less than zero,

then the result is positive zero.
 If
 the first argument is positive zero and the second argument is less than zero, or
 the first argument is positive infinity and the second argument is greater than zero,

then the result is positive infinity.
 If
 the first argument is negative zero and the second argument is greater than zero but not a finite odd

integer, or
 the first argument is negative infinity and the second argument is less than zero but not a finite odd

integer,
then the result is positive zero.

 If
 the first argument is negative zero and the second argument is a positive finite odd integer, or
 the first argument is negative infinity and the second argument is a negative finite odd integer,

then the result is negative zero.
 If
 the first argument is negative zero and the second argument is less than zero but not a finite odd

integer, or
 the first argument is negative infinity and the second argument is greater than zero but not a finite

odd integer,
then the result is positive infinity.

 If
 the first argument is negative zero and the second argument is a negative finite odd integer, or
 the first argument is negative infinity and the second argument is a positive finite odd integer,

then the result is negative infinity.
 If the first argument is finite and less than zero
 if the second argument is a finite even integer, the result is equal to the result of raising the absolute

value of the first argument to the power of the second argument
 if the second argument is a finite odd integer, the result is equal to the negative of the result of

raising the absolute value of the first argument to the power of the second argument
 if the second argument is finite and not an integer, then the result is NaN.
 If both arguments are integers, then the result is exactly equal to the mathematical result of raising

the first argument to the power of the second argument if that result can in fact be represented
exactly as a double value.

64/72

Class XMath

(In the foregoing descriptions, a floating-point value is considered to be an integer if and only if it is finite and a fixed
point of the method ceil or, equivalently, a fixed point of the method floor. A value is a fixed point of a one-
argument method if and only if the result of applying the method to the value is equal to the value.) The computed
result must be within 1 ulp of the exact result. Results must be semi-monotonic.

Parameters:
a - the base.
b - the exponent.

Returns:
the value ab.

limit

public static int limit(int value,
 int min,
 int max)

Limits a value between two others:

 If value is lower than min, returns min.
 If value is greater than max, returns max.
 Otherwise, returns value.

Parameters:
value - the value to limit
min - the lower bound
max - the upper bound

Returns:
the limited value

Throws:
IllegalArgumentException - if min is greater than max

limit

public static float limit(float value,
 float min,
 float max)

Limits a value between two others:

 If value is lower than min, returns min.
 If value is greater than max, returns max.
 Otherwise, returns value.

Parameters:
value - the value to limit
min - the lower bound
max - the upper bound

Returns:
the limited value

Throws:
IllegalArgumentException - if min is greater than max

65/72

Class XMath

limit

public static long limit(long value,
 long min,
 long max)

Limits a value between two others:

1. If value is lower than min, returns min.
2. If value is greater than max, returns max.
3. Otherwise, returns value.

Parameters:
value - the value to limit
min - the lower bound
max - the upper bound

Returns:
the limited value

Throws:
IllegalArgumentException - if min is greater than max

limit

public static double limit(double value,
 double min,
 double max)

Limits a value between two others:

1. If value is lower than min, returns min.
2. If value is greater than max, returns max.
3. Otherwise, returns value.

Parameters:
value - the value to limit
min - the lower bound
max - the upper bound

Returns:
the limited value

Throws:
IllegalArgumentException - if min is greater than max

66/72

	1 Preface to B-ON Profile, ESR001
	1.1 Who should use this specification?
	1.2 Comments
	1.3 Requirements
	1.4 Related Literature
	1.5 Document Conventions
	1.6 Implementation Notes

	2 Introduction
	2.1 Why B-ON?
	2.2 Basic Concepts
	2.3 First Example

	3 Object Natures
	3.1 Persistent Immutable Objects
	3.1.1 Object ID and Immutable Object Querying
	3.1.2 Immutable Objects Descriptions and Creation
	3.1.3 XML Grammar
	3.1.4 Immutable XML Description Examples
	3.1.5 Turning Objects Into Immutable Objects

	3.2 Immortal Objects
	3.2.1 Non Garbageable Objects
	3.2.2 Turning Objects Into Immortal Objects

	3.3 Reclaimable Objects
	3.3.1 Death Notification
	3.3.2 Death Notification Actions
	3.3.3 Weak objects association

	4 Runtime Phases
	4.1 Initialization Phase
	4.1.1 Mono-threaded Phase
	4.1.2 Deterministic Initialization Order

	4.2 Mission Phase
	4.2.1 Thread Activations
	4.2.2 Thread Control
	4.2.3 Class.forName

	4.3 B-ON Properties

	5 Utilities
	5.1 Timer & TimerTask
	5.2 Platform time
	5.3 Byte Array Accesses
	5.4 Math

	6 Annex A: Immutables DTD
	7 Java Specification

